
A General Framework for Analysing System Properties in Platform-Based
Embedded System Designs

Samarjit Chakraborty Simon Künzli Lothar Thiele
Computer Engineering and Networks Laboratory

Swiss Federal Institute of Technology (ETH) Zurich, Switzerland

Abstract
We present a framework (Real-Time Calculus) for

analysing various system properties pertaining to timing
analysis, loads on various components and on-chip buffer
memory requirements of heterogeneous platform-based ar-
chitectures, in a single coherent way. Many previous analy-
sis techniques from the real-time systems domain, which are
based on standard event models, turn out to be special cases
of our framework. We illustrate this using various realistic
examples.

1 Introduction
The complexity of today’s systems-on-chip (SoC) de-

signs, coupled with issues like short time-to-market and low
cost, have led to new design paradigms such as platform-
based design [6]. These are based on the concept of reuse at
several levels of abstraction, where designers rely on the use
of intellectual property blocks or cores from some library
(such as the IBM Blue Logic Core Library [5]), or on cores
provided by a third-party vendor. Since such cores are al-
ready predesigned and verified, see [1], a designer can now
concentrate on the overall system rather than the individual
components, and also reduce the number of steps required
to translate a system-level design into a final product.

Analysing such system platforms to verify timing and
other system properties pose a major challenge because they
depend on the interfaces and properties (such as arbitration
schemes on buses) of the different cores, and also on the
RTOS and other components of the software platform. The
problem gets aggravated in the context of embedded sys-
tems because of their generally heterogeneous architecture,
where different scheduling and resource sharing strategies
are used on the different buses and processors.

The analysis involves verifying timing properties, identi-
fying possible bottlenecks that might exist at a bus or a pro-
cessor, and also estimate values of on-chip memory require-
ment, off-chip memory bandwidth, etc. However, currently
there are almost no tools or methods which enable this in
an easy and efficient manner. Existing approaches rely on

simulation (for example VCC [13] and Seamless [10]), and
hence suffer from the problems of high running time, in-
complete coverage and failure to identify corner cases.

Most of the work on the formal analysis of such systems
exists in a disjoint form and do not offer a single unified
framework for analysing system-level designs, especially
in the presence of heterogeneity. It is only recently that
some work in this direction is being done—for example, [7]
analyses response times for static-priority process schedul-
ing combined with TDMA bus protocol. But the goal of
a general approach to analysing different system properties
(including timing behaviour) of an arbitrarily complex and
heterogeneous platform architecture still remains elusive.
Relation to previous work. To address this problem, a
general approach to timing analysis for heterogeneous sys-
tems was recently presented in [8] and [9]. It is based
on identifying architectural components for which analysis
methods are already known in the literature, and then com-
bining these to obtain a compositional description of the
complex system-level timing behaviour. The main draw-
back of this approach is that it can only accommodate stan-
dard event models like purely periodic, periodic with jitter,
periodic with bursts, and sporadic. In practice, the event
streams involved in a system usually do not conform to
any of these standard models. But while analysing such
systems, these streams are approximated by some standard
model which minimizes the error. This introduces several
modeling complexities, and when worst case bounds for
a system are required, such approximations using standard
event models give overly conservative bounds.

The analysis framework (Real-Time Calculus) that we
present in this paper is based on an event model which can
accurately capture the characteristics of any arbitrary event
stream. Given the trace of an event stream, it is possible to
extract a number of parameters which represent the abstract
timing characteristics of the stream in our model. We show
that this framework can be used to analyse complex and het-
erogeneous platform architecture and answer questions re-
lated to timing properties, on-chip memory requirements,
and the load on different architectural components in a sin-

1

1530-1591/03 $17.00 2003 IEEE

gle coherent manner. Further, the results obtained by ap-
plying different scheduling strategies such as static priority,
proportional share, time division multiplexing, and earliest
deadline first on standard event models like periodic, peri-
odic with jitter, sporadic, etc, turn out to be special cases
of the results that can be obtained in our framework. The
work in [8] and [9] is based on composing different analy-
sis domains where each analysis domain is restricted to only
standard event models. Our work extends and generalizes
the concepts presented in [8, 9] and is not restricted to tim-
ing analysis, but can also address other system properties in
an uniform way such as the memory demand and resource
loads.
New results. The underlying theory behind our frame-
work (Real-Time Calculus) was originally developed in the
context of performance evaluation of network processor ar-
chitectures [11, 12]. However, there were two major short-
comings of the work presented in [11] and [12]: (i) it was
not shown how the framework compares with the theoreti-
cal results from the real-time systems area, (ii) how closely
do the performance evaluation results match those obtained
by simulation. As already pointed out in [14], without a
clarification concerning the above two issues, the applica-
bility of the framework can not be fully established. In re-
lation to the results in [11, 12], the work in this paper ad-
dresses the issue (i). Firstly, it shows that the framework
is not only restricted to analysing network processor archi-
tectures, but is applicable to the more general domain of
heterogeneous embedded system designs. Secondly, as al-
ready mentioned, it shows that many of the results based on
standard event models from the real-time systems area can
also be obtained within our framework. The second issue
mentioned above, i.e. (ii), is addressed in detail in [3] and
[4]. Although the basic framework presented here is the
same as in [11, 12], the mathematical bounds used to de-
duce timing properties of event streams being processed by
an architecture, or those used to compute the loads on var-
ious architectural components are tighter compared to our
previous results. The results in [11, 12] are concerned with
event streams that have a fixed starting time (say t = 0).
The new results pertain to event streams which span over
t = −∞ to t = +∞ and therefore accurately capture event
models like periodic, sporadic, etc., which do not have any
specific starting time.

2 Event and Resource Models in Real-Time
Calculus

In this section we describe the underlying event model
which forms the basis of our framework and also a means
of modeling the processing capability of resources which
process incoming event streams.

Event models. For a given event stream, let R[s, t) denote
the number of events that arrive in the time interval [s, t).

Further, assume that the number of events arriving within
any interval of time is bounded above by a right-continuous,
non-negative, subadditive function called the upper arrival
curve, denoted by αu. Similarly, a lower bound on the num-
ber of events arriving is given by a lower arrival curve α l.
R, αu and αl are related by the following inequality

αl(t − s) ≤ R[s, t) ≤ αu(t − s), ∀s < t

where αl(0) = αu(0) = 0.
Therefore, αl(∆) and αu(∆) can be interpreted as the

minimum and maximum number of events arriving within
any time interval of length ∆, respectively. Standard event
models can be represented in our model by an appropriate
choice of αl and αu. For example, a periodic event stream
with period p can be represented by an α l and αu, both of
which are staircase functions of step width p and height 1,
with αl(∆) = 0 for all 0 ≤ ∆ < p and αu(∆) = 1 for
all 0 < ∆ ≤ p. This is because within any time interval of
length less than p, the minimum number of events that can
be seen is zero, and within any time interval of length p+,
the minimum number of events that can be seen is equal to
one. Similarly, the maximum number of events that can be
seen within any time interval of length p and p+ is one and
two respectively.

Following the same reasoning, the class of event streams
with period p and jitter j can be represented by an upper and
a lower arrival curve of the form shown in Figure 1. Given
any particular instance of such a periodic with jitter event
stream, the corresponding upper and lower arrival curves
would lie within the arrival curves shown in Figure 1, and
therefore these curves represent the upper and lower bounds
on the maximum and minimum number of events that can
arrive within any time interval for any event stream with
period p and jitter j. Alternatively, given the upper and the
lower arrival curves of the class of event streams periodic
with jitter, then it is possible to uniquely determine the pe-
riod and the jitter values. Note that in Figure 1, if j = 0 then
the upper and the lower arrival curves coincide and repre-
sent a purely periodic event stream with period p. Formally,
these results can be stated as follows:

The upper and the lower arrival curves representing the
entire class of event streams with period p and jitter j are
unique.

Similar representations in terms of the upper and the
lower arrival curves can be given for standard (abstract)
event models like sporadic and periodic with bursts, or for
other event streams with a known analytical behavior. At
the same time, given any finite length arbitrary event trace
(from measurements or from simulation) and a real num-
ber ∆, it is possible to determine the values of αl(∆) and
αu(∆) corresponding to the event trace, by sliding a win-
dow of length ∆ over the trace and recording the minimum
and maximum number of events lying within the window

2

p

p

p+jp−j

2j

∆

α

α

p

p

l

u
events

Figure 1. The upper and lower arrival curves of the
class of event streams with period p and jitter j.

respectively. The upper and the lower arrival curves corre-
sponding to the trace can be determined by following this
procedure for different values of ∆.

Processing capability. Similar to the upper and lower ar-
rival curves, we use βu and βl to denote upper and lower
service curves of a resource with the following interpreta-
tion. If C[s, t) denotes the number of processing or com-
munication units (might be in terms of processor cycles,
time units, bytes, ...) available from the resource over
the time interval [s, t), then the following inequality holds:
βl(t − s) ≤ C[s, t) ≤ βu(t − s), ∀s < t. Hence, βu(∆)
and βl(∆) give an upper and lower bound on the resource
capability over any time interval of length ∆. Again, these
curves can be determined using data sheets of the used re-
sources, e.g. busses or processing units, by using analyti-
cally derived properties or by using measurements.

For example, in case of an unloaded processor, both
resource curves may be equal and represented as straight
lines, i.e. βu(∆) = βl(∆) = ∆. A more complicated ex-
ample is a time division multiplex bus with the period q.
Within this period, a time units are available for the respec-
tive communication channel at a fixed offset and b bytes
can be communicated within the available a time units. The
corresponding curves are shown in Figure 2.

3 Analysing System Properties
3.1 Single Resource

Processing a single stream. An event stream entering a
resource (such as a processor on which some processing
function is implemented, or a communication resource such
as a bus) gets processed (or transmitted in the case of a
communication resource), thereby generating an outgoing
event stream which might enter another resource for further
processing. As a result, the processing capability (such as
the processor or bus bandwidth) of the resource, as speci-
fied by its upper and lower service curves gets modified. In
this section we formalize this notion and state the formulas
for deriving the outgoing arrival curves and the remaining
service curves from a specification of the incoming arrival
curves and the original service curves.

Given an event stream which is specified by its arrival
curves αl and αu and a resource which processes this event

∆q 2q 3q

β

β

u

l

bytes

a q−a q+a

b

Figure 2. The upper and lower service curves for a
TDMA bus.

stream and its processing capability being specified by its
service curves βl and βu. Let αl′ and αu′ denote the out-
going arrival curve of the (processed) event stream and β l′

and βu′ denote the remaining service curves of the resource.
Then these curves are related by the following expressions:

αl′(∆) = min{ inf
0≤µ≤∆

{sup
λ≥0

{αl(µ + λ) − βu(λ)}

+βl(∆ − µ)}, βl(∆)} (1)

αu′(∆) = min{sup
λ≥0

{ inf
0≤µ<λ+∆

{αu(µ) +

+βu(λ + ∆ − µ)} − βl(λ)}, βu(∆)} (2)

βl′(∆) = sup
0≤λ≤∆

{βl(λ) − αu(λ)} (3)

βu′(∆) = max{ inf
λ≥∆

{βu(λ) − αl(λ)}, 0} (4)

These results are based on generalizing ideas from net-
work calculus as applied to the domain of communication
networks (see [2] for details), and hold specifically for infi-
nite event streams that span over time t = −∞ to t = +∞.
For modeling finite length event traces, the relations used in
[11, 12] may be used.

Processing Multiple Streams. When multiple event
streams enter a resource, the processing capability of the
resource is shared between these streams according to some
scheduling strategy. The characteristics of each of the out-
going streams and the remaining processing capability of
the resource would depend on the scheduling strategy used.
As an example, we derive these formulas for the case of
static priority scheduling.

Let us assume that there are n event streams entering a
resource whose processing capability is bounded by the ser-
vice curves βl and βu. Each event stream i is constrained by
the arrival curves ᾱl

i and ᾱu
i and let the streams be ordered

according to their priorities, i.e. stream 1 has the highest pri-
ority and stream n the lowest. For each event stream i, let
wi be its per event processing requirement on the resource.
From now on, we will assume wi to be defined in time units,
i.e. the resource takes wi time units to process each event
of the stream i. To take these different processing require-
ments into account, we scale ᾱl

i and ᾱu
i appropriately before

using Equations (1–4). Hence we have,

αu
i = wiᾱ

u
i , αl

i = wiᾱ
l
i, i = 1, . . . , n (5)

3

Similarly, each outgoing processed event stream has to be
scaled back as follows:

αu
i
′ = �αu

i
′/wi�, αl

i

′
= �αl

i

′
/wi �, i = 1, . . . , n (6)

In the case of static priority scheduling, the resource pro-
cesses the event streams in the order of decreasing prior-
ity, and the resulting arrival and service curves are com-
puted using Equations (1–4). For the event stream 1, the
service curves of the unloaded resource serve as an input.
For the ith event stream, the input service curve is equal to
the remaining service curve after processing the (i − 1)th
stream, for i ≥ 2. This can be formally stated as fol-
lows: βu

1 = βu, βl
1 = βl, βu

i = βu′

i−1, βl
i = βl′

i−1,

i = 2, . . . , n, where βu′

i−1 and βl′

i−1 for i = 2, . . . , n are
determined from βu

i−1, βl
i−1, αu

i−1 and αl
i−1 by applying

Equations (3) and (4). Lastly, the remaining service curve
after processing all the event streams is given as follows:
βu′ = βu

n
′, βl′ = βl

n
′
. This can be used to process other

event streams, possibly using a different scheduling disci-
pline, in a hierarchical manner.

3.2 Multiple Resources

Our view of a platform architecture with multiple re-
sources is the following: Event streams flow through a net-
work of resources based on the order in which they need
to be processed. This model of an architecture can be rep-
resented as a scheduling network. The nodes of this net-
work represent event processing functions that are imple-
mented on the various resources. The inputs to each such
node are the arrival curves of an event stream that is to be
processed, and the service curve of the resource, represent-
ing the processing capability available to the function that
is being implemented on the resource. The outputs describe
the resulting arrival curves of the processed event streams
and the remaining service curves of the (partially) used re-
source. These arrival and service curves then serve as inputs
to other nodes of the scheduling network. Properties of the
event streams like periodicity, jitter, bursts, etc change as
the stream flows from one resource to the next, and these
are captured in the arrival curves. Note that “resources” in
our framework refer to both communication (such as buses)
and computation (such as processors) resources. The exact
construction of the scheduling network for an architecture
depends on the scheduling policies on the different archi-
tectural components, an example of which is shown in the
next section.

Let αl and αu be the lower and upper arrival curves of
an event stream entering a node of a scheduling network
whose input service curves are given by β l and βu. Then
the maximum delay (or response time) experienced by an
event at the resource represented by the service curves, and
the maximum number of backlogged events from the stream

Rate Monotonic

e1

e2

Proportional

Share

e3

e4

CPU1
CPU2

Rate Monotonic

e1

e2

Rate Monotonic

e1

e2

Proportional

Share

e3

e4

Proportional

Share

e3

e4

CPU1
CPU2

Periodic events

P1=7

P2=11

?

?

Figure 3. The system described in Example 2.

that waiting to be processed can be given by the following
inequalities:

delay ≤ sup
t≥0

{
inf{τ ≥ 0 : αu(t) ≤ βl(t + τ)}

}
(7)

backlog ≤ sup
t≥0

{αu(t) − βl(t)} (8)

For a physical interpretation of these inequalities we refer
the reader to [2]. From inequalities (7) and (8), it is pos-
sible to compute the overall response time and backlog of
an event stream by summing its delay and backlog values
at the different nodes (of the scheduling network) through
which the stream passes. A possibility to get closer bounds
for a given event stream by aggregating the service curves
for all nodes that process this event stream is described in
[3, 12].

Lastly, if βu and βl′ are the initial upper service curve
and the final lower (remaining) service curves of a resource,
then its long term maximum utilization can be given by

utilization = lim
∆→∞

βu(∆) − βl′(∆)
βu(∆)

This can, for example, be used to identify potential bottle-
necks that exist in a platform architecture.

4 Generalizing Standard Event Models
We now give two examples to show that in the case

of heterogeneous system architectures, results from classi-
cal scheduling theory, that can be used to analyse standard
event models (like periodic, sporadic, etc.), can also be de-
rived within our framework. The work in [9] considered
a number of examples of heterogeneous platform architec-
tures involving standard event models and different schedul-
ing strategies and answered various questions related to tim-
ing analysis using a compositional approach. By the use
of some examples, it will be shown that similar and more
general questions can be answered using the new unifying
approach described in this paper.

Example 1 Consider a periodic event stream entering a re-
source which requires a maximum of emax and a minimum
of emin time units to process an event. The outgoing (pro-
cessed) event stream is still periodic, but has a jitter equal
to emax − emin.

Let t0 be some sufficiently small time instance where all
events that arrived before t0 have been processed. Let

4

Rate Monotonic
Proportional

Share

e1

e2

CPU1 CPU2

e3

e4

ul

11
,��

ul

22
,��

'

1

'

1
,

ul ��

'

2

'

2
,

ul ��

ul

11
, �� ul

22
, ��

'

3

'

3
,

ul ��

'

4

'

4
,

ul ��

Figure 4. The scheduling network for the system de-
scribed in Example 2.

� �� �u l’ , ’

�
10 20 30 40

2

10

4

6

8

12

� �� �u l,

�
10 20 30 40

12

2

4

6

8

10

Figure 5. The upper and lower arrival curves of the
incoming event stream 1 and the arrival curves of the
processed stream coming out of CPU1 (dotted line
show the upper curve and the solid line shows the
lower curve).

R[t0, t) and R′[t0, t) denote the number of arrived and pro-
cessed events in the interval [t0, t) for t0 < t, respec-
tively. Then we can derive R[t0, t − emax) ≤ R′[t0, t) ≤
R[t0, t − emin) if t0 < t − emax . Using these inequal-
ities, we find for s < t the relation R′[s, t) ≤ R[t0, t −
emin) − R[t0, s − emax) = R[s − emax, t − emin) ≤
αu((t − s) + (emax − emin)). In a similar way, we
have R′[s, t) ≥ R[t0, t − emax) − R[t0, s − emin) =
R[s − emin, t − emax) ≤ αl((t − s) − (emax − emin))
for t − s > emax − emin.

As a first result, we find the feasible lower and up-
per curves of the processed events as αu′(∆) = αu(∆ +
(emax − emin)) for ∆ > 0 and αl′(∆) = αl(∆− (emax −
emin)) for ∆ > emax − emin and αl′(∆) = 0 otherwise.

Hence, the number of events that can be seen at the out-
put within any time interval of length ∆ is greater than or
equal to the number of events that can be seen at the in-
put over any time interval of length ∆ − (emax − emin),
and is less than or equal to the number of events that can
be seen at the input within any time interval of length
∆+(emax − emin). This implies that the jitter of the output
event stream increases by (emax − emin) over the jitter of
the input event stream. If the input stream is purely peri-
odic with a period p, then the output stream is periodic with
period p and jitter equal to (emax − emin).

Example 2 A system consists of two processors CPU1 and
CPU2, on each of which two processes are implemented,

� �2u 2l’ , ’

10 20 30 40

2

4

6

8

�
10 20 30 40

5

10

15

20

25

30

� �1u 1l’ , ’

�
Figure 6. The service curves used to process stream
2 in CPU1 and the arrival curves of the processed
stream coming out of CPU1.

as shown in Figure 3. Two purely periodic event streams 1
and 2, with periods p1 = 7 and p2 = 11 respectively are
processed by the two processes implemented on CPU1. The
per event processing time for both the event streams is equal
to 2. CPU1 schedules the two processes processing streams
1 and 2 according to rate monotonic scheduling, and there-
fore stream 1 has higher priority over stream 2. The two
outgoing, processed event streams are then processed by the
two processes implemented on CPU2, where the per event
processing time is again equal to 2. CPU2 implements pro-
portional share scheduling and gives equal processor share
to both the processes. Both CPU1 and CPU2 implement
preemptive scheduling. What are the characteristics of the
two processed event streams coming out of CPU2?

We use the arrival curves of the input event streams en-
tering CPU1 and from them compute the arrival curves
of the final processed event streams coming out of CPU2.
These are then used to deduce the timing behaviour of the
processed event streams. Figure 4 shows the scheduling net-
work corresponding to the system. The entire processing
capability of CPU1 is available to stream 1 since this has
the higher priority. This is represented by β u = βl, both
being straight lines of slope 1 passing through the origin.
Figure 5 shows the arrival curves of the stream 1 and those
of the processed stream. As described in Section 2, note
that the processed stream is still periodic with period 7. In
Figure 5, the arrival curves of the input event stream repre-
sent the discrete stream, but since the Equations (1–4) hold
for continuous streams, to interpret the right hand figure in
Figure 5 as a discrete stream, a floor function should be ap-
plied to the lower curve and a ceiling function to the upper
curve.

The remaining processing capability of CPU1 that is
available to stream 2 can be obtained by using Equations (3)
and (4). These resulting service curves and the arrival
curves of the processed stream are shown in Figure 6. The
arrival curve of stream 2 is shown on the left hand side of
Figure 8. As can be seen from this figure, the processed
stream is still periodic with period 11, but now has a jitter
smaller than or equal to 2.

In the case of CPU2, βu
2 and βl

2 represent the total un-
loaded processor capacity (see Figure 4) and are given by
straight lines of slope 1 passing through the origin. Be-

5

�3u’ , �3l’

10 20 30 40

2

4

6

8

10

12

�
10 20 30 40

�
5

10

15

20

25

30

� �,
u l

Figure 7. The service curves used to process stream
1 coming out of CPU1 (indicated as stream 3) and the
arrival curves of the processed stream (by CPU2).

10 20 30 40

� �2u 2l,

2

4

6

8

�

� �4u 4l’ , ’

�
10 20 30 40

2

4

6

8

Figure 8. The arrival curves of the incoming event
stream 2, and those of the finally processed stream
coming out of CPU2 (i.e. after being processed at
CPU1 and CPU2).

cause of the proportional share scheduling, both the incom-
ing streams into CPU2 are guaranteed at least 50% of the
available resource. But if one stream does not fully use its
allocated resources, then the resulting leftover is available
to the other stream. Therefore, the upper and lower service
curves for stream 3 (i.e. the processed stream 1) are equal
to βu(∆) = 0.5 · βu

2 (∆) + max{infλ≥∆{0.5 · βu
2 (λ) −

αl
4(λ)}, 0} and βl(∆) = 0.5 · βl

2(∆) + sup0≤λ≤∆{0.5 ·
βl

2(λ) − αu
4 (λ)} respectively. Here, αl

4 and αu
4 (which are

equal to αl
2
′

and αl
2
′
, respectively) are the arrival curves of

stream 4. The service curves available to stream 4 can simi-
larly be computed from βu

2 , βl
2, αl

3 (= αl
1
′
) and αu

3 (= αu
1
′).

Based on these service curves, the arrival curves of the
processed streams 3 and 4 (by CPU2) are given in (the right
hand of) Figures 7 and 8. From these curves, it can be de-
duced that the processed stream 1 (after passing through
CPU1 and CPU2) has period 7 and a jitter smaller than or
equal to 2 and the processed stream 2 (after passing CPU1

and CPU2) has the period 11 and jitter smaller than or equal
to 4. These values exactly conform to those that can be ob-
tained using classical scheduling theoretic results.

5 Conclusions
The framework (Real-Time Calculus) presented in this

paper allows for a formal analysis of different system prop-
erties in heterogeneous platform-based designs. In particu-
lar, it is suited if the design is communication–centric, i.e.
consisting of processing elements which are connected by a
communication network that imposes constraints on delay
and memory demand.

The purpose of the simple examples given in the paper
is to show that known results can be easily derived from

the Real-Time-Calculus. But it is important to note that one
may use many different forms of input streams and not just
periodic or sporadic ones. They all can be abstracted in the
form of curves. In a similar way, the scheduling policies
(fixed priority, proportional share, TDMA bus) are exam-
ples only.

The framework provides a single coherent way of deduc-
ing many results that can be derived using different event
models and scheduling theoretic results from the domain of
real-time systems.

References

[1] R. Bergamaschi, S. Bhattacharya, R. Wagner, C. Fellenz,
M. Muhlada, W. Lee, F. White, and J.-M. Daveau. Automat-
ing the design of SoCs using cores. IEEE Design & Test of
Computers, 18(5):32–45, 2001.

[2] J. L. Boudec and P. Thiran. Network Calculus - A Theory of
Deterministic Queuing Systems for the Internet. LNCS 2050,
Springer Verlag, 2001.

[3] S. Chakraborty, S. Künzli, L. Thiele, A. Herkersdorf, and
P. Sagmeister. Performance evaluation of network processor
architectures: Combining simulation with analytical estima-
tion. Computer Networks (to appear), 2003.

[4] M. Gries, C. Kulkarni, C. Sauer, and K. Keutzer. Comparing
analytical modeling with simulation for network processors:
A case study. In DATE, Munich, 2003.

[5] Blue Logic technology and CoreConnect bus architecture,
IBM. http://www.chips.ibm.com/bluelogic/.

[6] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and
A. Sangiovanni-Vincentelli. System level design: Orthogono-
lization of concerns and platform-based design. IEEE Trans-
actions on Computer-Aided Design, 19(12), 2000.

[7] P. Pop, P. Eles, and Z. Peng. Bus access optimization for dis-
tributed embedded systems based on schedulability analysis.
In DATE, 2000.

[8] K. Richter and R. Ernst. Model interfaces for heterogeneous
system analysis. In DATE, 2002.

[9] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model
composition for scheduling analysis in platform design. In
39th DAC, 2002.

[10] Seamless Hardware/Software Co-Verification, Mentor
Graphics. http://www.mentor.com/seamless/.

[11] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. Design
space exploration of network processor architectures. In Net-
work Processor Design: Issues and Practices, Volume 1. Mor-
gan Kaufmann Publishers, October 2002.

[12] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. A frame-
work for evaluating design tradeoffs in packet processing ar-
chitectures. In 39th DAC, New Orleans, 2002.

[13] The Cadence Virtual Component Co-design (VCC).
http://www.cadence.com/products/vcc.html.

[14] T. Wolf. Design and Performance of a Scalable High-
Performance Programmable Router. PhD thesis, Department
of Computer Science, Washington University in St. Louis,
May 2002.

6

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

