
Time-Varying, Frequency-Domain Modeling and Analysis of Phase-Locked
Loops with Sampling Phase-Frequency Detectors

Piet Vanassche, Georges Gielen and Willy Sansen
Katholieke Universiteit Leuven - ESAT/MICAS

http://www.esat.kuleuven.ac.be/micas/

Abstract

This paper presents a new, frequency-domain based
method for modeling and analysis of phase-locked loop
(PLL) small-signal behavior, including time-varying as-
pects. Focus is given to PLLs with sampling phase-
frequency detectors (PFDs) which compute the phase er-
ror only once per period of the reference signal. Using
the harmonic transfer matrix (HTM) formalism, the well-
known continuous-time, linear time-invariant (LTI) approx-
imations are extended to take the impact of time-varying
behavior, arising from the sampling nature of the PFD, into
account. Especially for PLLs with a fast feedback loop, this
time-varying behavior has severe impact on, for example,
loop stability and cannot be neglected. Contrary to LTI
analysis, our method is able to predict and quantify these
difficulties. The method is verified for a typical loop design.

1. Introduction

Phase-locked loops (PLLs) are used in both analog and
digital systems for generating signals that track the phase
of a given reference signal. They can be used to reduce
oscillator phase noise by phase-locking it to a high-quality
reference, to synthesize frequencies which are multiples of
the input frequency or, in digital applications, to buffer and
deskew clock signals. In a lot of applications, PLLs are
among those blocks who’s performance is crucial in meet-
ing system-level specifications. Adequate analysis of their
behavior is therefore of great importance.

A typical PLL architecture, illustrated in Fig. 1, con-
sists of a voltage controlled oscillator (VCO)1, a phase-
frequency detector (PFD) and a loop filterHL F(s). Nowa-
days, one most commonly uses digital PFDs which steer
a charge-pump [7], this because of their superior acquisi-
tion of phase-lock. These PFDs measure the phase error

1In this text, we assume prescalers to be included in the VCO models.

V   (t)osc

LFH    (s) Digital
PFD

Charge−
Pump ref (t)V

(+prescaler)
VCO

+

Figure 1. Typical PLL architecture.

as the distance between the zero-crossings of the reference
signal and the VCO signal. Therefore, they only compute
the phase error once per period of the reference signal, i.e.
they sample the phase error. For this reason, we call them
sampling PFDs. Due to their sampling nature, these PFDs
introduce linear periodically time-varying (LPTV) compo-
nents in the PLL’s small-signal behavior. So, in analyzing
a PLL, we are essentially dealing with a periodically time-
varying system, as opposed to a time-invariant one, e.g. a
filter. Especially for PLLs with a fast feedback loop, this
time-varying behavior has severe impact on, for example,
loop stability and cannot be neglected.

This paper introduces a method to deal with the time-
varying aspects of a PLL’s small-signal behavior using a
frequency-domain description grounded on the harmonic
transfer matrix (HTM) formalism [9, 10]. This approach
is able to predict and quantify the difficulties that arise in
PLLs due their time-varying nature. Furthermore, being a
frequency-domain description, it allows us to recover pow-
erful tools and concepts from the theory of LTI systems,
like transfer functions and phase margin, for analyzing PLL
time-varying behavior.

Classical textbook analyses typically model PLL small-
signal behavior using continuous-time, linear time-invariant
(LTI) feedback theory [2, 7]. This approximation works
fine as long as the unity gain frequency of the feedback
loop is well below the frequency of the reference signal.
If this condition no longer holds, the approximation runs
into trouble. Especially for PLLs with a fast feedback loop
and a sampling PFD, the impact of time-varying behavior
on system performance can become quite dramatic. For
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this case, [3, 5] suggest to treat PLLs as discrete-time sys-
tems. This analysis reveals constraints on the design of
a PLL’s open-loop characteristic that are not readily de-
rived using continuous-time approximations. However, us-
ing z-domain models, [3, 5] still don’t fully recognize the
mixed continuous-time/discrete-time nature of PLLs. Fur-
thermore, they are not very well suited as a framework for
symbolic computations, at least not for arbitrary loop char-
acteristics. This limits their help in gaining understanding
and making decisions on design parameters.

This work presents a method for constructings-domain
PLL small-signal models that include the time-varying as-
pects of PLL behavior. Although extension to arbitrary
PFDs is possible, this work focuses on PLLs using sam-
pling PFDs since those occur most commonly. The model
is stated in terms of the HTM formalism [9, 10]. It is a
frequency-domain approach, extending ideas and intuitions
on LTI systems to include a PLL’s time-varying behavior.
Furthermore, this method can be used to obtain both nu-
merical results and symbolic expressions.

The remainder of this article is structured as follows.
Section 2 provides a brief summary on HTMs. Next, sec-
tion 3 discusses how to model the behavior of the PLL
building blocks in terms of these HTMs. In section 4, the
building block models are connected in order to obtain the
input-output HTM of the overall PLL. Experimental results
are presented in section 5. Finally, section 6 draws some
conclusions.

2. A brief summary on HTMs

Considering a general LPTV system, its input-output re-
lation is described by

y(t) = H [u(t)] =
∫ ∞

−∞
h(t, τ )u(t − τ )dτ . (1)

Here,u(t) is the input,y(t) is the output andh(t, τ ) is the
kernel describing the system’s behavior. Since for LPTV
systems, the kernelh(t, τ ) is T -periodic in the variablet , it
can be expanded as a Fourier series with respect tot . This
yields

y(t) =
+∞∑

k=−∞
e jkω0t

∫ +∞

−∞
hk(τ )u(t − τ )dτ , (2)

with ω0 = 2π/T . The functionshk(τ ) are called the har-
monic impulse responses and their Laplace transforms

Hk(s) = L {hk(τ )} (3)

the harmonic transfer functions. Introducing the∞-
dimensional vector

Ũ(s) = [ · · · U(s − jω0) U(s) U(s + jω0) · · · ]T
(4)

—with similar definition for Ỹ(s)— and the infinite-
dimensional matrix̃H(s) with elements

H̃n,m(s) = Hn−m(s + jmω0) , (5)

it can be shown that the input-output relation (1) has the
frequency-domain equivalent

Ỹ(s) = H̃(s)Ũ(s) . (6)

The matrix H̃(s) is called the harmonic transfer matrix
(HTM) [9, 10] corresponding to the LPTV system (1).
When truncated and evaluated ats = jω, it corresponds
to the harmonic conversion matrix as introduced in [8].

The nature of the HTM-representation is clarified by
considering the input-output behavior for

u(t) =
+∞∑

m=−∞
um(t)e jmω0t . (7)

Here, theum(t) have Fourier spectraUm( jω) = F {um(t)},
band-limited within

[−ω0/2, ω0/2
]
. They hence model the

signal content around the carriers atω = mω0. Defining

ŨB( jω) = [ · · · U−1( jω) U0( jω) U1( jω) · · · ]T
(8)

as the vector containing the input signal’s equivalent base-
band components, then, with a similar definition forỸB(s),
it can be shown that

ỸB( jω) = H̃( jω)ŨB( jω) . (9)

This implies that the matrix element̃Hn,m( jω) character-
izes the transfer of the signal content from the input signal
frequency band aroundmω0 to the output signal frequency
band aroundnω0. In short,H̃(s) characterizes how infor-
mation moves from one frequency-band to another. This
process is illustrated in Fig. 2.

Besides offering an elegant frequency-domain character-
ization of LPTV behavior, HTMs also provide an efficient
way to manipulate LPTV systems and to compute the over-
all input-output behavior, given the system’s building block
models. The HTMs corresponding respectively to the paral-
lel connectiony = H1[u] + H2[u] and the series connection
y = H2 [H1[u]] are given by

H̃+(s) = H̃1(s) + H̃2(s) (10)

H̃×(s) = H̃2(s)H̃1(s) . (11)

Furthermore, HTMs corresponding to basic building block
systems are computed in a straightforward manner. An LTI
system with transfer functionH (s) corresponds to the HTM
whose elements are given by{

H̃n,m(s) = H (s + jmω0) m = n
H̃n,m(s) = 0 m 6= n

, (12)
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Figure 2. Signal transfers between the differ-
ent input and output frequency bands.

Note this HTM having a diagonal structure. On the other
hand, the elements of the HTM corresponding to the mem-
oryless multiplicationy(t) = p(t)u(t), with p(t) =∑+∞

k=−∞ Pke jkω0(t), are specified by

H̃n,m(s) = Pn−m . (13)

Using (10)-(13), HTMs corresponding to more complex
systems can be determined from their topology and building
block HTMs.

3. Modeling the PLL building blocks

In constructing the HTM describing a PLL’s overall
input-output behavior, we first need to determine the HTMs
corresponding to the building blocks in Fig. 1. The next
couple of sections respectively describe the PFD, loop filter
and VCO models together with the HTMs that accompany
them. Note that when talking about the phaseθre f of the
reference signal and the phaseθ of the VCO, these are re-
lated to the signal models

Vre f (t) = xre f
(
t + θre f (t)

)
(14)

Vosc(t) = xosc (t + θ(t)) (15)

where bothxre f (t) andxosc(t) areT -periodic waveforms.
In what follows, we furthermore assume

∣∣θre f /T
∣∣ � 1, i.e.

it represents a small-signal excursion. In a stable PLL that
has acquired phase-lock, this implies that|θ/T | � 1.

3.1. Sampling phase-frequency detector

In sampling PFDs, the phase errorθre f − θ between the
reference and VCO output is measured (sampled) once per

VCO
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Figure 3. Sampling phase-frequency detector.
The reference and VCO phase are compared
using sequential digital logic which steers a
charge pump. The impedance Z L F (s) acts as
the loop filter.

period of the reference signal. Typical sampling circuits,
like the charge pump based topology in Fig. 3 [7], code this
error as the width of a sequence of digital pulses. If the
width of these pulses is small compared to the time-constant
of the loop filter–VCO combination, they will have the same
effect as Dirac impulses with their weight equal to the width
of the original pulses. This equivalence is depicted in Fig. 4.
Note that the pulses in the upper plot were normalized to
have magnitude 1. The effective charge-pump currentIcp

will be taken into account in the loop filter model.
Assuming the equivalence in Fig. 4 to hold, the input-

output relation of a sampling PFD can be modeled as a mul-
tiplication of the phase errorθre f − θ with a Dirac impulse
train, or

y(t) =
( +∞∑

m=−∞
δ(t − mT )

)(
θre f (t) − θ(t)

)
(16)

= ω0

2π

( +∞∑
m=−∞

e jmω0t

)(
θre f (t) − θ(t)

)
(17)

with T = 2π/ω0 the sampling period. Using (13), this
multiplication can be stated in terms of HTMs as

Ỹ(s) = H̃ P F D(s)
(
θ̃ (s) − θ̃re f (s)

)
(18)

with

H̃ P F D (s) = ω0

2π




...
...

...

· · · 1 1 1 · · ·
· · · 1 1 1 · · ·
· · · 1 1 1 · · ·

...
...

...




(19)

= ω0

2π
l · lT . (20)
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Figure 4. If the PFD produces pulses whose
width is small compared to the time-constant
of the loop filter-VCO combination, they will
have the same effect as Dirac impulses.

wherel = [ · · · 1 1 1 · · · ]T . From (20) it is ob-

served thatH̃ P F D (s) is a rank one matrix. This should
come at no wonder, since sampling maps all input sig-
nal content to the frequency band [−ω0/2, ω0/2], a phe-
nomenon known as aliasing. This spectrum is then periodi-
cally repeated over the remainder of the frequency axis. So,
knowledge of the output’s signal content in one frequency
band implies knowledge of its content in all other frequency
bands. This explains the HTM corresponding with the sam-
pling operator being rank one.

3.2. Loop filter

Typically, the loop filter is a time-invariant system with
transfer functionHL F(s). For the charge-pump topology in
Fig. 3, this transfer function is given by

HL F(s) = Icp

Z L F (s)
(21)

where Icp is the pump current andZ L F (s) is the output
impedance as seen by the charge-pump. The HTM corre-
sponding with this LTI system is a diagonal matrix deter-
mined from (12).

3.3. VCO

In capturing the controlled oscillator’s behavior, we
make use of the results presented in [1]. It is assumed that
the inputu(t) controlling the VCO can be decomposed in
a large signal DC componentu0, specifying the operating

point, and a small correction1u(t), i.e. u(t) = u0+1u(t).
In [1], it is shown that the changesθ(t) in the VCO phase
due to a perturbation component1u(t), are governed by

dθ

dt
= v(t + θ(t))1u(t) (22)

or

θ(t) =
∫ t

−∞
v(τ + θ(τ ))1u(τ )dτ . (23)

Here,v(t) is the periodic impulse sensitivity function asso-
ciated with the input source1u(t). Since, in a stable PLL,
the control signal1u(t) is such as to keep the VCO phase
θ(t) close toθre f (t) and since we assumedθre f (t) to repre-
sent a small-signal excursion, or

∣∣θre f /T
∣∣ � 1, it holds that

|θ/T | � 1. Equation (23) can therefore be approximated
as

θ(t) ≈
∫ t

−∞
v(τ )1u(τ )dτ . (24)

We hence find thatθ(t) is related to1u(t) via an LPTV
operator consisting of a multiplication withv(t) followed
by an integration. The HTM corresponding to this operator
is given by

H̃V C O(s) =




. . .

v0
s− jω0

v−1
s− jω0

. . .
v1
s

v0
s

v−1
s

. . . v1
s+ jω0

v0
s+ jω0

. . .
. . .




(25)

Here, thevk are the Fourier coefficients ofv(t), i.e. v(t) =∑
k vke jkω0t .

4. PLL input-output HTM

Having constructed the building block models, we are
now ready to tie them together in order to obtain the HTM
describing the PLL’s overall small-signal input-output be-
havior. Using the composition rules outlined in section 2,
we obtain the loop equation

θ̃ (s) = G̃(s)
(
θ̃re f (s) − θ̃ (s)

)
(26)

where

G̃(s) = H̃V C O(s) · H̃L F (s) · H̃ P F D(s) (27)

is the PLL’s open-loop gain HTM. Solving for̃θ(s) yields

θ̃ (s) =
[(

I + G̃(s)
)−1

G̃(s)

]
θ̃re f (s) , (28)

4



relating changes in the reference phase to changes in the
VCO phase.

Considering the fact that elaborating (28) involves the in-
version of an, in principle,∞-dimensional matrix, this ex-
pression does not seem to hold much practical value. How-
ever, by exploiting the fact that̃H P F D (s) = (ω0/2π) l · lT

is of rank one, it is possible to obtain a closed-form ex-

pression for
(
I + G̃(s)

)−1
, and hence for the input-output

relation (28). Defining

Ṽ(s) = ω0

2π
H̃V C O(s) · H̃L F (s) · l , (29)

we can write
G̃(s) = Ṽ(s) · lT . (30)

Using the Sherman-Morisson-Woodbury formula [4], we
then find(

I + G̃(s)
)−1 =

(
I + Ṽ(s) · lT

)−1
(31)

= I − Ṽ(s) · lT

1 + λ(s)
(32)

with

λ(s) = lT Ṽ(s) = lT
[
H̃V C O(s) · H̃L F (s)

]
l . (33)

In words,λ(s) equals the sum of all elements ofH̃V C O(s) ·
H̃L F (s). Substituting (32) in (28) and using (30), the input-
output relation becomes

θ̃ (s) =
(

1

1 + λ(s)
Ṽ(s) · lT

)
θ̃re f (s) . (34)

This relation is straightforward to evaluate numerically. It
can also be used as a starting point for obtaining symbolic
results.

5. Experimental results

We illustrate and verify our method for PLL loops with
time-invariant VCO behavior. Computations obtained using
the HTM framework are compared with results from time-
marching simulations in Matlab/SimulinkTM. The Mat-
lab/Simulink model implements the PFD using flip-flops
and therefore encodes the phase error through the width of
the pulses it produces. This corresponds to the behavior of
an actual circuit realization. It allows us to test the accuracy
of our approximations.

Time-invariance of the VCO implies that in (25),vk =
0, ∀k 6= 0. The HTM becomes diagonal and represents an
LTI system with transfer characteristicHVC O(s) = v0/s.
The open-loop gain of the continuous-time LTI approxima-
tion then becomes

A(s) = ω0

2π

v0

s
HL F(s) . (35)
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Figure 5. Typical characteristic for A( jω).

The factorω0/2π in front arises from the sampling PFD
model (19). Fig. 5 shows a typical gain characteristic. It
contains three poles (the first two at DC) and one zero. Note
that the frequency-axis is normalized with respect to the
unity-gain frequencyωU G of A(s). This characteristic will
be used for further numerical computations.

Using (33) and (34), the input-output HTM̃H(s) is found
to equal

H̃(s) = 1

1 + λ(s)




...

A(s − jω0)

A(s)
A(s + jω0)

...



[ · · · 1 1 1 · · · ]

(36)
with

λ(s) =
+∞∑

m=−∞
A(s + jmω0) (37)

being the effective open-loop gain. The HTM element
H̃0,0(s), modeling the closed-loop signal transfers from
baseband to baseband, is given by

H̃0,0(s) = A(s)

1 + λ(s)
≈ A(s)

1 + A(s)
. (38)

The latter approximation, corresponding to classical
LTI analysis, is valid as long as long as|A(s)| �∣∣∣∑m 6=0 A(s + jmω0)

∣∣∣ . If this no longer holds, i.e. when

time-varying effects become important, the other terms of
λ(s) need to be taken into account. This is the case as the
frequency range of interest, characterized by the unity gain
frequencyωU G of A(s), approachesω0. Note that signal
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Figure 6. Baseband to baseband signal trans-
fer, represented by the HTM element H̃0,0(s),
for ωU G/ω0 = 0.01, 0.1 and 0.15.

transfers to other frequency bands can be studied as well by
considering the other elements ofH̃(s).

Fig. 6 shows the impact of an increasingωU G/ω0 on
H̃0,0(s). The solid lines are obtained by evaluating (38)
while the marks are extracted from time-marching simula-
tions. Both are within 2%. Note, however, that evaluating
(38) is only a matter of seconds while it takes several min-
utes for the time-marching simulations to complete.

ObservingH̃0,0(s), it is seen that the effective band-
width shifts to the right asωU G/ω0 increases. Also, peak-
ing at the passband’s edge becomes worse. Fig. 7 explains
this behavior in terms of the effective open-loop gainλ(s).
The increase of the closed-loop bandwidth corresponds to
the increase ofωU G,e f f , the unity gain frequency ofλ(s).
More important is the phase margin ofλ(s) which is rapidly
degrading for increasingωU G/ω0. For ωU G/ω0 = 0.1,
this phase margin is already 9% worse than predicted by
LTI analysis. This clearly illustrates the need to take time-
varying effects into account for proper design of a PLL’s
behavior.

6. Conclusions

Time-varying effects, especially for PLLs implemented
with a fast feedback loop and a sampling PFD, have a signif-
icant impact on PLL system performance and cannot be ne-
glected. This paper has presented a method to deal with the
time-varying aspects of a PLL’s small-signal behavior us-
ing a frequency-domain description grounded on the HTM
formalism. This approach is able to predict and quantify
the difficulties, e.g. degrading loop stability, that arise in
PLLs due their time-varying nature. Furthermore, being a
frequency-domain description, it allows us to recover pow-
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Figure 7. The normalized effective unity gain
frequency ωU G,e f f /ωU G (upper plot) and the
open loop phase margin (lower plot) versus
ωU G/ω0. The horizontal line indicates the
phase margin as predicted by LTI analysis.

erful tools and concepts from the theory of LTI systems,
like transfer functions and phase margin, for analyzing PLL
time-varying behavior. The method can be used to obtain
both numerical results and symbolic expressions.
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