
DFT for Testing High-Performance Pipelined Circuits
with Slow-Speed Testers

Muhammad Nummer and Manoj Sachdev
University of Waterloo, Ontario, Canada

mnummer@vlsi.uwaterloo.ca, msachdev@ece.uwaterloo.ca

Abstract

This paper presents a methodology for testing high-
performance pipelined circuits with slow-speed testers. The
technique uses a clock timing circuit to control data transfer
in the pipeline in test mode. A clock timing circuit capable of
achieving a timing resolution of 50ps in 0.18�m CMOS tech-
nology is presented. The design provides the ability to test
the clock timing circuit itself.

Keywords: Delay-fault testing, high-performance testing,
design for testability, design for delay testability.

1. Introduction
The 2001 edition of the International Technology

Roadmap for Semiconductors (ITRS) expects that the clock
frequency of high-performance state-of-the-art CMOS VLSI
circuits will exceed 6GHz by year 2007 [1]. According to
the ITRS, potential manufacturing yield loss associated with
the at-speed functional test methodology is related to the
growing gap between automatic test equipment (ATE) per-
formance and the ever increasing device I/O speed. In the
last two decades, while the clock frequencies of VLSI cir-
cuits have improved at an average rate of 30% per year, the
tester timing accuracy has improved only at a rate of 12%.
For future high-performance VLSI circuits, it will be essen-
tial for the design to include design-for-testability/built-in-
self-test (DFT/BIST) techniques to reduce the reliance on tra-
ditional, high-cost, full-feature testers. The requirements of
ATEs designed to work on chips with DFT/BIST techniques
are much simpler than those for the traditional testers.

The creation of a low frequency test mode in digital cir-
cuits was first introduced by Agrawal and Chakraborty [2]
in 1995. They used a pulse-triggered flip-flop in which a
dynamic latch is introduced inside a traditional master-slave
flip-flop. In 1999, Shashaani and Sachdev proposed the con-
trolled delay flip-flop (CDFF) [3] as an alternative to the
pulse-triggered flip-flop. In this technique an additional test
mode clock is used to control the delay of the flip-flop. The
main advantages of the CDFF over the pulse-triggered flip-

flop are the stable operation and improved performance in
normal mode. In 2001, Nummer and Sachdev proposed an
on-chip clock generation methodology that allows the test
mode clock frequency of circuits using CDFFs to be reduced
arbitrarily [4]

In this paper, we propose a methodology for testing high-
performance pipelined circuits using slow speed testers. The
technique depends on test mode clock shifting. It adds no
extra hardware in the data path of the pipeline and therefore
has virtually no performance penalty.

2. Testing Pipelines by Clock Shifting
The basic idea in the proposed technique is demonstrated

in Figure 1. In this study, we assume that the registers in the
pipeline use a single phase common clock and are built us-
ing flip-flops as the storage element. A clock timing circuit
is used to control clocks driving all registers in the pipeline.
The idea is to use shifted version(s) of the input clock, IP-
CLK, to control the timing of data flow through the pipeline
in the test mode. In order to achieve that, each register in the
pipeline has to have a separately routed clock, as shown in
Figure 1(a). This results in higher complexity of clock gener-
ation and propagation. Special care should be given to keep
skew between the different clock signals within acceptable
limits.

In normal mode, a single phase high-frequency clock is
used for all registers in the pipeline. As a result, the operation
of the circuit depends on the period of this clock. The delay
of stage �; ��� , can be expressed using the following equation.

��� � ������ � ������ � ���	
���� � �����
� ������

� (1)

where ������ is the propagation delay of register �, ������ is
the delay of the �	
 stage combinational block, ���	
���� is
the setup time of register � � �, and �����

� ������
� is the

difference between the delays through the clock driving net-
works of registers � and � � �. For the pipeline to function
correctly, the normal mode clock period, ��� , has to be at
least equal to the largest stage delay, i.e.

��� �����
������� � (2)

1530-1591/03 $17.00  2003 IEEE

High-Performance Pipeline

(DUT)

n-Stage

Clock Timing Circuit

CKn+1CK0 CK1 CK2

PI PO

IPCLK

Control IP

(a)
tprop tcomb tsetup

tCKi

tCKi+1

CKi

CKi+1

Di

Qi

Di+1

Td

(b)

Figure 1. (a) Block diagram of the DUT and the
clock timing circuit. (b) Test mode operation.

In test mode, a delayed version of the clock is used to test
the pipeline. This is illustrated in Figure 1(b). In order to test
stage �, a delayed version of the input clock, IPCLK, with
delay �� is applied to register � � �, while the original clock
is used for all other registers. The test mode clock period,
��� , has to be at least equal to the normal mode clock pe-
riod. Using a larger value of ��� means that we can use a
slow-speed tester in the test mode. Setting �� to be equal to
��� allows the �	
 stage to operate within its normal mode tim-
ing constraints while the whole circuit is running at a lower
frequency. As a result, the slow-speed tester can be used to
do performance binning and test the circuit for delay faults.
This technique does not require any changes in the design of
the registers or the combinational blocks and therefore has
virtually no performance penalty.

3. Clock Timing Circuit

This section provides design details for the clock timing
circuit. A number of issues have to be taken into account in
the design of this circuit in order to ensure proper delay fault
testability of the pipeline.

1. Programmability and resolution: The delay, ��,
should be programmable for two reasons: (i) to allow DUT

performance binning , and (ii) to allow paths of different de-
lays to be tested for delay faults. The resolution with which
�� is varied should be high enough to allow the detection of
small delay faults.

2. Timing accuracy: Process, temperature, and supply
voltage variations have a large effect on the delays of the cir-
cuit. The design should compensate for these effects such
that the value of �� will be as desired regardless of these
variations.

3. Tester edge placement accuracy (jitter): A slow-
speed tester is generally a low specification device. It has
a low timing resolution and high edge placement inaccuracy,
or jitter. The design should have the ability to suppress the
tester’s jitter in order to minimize its effect on the timing res-
olution and accuracy of the clock timing circuit.

4. Testability: Adding hardware to enhance testability
begs the question: how can we insure the functionality of
the extra hardware? is it testable? Answering these ques-
tions is very important and is a challenge to most design-for-
testability techniques.

Figure 2 shows the clock timing circuit used in our de-
sign (multiplexer select inputs are not shown). The design
assumes a 5 stage pipeline but can be expanded to larger and
more complex circuits. This circuit is designed using CMOS
0.18�m technology provided through TSMC. It comprises a
phase-locked-loop (which could be part of the clock genera-
tion circuit for the chip, as is the case for high-performance
microprocessors, e.g.), three delay lines, a phase splitter &
delay circuit, a DLL, and a number of multiplexers. The de-
sign allows �� to vary between 250ps and 1000ps with 50ps
increments (resolution). These are design variables and it is
up to the designer to choose the values suiting a specific cir-
cuit or application. The design and operation of the different
blocks used in the clock timing circuit is described below.

1. Phase-locked-loop (PLL): The PLL works as a fre-
quency multiplier. It is used to generate a high-frequency
clock from a low-frequency input clock in test mode. It is as-
sumed that the normal mode input clock is a high-frequency
clock, and hence the PLL is not active in that mode (the de-
sign could be such that the same PLL is used to generate
the normal mode high-frequency clock from a slower input
clock). Our design assumes that the input clock from the
tester (IPCLK) has a frequency of 100MHz (this is a de-
sign variable and could be different). The PLL generates a
high-frequency clock (HFCLK) with a frequency of 1GHz
(10 times the input clock frequency). HFCLK is used only to
calibrate the delay lines used to generate ��. Using a PLL to
generate the high-frequency clock used for calibration serves
two purposes: (i) it helps suppress tester jitter and reduce its
effect on the timing accuracy of the design, and (ii) it allows
us to use smaller number of delay elements in the delay lines
as will be shown later.

2. Delay-locked-loop (DLL): The main function of the

V

U

AD C B

4:1 MUX

10 Delay Elements

DL2

DL1

16:1 MUX

DL0

PSD

J

CLK

Phase

Splitter

PLL

DLL

IPCLK Vn
To clock driving networks

of registers 0 to 5

15210

CK5

Vn

6 x 2:1 MUXs

CK4CK3CK2

5:1 MUX

EFGHI

DCLK

2:1 MUX

YX

Vp

6:1 MUX
M5M6

6:1 MUX

M1

M2

M3 M4

M7

HFCLK

Delay Element

Half Delay Element

CK0 CK1

Figure 2. Clock Timing Circuit (multiplexer select inputs are not
shown).

�
�
�
�

�
�
�
�

Vp

Vdd

Vss

Vn

OutputInput

P1
P2

P3

N1 N2

N3

Figure 3. Schematic diagram of
half the delay element [5].

DLL is to calibrate the delay lines used to generate the de-
layed version of the input low-frequency clock. This is par-
ticularly important in order to ensure correct timing regard-
less of any process, temperature, and/or supply voltage vari-
ations. Its outputs, �� and ��, are used to control the delays
of the delay elements. The values of these control voltages
depend on the phase difference between the two inputs of the
DLL (X and Y). When locked, �� and �� should be such that
the signal at Y is delayed by one complete cycle from the
signal at X. The DLL serves another important purpose. It
allows great flexibility for testing the clock timing circuit it-
self. As a result, most of the extra hardware in our design can
be tested simply by comparing values of the DLL’s outputs
(�� and ��) when different signals are used to close the loop.

3. Delay lines and phase splitter & delay circuit: Three
delay lines, DL0, DL1, and DL2, are used in the design.
Each delay line comprises a number of delay elements. The
schematic diagram of half the delay element is shown in Fig-
ure 3. It consists of a static inverter connected in parallel to
a current starved inverter [5]. The circuit delay is controlled
by the two bias voltages �� and ��. When transistors P3 and
N3 are turned off, the delay is maximum and depends on the
sizes of transistors P1 and N1. On the other hand, when ��
and �� are equal to ��� and ��� respectively, maximum cur-
rent is allowed to flow through the current starved inverter
resulting in minimum delay.

Initially, our objective was to design a delay element with
a delay of 50ps (the resolution of ��). We were able to
achieve that only for one edge of the input clock. The delay

for the other edge was much higher. Using the DLL to cal-
ibrate the delay lines requires that the delay for any edge to
be within a certain limit, otherwise the signal will be lost be-
fore reaching the end of the delay line. As this is not feasible
using the technology at hand (0.18�m CMOS technology),
we designed the delay elements to have a delay of 100ps and
used two delay lines with a 50ps delay between them to get
a resolution of 50ps. It is worth noting that sizing of the
transistors in the delay element should be such that there are
values of the control voltages that result in a delay of 100ps
under worst case conditions (slow-PMOS and slow-NMOS
transistor models, � � �����, and ��� is 10% less than its
nominal value) as well as best case conditions (fast-PMOS
and fast-NMOS models, room temperature, and ��� is 10%
more than its nominal value).

DL0 consists of 10 delay elements. It is used to calibrate
the other two delay lines. This is achieved by closing the
DLL loop using DL0 and applying HFCLK from the PLL to
the input of this delay line. The period of HFCKL is 1ns for
an input clock frequency of 100MHz. Once locked, the out-
put voltages from the DLL should be such that the total delay
across DL0 is equal to one clock period. As a result and since
these voltages control all three delay lines, the delays of all
delay elements in the circuit are adjusted to 100ps. If IPCLK
were to be used to calibrate the delay lines, DL0 would have
100 delay elements rather than only 10. This explains the
benefit of generating HFCLK using the PLL.

As shown in Figure 2, the phase splitter & delay (PSD)
circuit accepts either IPCLK (low-frequency clock, in test

mode) or HFCLK and generates two clocks A and B. PSD
is designed such that the clock at A is delayed by half delay-
element delay with reference to the clock at B. This means
that when �� and �� are such that the delay of the delay el-
ement is 100ps, the delay from B to A is 50ps. These two
clocks are fed to the other two delay lines, DL1 and DL2.
DL1 and DL2 consist of 11 and 10 delay elements, respec-
tively. The main function of these two delay lines is to gen-
erate DCLK with programmable delays with respect to CLK
(Figure 2). It is worth noting that the input clock jitter has vir-
tually no effect on the timing accuracy of DCLK and hence
on high-performance delay fault testability. Any edge place-
ment inaccuracy at the input propagates through DL1 and
DL2. As a result, the same amount of jitter is added to both
CLK and DCLK keeping the delay between these two clocks
at the desired value of ��.

4. Multiplexers M1-M7: The multiplexers shown in Fig-
ure 2 can be divided into two groups. The first group in-
cludes M2 and M5. Outputs from 16 delay elements in DL1
and DL2 are tapped and fed to M2. According to the select
inputs of M2, one of the 16 inputs is selected to be DCLK.
This allows the delay between CLK and DCLK to be varied
between 250ps and 1000ps with 50ps increments (note that
CLK is buffered to compensate for the delay through M2).
M5 consists of six 2:1 multiplexers. It is used to control the
clocks feeding all registers in the pipeline (CK0 to CK5). De-
pending on the mode of operation and the pipeline stage to
be tested, M5 sets the clock of each register to either CLK or
DCLK, according to its select inputs.

The second group of multiplexers include M1, M3, M4,
M6, and M7. These multiplexers are used only to ensure
the functionality of the clock timing circuit. Details on the
operation of these multiplexers are given in the next section.

The proposed clock timing circuit takes into account all
the issues mentioned at the beginning of this section. Pro-
grammability is achieved through DL1, DL2, and the multi-
plexer M2. Using a DLL allows us to achieve the same timing
accuracy regardless of process, temperature, and/or supply
voltage variations. The DLL with a number of multiplexers
help ensure the functionality of the clock timing circuit itself.
With the help of the PLL, tester clock jitter is not allowed to
propagate to DL0. It has no effect on the timing accuracy of
signals generated form DL1 and DL2. The area overhead due
to this design is estimated to be 100 gates per pipeline stage.
This should be acceptable for medium to large pipelined cir-
cuits. It is important to note that matching between the dif-
ferent components in the design is essential to ensure correct
timing even with small local process, temperature and/or sup-
ply voltage variations. This can be achieved through circuit
layout techniques similar to those used for analog circuits.

4. Modes of Operation

In this section we put the different blocks of the clock tim-
ing circuit together and show how they function in the differ-
ent modes of operation. The clock timing circuit operates in
three modes. In normal mode the pipeline is used to perform
the function it is designed for. In the DUT test mode, the
clock timing circuit is used to verify the performance of the
DUT and to test it for delay faults. In the clock timing cir-
cuit test mode, the clock timing circuit is tested to ensure its
ability to give a correct image about the performance of the
pipeline.

4.1 Normal Mode

In normal mode, the control inputs of multiplexers M1 and
M5 are set such that IPCLK propagates to all registers in the
pipeline. As a result, the whole pipeline runs using the same
clock ensuring normal operation. The remaining part of the
clock timing circuit serves no function in normal mode, and
can be turned off. This is important to reduce the effect the
clock timing circuit has on normal mode power consumption
of the chip.

4.2 DUT Test Mode

This mode is used to verify the performance of the DUT
and test it for delay faults. The pipeline is tested one stage at
a time. For every target path, two vectors are used to test the
circuit. The first vector initializes the DUT, while the second
vector activates the target path of the stage to be tested. Us-
ing multiplexer M2, �� is set according to the expected delay
for the path tested by these vectors. Depending on the stage
to be tested, multiplexer M5 is configured to set one of the
register’s clocks to DCLK and all other clocks to CLK. For
example, to test stage 3 in the pipeline, clocks CK0, CK1,
CK3, and CK5 are set to CLK while CK4 is set to DCLK.
As a result, data flows between registers 3 and 4 within nor-
mal mode timing constraints. For all other stages, the low
frequency clock allows operation under relaxed timing. This
is important to ensure that delay faults in these stages do not
affect the target path and hence the stage under test. This pro-
cedure is repeated for every path to be tested until the DUT
is tested completely.

4.3 Clock Timing Circuit Test Mode

In this mode, the DLL, with the help of multiplexers M1,
M3, M4, M6, and M7, is used to characterize and verify the
performance of the clock timing circuit. Multiplexer M1, is
set to propagate the high-frequency clock, HFCLK, through
DL1 and DL2. The clock timing circuit is tested in three
phases as shown in Figure 4. In the first phase, all three delay
lines (excluding the last delay element in DL1) are tested.
The second phase is used to test the PSD circuit. This is done
by verifying that the delay between nodes A and B is equal
to half delay-element delay. The third phase is used mainly

to test multiplexer M5. This phase also covers multiplexers
M6, M7, and a small part of M2. Each of the three phases
cover parts of multiplexers M3 and M4, such that these two
multiplexers are fully testable. In our design, only M1 and
most of M2 are not testable. Compared to the rest of the
clock timing circuit and the DUT, this is a very small area of
the circuit.

Phase 1: Testing DL0, DL1, and DL2. In this phase,
delay lines DL0, DL1, and DL2 are tested between nodes C
and H, B and G, and A and E, respectively. Table 1 gives the
number of delay element between the different nodes in the
clock timing circuit. The first three entries in the table have
the same number of delay elements. As a result, closing the
DLL loop with these node pairs one at a time, should result
in very close values of �� (monitored off-chip) for all three
configurations. As shown in Figure 4, the test in this phase is
done in four steps:

1. Close the DLL loop using C and H (�� � � �
���	 � 	 �
). Measure �� and record it as ��� .

2. Close the DLL loop using B and G (�� � � �
���	 � ��
). Measure �� and record it as ��� .

3. Close the DLL loop using A and E (�� � �� ���	 �

 �
). Measure �� and record it as ��� .

4. Compare ��� , ��� , and ��� . If the differences between
the three values are within acceptable limits, the three
delay lines are considered to be free from delay faults.

Ideally, the three values should be equal. Mismatch be-
tween the delay elements and the different components in the
DLL would result in some differences between them. Char-
acterization is necessary to define how much difference due
to mismatch and process variations is acceptable. In this con-
text, we assume that only single delay fault exists in the cir-
cuit. It is worth noting that it is highly unlikely to have the
exact same amount of delay fault in two of or all three de-
lay lines. In addition to DL0, DL1, and DL2, the test in this
phase covers paths through multiplexers M3 and M4 used to
close the DLL loop (A-X, B-X, C-X, E-Y, G-Y, and H-Y).

Phase 2: Testing the Phase Splitter & Delay Circuit.
Referring to Table 1, the delay between nodes A and F on
one side and nodes B and E on the other are both equivalent
to �� �

�
delay elements. This is only true if the two outputs

of the PSD circuit (A and B) are exactly half delay-element
delay apart. These observations are used to test the PSD cir-
cuit for delay faults. As shown in Figure 4, the test is done
first by closing the DLL loop using nodes A and F. When
locked, DLL output �� is recorded as ��� . Similarly, ���
is obtained by closing the DLL loop through nodes B and
E. For fault-free PSD, the difference between ��� and ���
should be within acceptable limits (defined through charac-
terization). The test in this phase covers the G-F-Y path as
well.

Nodes # of delay elements
A and E 10
B and G 10
C and H 10
A and F ��

�

�

B and E ��
�

�

Table 1. Number of delay elements between dif-
ferent nodes in the delay lines.

1 20Vn =Vn =Vn ?

Vn =Vn ?43

Vn =Vn ?5+i 0

i = i + 1

No

Circuit is fault-free

Start

M3: B -> X; M4: G -> Y; Store Vn as Vn

Yes

Yes

Yes

i = 4?

Set counter i to 0

No

No

No

Yes

Circuit is faulty

P
h

as
e

1:
 T

es
t

D
L

0,
 D

l1
, a

n
d

 D
L

2
P

h
as

e
2:

 T
es

t
P

S
D

P
h

as
e

3:
 T

es
t

M
U

X
 M

5

0

1

2

3

4

M3: C -> X; M4: H -> Y; Store Vn as Vn

M3: A -> X; M4: E -> Y; Store Vn as Vn

M3: A -> X; M4: F -> Y; Store Vn as Vn

M3: B -> X; M4: E -> Y; Store Vn as Vn

M2: 15 -> DCLK; M3: D -> X; M4: I -> Y

Store Vn as Vn5+i

M5: CLK -> CKi, DCLK -> CKi+1;
M6: CKi -> D, M7: CKi+1 -> I;

End

M1: HFCLK -> J

Figure 4. Procedure for testing the clock timing
circuit.

Phase 3: Testing Multiplexer M5. Phase 3 of the clock
timing circuit test procedure is used to test multiplexer M5.
This is done with the help of multiplexers M6 and M7. The
main idea is to set the delay between CLK and DCLK (��)
to one cycle of HFCLK (1ns). The different paths in M5
are tested two at a time. As shown in Figure 4, to test the

paths from CLK to ��� and DCLK to ����� (where � is
any number between 0 and 4), M5 is set accordingly and M6
and M7 are used to close the DLL loop using nodes ��� and
�����. Under these conditions, if all signal paths are free
of delay fault, when locked, the DLL output, ��, should be
equal to the values obtained in phase 1 of the test procedure
(for fault free DL0, DL1, and DL2). The test in this phase
covers M6, M7, the 15-DCKL path in M2, the D-X path in
M3, the I-Y path in M4, and the buffer used for CLK.

5. Delay Fault Simulation Results

Delay fault simulations for the clock timing circuit are
carried out in order to verify our ability to characterize the
performance of the circuit. 15 delay faults are inserted in dif-
ferent locations of the circuit one at a time. These fault are
generated using the same delay element used in the design.
Using active elements to add extra delays ensures the exis-
tence of a pre-determined delay fault without degrading the
quality (rise/fall times) of the delayed signals. The delay of
the delay element is at its minimum of 60ps when �� � ���
and �� � ���. Hence the smallest delay fault used in the
simulations is 60ps. Larger delays are achieved using larger
values of �� and smaller values of ��. The test is done ac-
cording to the procedure in Figure 4. The results are shown
in Tables 2(a), (b), and (c), showing faults detected in each
phase of the clock timing circuit test procedure.

A fault detectable in phase 1 or phase 3 of the test proce-
dure causes only one value of �� (��� , ��� , or ��� for phase
1 or �����

for phase 3) to deviate from the fault-free value.
This is why for faults detected in phase 1 and phase 3, the last
column in each table gives the difference in �� compared to
the fault free value. This is different from faults detectable
in phase 2, where the fault causes both ��� and ��� to devi-
ate in opposite directions from the fault free value. For faults
detected in phase 2, ��� in Table 2(b) is computed as the
difference between ��� and ��� .

A positive��� indicates that the delay seen by the DLL
is larger than it should be. As a result, the DLL causes the
voltage to increase in to order to compensate for the extra
delay. The opposite is true for negative ���. For a certain
delay fault, the larger the value of ���, the easier it is to
observe the error due to the fault. As shown in Table 2, the
smallest value of ��� is 17.3mV which can be easily mea-
sured off-chip. These results demonstrate our ability to test
the clock timing circuit for delay faults. This is important to
ensure its ability to give a true image about the operation and
performance of the DUT.

6. Conclusions

We presented a methodology for testing high-performance
pipelined circuits with slow-speed testers. In this technique,
each pipeline stage is clocked using a separate clock gen-
erated from an on-chip clock timing circuit in test mode.

Fault # Fault Faulty Delay ��� ��� ��� ���

location Path fault (ps) mV mV mV mV
F1 DL0 C-H 60 633 611.5 611.5 21.5
F2 DL1 B-G 100 611.5 649 611.5 37.5
F3 DL2 A-E 200 611.5 611.5 691.7 80.2
F4 M3 A-X 60 611.5 611.5 594.2 -17.3
F5 M3 B-X 100 611.5 583.3 611.5 -28.2
F6 M3 C-X 200 554 611.5 611.5 -57.5
F7 M4 E-Y 60 611.5 611.5 634 22.5
F8 M4 G-Y 100 611.5 648.7 611.5 37.2
F9 M4 H-Y 200 697 611.5 611.5 85.5

(a) Faults detected in phase 1 (fault-free �� is 611.5mV, faulty values in bold)

Fault # Fault Faulty Delay ��� ��� ���

location Path fault (ps) mV mV mV
F10 PSD J-A 60 609.8 651.5 -41.7
F11 PSD J-B 100 669 597.9 89.1
F12 M4 F-Y 200 720 628.6 91.4
(b) Faults detected in phase 2 (fault-free �� is 628.6mV)

Fault # Fault Faulty Delay �� ���

location Path fault (ps) mV mV
F13 M2 15-DCLK 60 633.2 21.7
F14 M5 DCLK-CK4 100 647 35.5
F15 Buffer U-CLK 200 554.8 -56.7
(c) Faults detected in phase 3 (fault-free �� is 611.5mV)

Table 2. Delay fault simulation results for the
clock timing circuit.

The technique adds no extra hardware in the data path of the
pipeline and therefore has no performance penalty.

A design for the clock timing circuit capable of achieving
a timing resolution of 50ps in 0.18�m CMOS technology was
presented. The design provides the ability to test the clock
timing circuit itself. Simulations show that we are able to
detect delay faults in the clock timing circuit as small as 60ps
at an input clock frequency of 100MHz.

Future work includes testing the clock timing circuit with
a pipelined test vehicle in order to demonstrate our ability to
detect delay faults in the pipeline.

References
[1] Semiconductor Industry Association, “International Technol-

ogy Roadmap for Semiconductor, 2001 Edition”, 2001.

[2] V. D. Agrawal and T. J. Chakraborty, “High-Performance Cir-
cuit Testing with Slow-Speed Testers”, Proc. of International
Test Conference, pp. 302–310, 1995.

[3] M. Shashani and M. Sachdev, “A DFT Technique for High-
Performance Circuit Testing”, Proc. of International Test Con-
ference, pp. 267–285, 1999.

[4] M. Nummer and M. Sachdev, “A Methodology for Test-
ing High-Performance Circuits at Arbitrarily Low Test Fre-
quency”, IEEE VLSI Test Symposium, pp. 68–74, April 2001.

[5] Gary C. Moyer, “The Vernier Technique for Precise Delay
Generation and Other Applications”, PhD thesis, The Depart-
ment of Computer Engineering, North Carolina State Univer-
sity, 1996.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

