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Abstract

Behavioural simulation is the common alternative to the
costly electrical simulation of Σ∆ modulators (Σ∆Ms). This
paper explores the behavioural modelling and simulation
of Σ∆Ms by using hardware description languages (HDLs)
and commercial behavioural simulators, as an alternative
to the common special-purpose behavioural simulators. A
library of building blocks, where a HDL has been used to
model a complete set of circuit non-idealities influencing
the performance of Σ∆Ms, is introduced. Three alternatives
for introducing Σ∆M topologies have been implemented.
Experimental results of the simulation of a fourth-order 2-
1-1 cascade multi-bit Σ∆M are given.

1. Introduction

Oversampling converters have become very popular due

to their ability to solve problems found in other architec-

tures like the need for high-accuracy analogue antialiasing

filtering and the large sensitivity to circuit imperfections

and noisy environments [1],[2]. As for other electronic sys-

tems, a crucial step in the design process is the validation

of the design by using some procedure that allows accurate

emulation of the Σ∆M behaviour. Such a simulation step is

used both in synthesis processes, in which CPU time con-

sumption is a main feature to consider, and in verification

processes, where high levels of accuracy are required.

Thus, a main goal to face is the adoption of a proper simu-

lation technique which must be both accurate and fast to

efficiently analyse the performance of Σ∆Ms.

The most accurate technique is transistor-level simula-

tion. Unfortunately, though theoretically possible, electri-

cal simulation of complex systems may become

impractical. In particular, for Σ∆Ms, the extraction of their

performance involves the analysis of a very large number

of samples at the modulator output, which means a very

long transient analysis: days or weeks of CPU time can be

required to estimate the signal-to-noise ratio from the

extracted layout of a typical Σ∆M [3],[4].

The use of macromodels instead of transistor-level

descriptions simplifies the problem but simulation is still

too slow, because the resulting system of differential equa-

tions must still be solved numerically. Another solution is

mixed-signal (multi-level) simulation, in which analogue

and digital parts are simulated separately but not independ-

ently. Macromodels or behavioural models are used for the

analogue part. However, equations for the analogue part are

still solved numerically, which makes extraction of Σ∆M

performances too costly in CPU time.

Event-driven behavioural simulation, which tries to

bring the simulation of mixed-signal circuits closer to logic

simulation, is a more efficient solution. In fact, it is the

introduction of event-driven simulation techniques which

makes the difference. This approach requires that the cir-

cuit can be partitioned into basic blocks with independent

functionality. This implies that an instantaneous block out-

put cannot be related to itself, that is, either there is no glo-

bal feedback loop, or in case such loop exists there is a

delay that avoids the instantaneous dependence. The event-

driven simulation of such circuits require appropriate

behavioural models for all the blocks, in the form of

explicit expressions relating the output variables with the

input and internal state variables.

A first approach to create such behavioural descriptions

for event-driven simulation is the use of programming lan-

guages such as C. Several tools especially devoted to the

behavioural simulation of Σ∆Ms using that approach have

been reported [4]-[8]. The main differences among them

are in the number of topologies/basic blocks included, the

accuracy of the models used, the post-processing capabili-
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ties and the friendliness of the user interface. A representa-

tive example is ASIDES [7], which is written in C language

and, consequently, is very fast, which makes it very appro-

priate, not only for verification, but also for synthesis pro-

cedures based on iterative optimization. In contrast,

ASIDES and the rest of special-purpose Σ∆ simulators are

partially closed. They contain behavioural models for a

particular set of blocks and are, in general, open to any

architecture built by using such blocks. But the addition of

new blocks and/or different behavioural models for an

existing block, is restricted to the tool developers. Besides,

neither simulation of modulators with different description

levels for each block (e.g., behavioural, macromodel or

transistor levels) nor simulation with other subsystems

(digital or analogue) is feasible with special-purpose simu-

lators.

An alternative solution involves the use of the standard-

ized HDLs, such as VHDL [9] and its analogue extension

VHDL-AMS [10]. An important benefit derived from the

use of these description languages is that HDL simulators

are already included in many commercial design environ-

ments. In this way, Σ∆Ms modelled with VHDL can be

simulated together with other VHDL-modelled blocks and

even continuous-time descriptions of blocks, modelled

using VHDL-AMS. Furthermore, blocks described at dif-

ferent levels of accuracy (extracted layout, transistor, mac-

romodel or behavioural levels) can be combined into a

single simulation. In this way, HDLs can overcome the

drawback of special-purpose approaches mentioned above,

without compromising speed. Consequently, designs can

be easily exchanged thus reducing the integration and the

entire development efforts. In addition, since HDLs have a

wide range of descriptive capability to characterize Σ∆M

performance non-idealities, accuracy is not compromised

either.

In this paper, we have used the VHDL language to

model high-performance Σ∆Ms and all major non-ideali-

ties affecting the nominal behaviour of these systems.

Among the imperfections considered, we include the mod-

elling of the integrators’ settling error for both the integra-

tion and sampling phases, to our knowledge, only

previously considered in [11]. Two mechanisms to create

behavioural descriptions of Σ∆Ms (by directly writing the

VHDL code and by using a schematic capture tool) are

described. A third alternative for non-expert VHDL users

has been developed. This alternative allows to describe

Σ∆M topologies and analysis commands by using a very

simple syntax; and the VHDL code is generated and the

suitable behavioural simulations are executed automati-

cally.

The paper is organized as follows. Section 2 gives a gen-

eral overview of the non-idealities considered in this work

and how they have been modelled with VHDL. Afterwards,

Section 3 describes in detail the different techniques

adopted to describe Σ∆Μ topologies. Section 4 shows sim-

ulation results of a Σ∆Μ. Concluding remarks are given in

Section 5.

2. HDL modelling of Σ∆Μ building blocks

The conceptual representation of a Σ∆Μ is shown in

Figure 1. The output y is subtracted from the input signal,

x, which has been sampled at a rate larger than the Nyquist

frequency. The result, after passing through the discrete-

time filter, H(z), is the input to the quantizer. The simplest

block to implement H(z) is a discrete-time integrator. In

this way, the quantization power spectral density decreases

in the low-frequency range due to a shaping function per-

formed on the quantization error.

The non-idealities degrading the behaviour of Σ∆Μs can

be implemented separately by including imperfections in

the behaviour of each building block: integrators, quantiz-

ers and D/A converters.

2.1.  SC integrator

The integrator is the fundamental block because its non-

idealities largely affect the performance of Σ∆Μs. Figure 2

shows the generic SC integrator scheme considered herein.

There are i branches connected to switching input voltage

Vk1 and Vk2, and j branches of an integrator connected to its

output during the sampling phase, switched to input levels

Vnk2 during the previous integration phase. Cp is the para-
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Figure 1. Basic structure of a Σ∆ modulator.
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Figure 2. SC integrator model.



sitic capacitor associated to the integrator summation node,

Cl is the capacitive load and Co is the integration capacitor.

A complete set of non-idealities have been modelled in

VHDL: thermal noise, finite and non-linear dc gain, output

range, opamp slew-rate and dynamics, capacitor non-line-

arity and mismatch, and switch resistance [2]. The com-

plete integrator model follows the iterative procedure

shown in the flow graph of Figure 3. During the sampling

phase, the final value of the voltages stored in the input

capacitors are calculated considering the values of these

and the ON resistance of the switches. The input equivalent

thermal noise of the integrator is calculated and added to

the sampled voltage. Settling errors are then evaluated by

following the analysis in [11]. This error basically depends

on the amplifier dynamics, the capacitance involved, and

the amount of charge distributed. It may result from a com-

bination of both slew-rate limited and linear transient

responses. During the integration phase, an iterative proce-

dure is started to calculate the integrator output voltage,

including the effects of the finite and non-linear opamp

gain, the non-linear capacitors, transient response and the

output range limitation [2],[11]. Whereas most integrator

models limit the opamp dynamics to the integration phase,

introducing these effects also in the sampling phase may

become important, especially for high-speed applications.

The implementation of the settling error model in

VHDL poses a major problem because the calculation of

the opamp input and output voltages involves knowing the

voltage stored during the previous phase in the sampling

capacitors of the following integrator, for Σ∆Μs of order

larger than 1. Actually, the value of these voltages are

parameters of the integrator settling model. A possible

solution is to accommodate such parameters in the so-

called ports of a block's model in VHDL. The problem is

that these ports can only have fixed values during a simula-

tion. To solve this problem, those ports connected to

dynamic external parameters, are transformed into input

ports, thus increasing the number of input ports of the inte-

grators, as depicted in Figure 4.

2.2. Quantizers and D/A converters

Single-bit architectures incorporate a simple comparator

to perform the internal quantization. A simple D/A con-

verter is then used in the feedback loop, which does not

introduce any non-linearity error. The transfer curve of a

comparator showing hysteresis and offset is depicted in

Figure 5. In addition, some comparators also exhibit a hys-

teresis of random nature.

Multi-bit modulators are especially affected by the non-

linearity error of the D/A conversion. For multi-bit D/A

converters, characterized by an offset off, a gain γ, and an

integral non-linearity INL, the converter input is passed

through an ideal D/A converter. The result goes through a

non-linear block with a third-order non-linearity and a gain

block. Finally, the offset error is added [2], as it is depicted

in Figure 6. An analogous scheme is used for multi-bit

quantizers.

Figure 3. Complete integrator model.
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3. HDL modelling of Σ∆Μ architectures

By making use of the building blocks of the previous

section, a Σ∆M can be described in VHDL following three

different procedures. The first procedure consists in

describing the Σ∆M model through VHDL instances [9]. In

principle, the user should perfectly know the number of

parameters and inputs of every building block, including

the extra ports which correspond to voltages of the sam-

pling capacitors, as explained in Section 2.1. To avoid this

extra burden, the user has just to introduce the VHDL code

of the modulator architecture (with no additional input

ports for the SC integrators) and a conversion program

automatically traces circuit connectivity and generates a

correct VHDL code with all extra information. An excerpt

of the VHDL code for a fourth-order 2-1-1 cascade multi-

bit Σ∆M, whose schematic is depicted in Figure 7, is shown

in Figure 8(a). As an example of the operation of the con-

version program above, the connectivity of integrators int2
and int3 through node oi2 is traced and the VHDL code in

Figure 8(b) is automatically generated. As shown, three

additional input ports (Xvcn1, Xvcn2 and Xvcn3) are gener-

ated at integrator int2 to handle the voltage stored in the

sampling capacitors of integrator int3.

A more user-friendly alternative is the use of a sche-

matic capture tool. By using pre-defined symbols for each

building block, it is possible to build a Σ∆M using a com-

mercial tool. Also in this case, the user does not have to pay

special attention to the connection of external dynamic

parameters to input ports of the integrators. The same pro-

gram above is used to properly modify the VHDL code

generated from the schematic capture tool. An example of

this alternative is the description of the Σ∆M of Figure 7

with Mentor Graphics’s HDL Designer®, as it is illustrated

in Figure 9, where, as it can be noticed, integrators’ addi-

tional input ports do not need to be drawn.

A third alternative has been developed addressing those

users with little experience in VHDL. In this case, the user

just introduces the Σ∆Μ topology and some basic analysis

commands using a very simple syntax, similar to the

ASIDES tool [2],[7]. An important feature of the imple-

mented tool, called VSIDES, is that the user does not have

to know that SC integrators need additional inputs as

explained in Section 2.1. When VSIDES generates the

VHDL code, it automatically creates those ports. Once the

correct behavioural description file has been generated,

VSIDES automatically launches the appropriate simula-

tions in the behavioural simulator. A flow diagram of

VSIDES is shown in Figure 10. The VSIDES netlist of the

2-1-1 cascade multi-bit Σ∆Μ is shown in Figure 11.
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Figure 7. Fourth-order 2-1-1 cascade multi-
bit Σ∆ modulator.

int1 int2

int3

int4

int2 : integrador2
GENERIC MAP (
INT_TYPE => TRUE,
osp => 4.0e+00, osn => -4.0e+00,
Peso1 => 2.5e-01, Peso2 => 2.5e-01,
...)
PORT MAP (
Reset => Reset, clock => clock,
Xin11 => oi1, Xin12 => out1fb, Xin21 => oi1,
Xin22 => gnd,
Xout  => oi2,
Xvcn1 => int3_vcn1,
Xvcn2 => int3_vcn2,
Xvcn3 => int3_vcn3);
int3 : integrador3
GENERIC MAP (
INT_TYPE => TRUE,
osp => 5.0e+00, osn => -5.0e+00,
Peso1 => 3.75e-01, Peso2 => 3.75e-01,
...)
PORT MAP (
Reset => Reset, clock => clock
Xin11 => oi2, Xin12 => gnd,
Xin21 => oi2, Xin22 => out1fb,
Xin31 => oi2, Xin32 => out2fb,
Xout  => oi3
Xvcn1 => int4_vcn1,
Xvcn2 => int4_vcn2,
Xvcn3 => int4_vcn3);

int2 : integrador2
GENERIC MAP (
INT_TYPE => TRUE,
osp => 4.0e+00, osn => -4.0e+00,
Peso1 => 2.5e-01, Peso2 => 2.5e-01,
...)
PORT MAP (
Reset => Reset, clock => clock,
Xin11 => oi1, Xin12 => out1fb, Xin21 => oi1,
Xin22 => gnd,
Xout  => oi2);
int3 : integrador3
GENERIC MAP (
INT_TYPE => TRUE,
osp => 5.0e+00, osn => -5.0e+00,
Peso1 => 3.75e-01, Peso2 => 3.75e-01,
...)
PORT MAP (
Reset => Reset, clock => clock
Xin11 => oi2, Xin12 => gnd,
Xin21 => oi2, Xin22 => out1fb,
Xin31 => oi2, Xin32 => out2fb,
Xout  => oi3);

(b)

(a)

Figure 8. Excerpt of the VHDL code for the
fourth-order Σ∆Μ (a) without and (b) with
additional input ports.



A number of post processing capabilities have also been

implemented as VHDL functions to enable full exploitation

of the behavioural simulation results: output spectrum,

SNDR as functions of the input level or frequency, in-band

error power, effective resolution, Monte Carlo analysis,

parametric analysis (any characteristic with some non-ide-

ality as variable parameter), etc. For parametric analysis,

the variable parameters are handled like the sampling

capacitor voltages: by introducing additional input ports.

4. Experimental results

In this section, the HDL modelling of non-idealities

influencing the performance of Σ∆Μs presented herein

above, will be illustrated through several simulations of the

2-1-1 cascade multibit Σ∆Μ in Figure 7. This modulator is

especially indicated in medium/high-frequency applica-

tions.

Figure 12 shows, via a Monte-Carlo analysis, the effect

of mismatching in the capacitor ratios implementing the

integrator gains. This type of architecture is especially sen-

sitive to such non-ideality because its operation is based on

the cancellation of the first- and second-stage quantization

noise, using digital circuitry. The coefficients included in

this circuitry must fulfil a relationship with the analogue

weights, affected by mismatching. Architectural model
compilation took 7.5s. and the simulation of this first

experiment took 3.7s. for each simulation of the Monte-

Carlo analysis1.

Figure 9. Snapshot of a 2-1-1 cascade multi-bit Σ∆ modulator drawn with HDL Designer®.
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Figure 10. VSIDES operation flow.

1 All the reported simulations were performed in a SunFire 3800 plat-

form @ 750 MHz.

#4th-order cascade 2-1-1 SDM
supply 2 -2 2 -2;
nsamples 65536 16;
output snr Xout;
clock frec=35.2e6;
#INPUT SOURCE
source vin Xin 1.0 0.275e6;
#FIRST STAGE
int1 oi1 Xin out1 0.25;
int2 oi2 oi1 gnd 0.25 oi1 out1 0.25;
comparator out1 oi2;
#SECOND STAGE
comparator out2 oi3;
int3 oi3 oi2 gnd 0.375 oi2 out1 0.375 oi2 out2
     0.25;
#THIRD STAGE
quantz out3 oi4 3;
dac conv3 out3fb out3 3;
int4 oi4 oi3 gnd 2 oi3 out2 1 oi3 out3fb 1;

Figure 11. A 2-1-1 cascade multi-bit Σ∆ modu-
lator described with VSIDES (cancellation
logic not shown).



It is also interesting to evaluate which is the accuracy of

the behavioural simulation and how it compares with a

conventional electrical simulator. The power spectral den-

sity (PSD) plots in Figure 13 were obtained from four dif-
ferent sources. First, it was computed, from 65536

samples, by simulating the VHDL-modelled Σ∆Μ using
Mentor Graphics’ Advance-MS®. Architectural model
compilation took 7.5s. and simulation time took 3.6s.
ASIDES [2], [7] took 2.3s. to get the same PSD with the

same number of samples. The results are obviously identi-
cal because the same behavioural models were used for
both VHDL simulation and ASIDES. Accuracy of these

simulations can be verified by comparison with the experi-

mental results (shown in the same figure) obtained from a

chip prototype. A different signal frequency has been cho-

sen for better visualization. Figure 13 also shows the PSD

obtained with HSPICE. The simulation took 5 days of CPU

time to get only 8192 samples. It can be observed that

HSPICE computes a lower error power because thermal

noise cannot be included in the transient simulation.

5. Conclusions

Hardware description languages (HDLs) together with

commercial behavioural simulators are efficient resources

to perform the validation of Σ∆Μs. The main advantage of

HDLs, when compared with transistor-level, and even mac-

romodel descriptions, is the drastic reduction of the simula-

tion time (seconds compared with hours or days).

Moreover, the use of a mixed-signal behavioural simulator

like Mentor Graphics’ Advance-MS®, allows combining

Σ∆Μs with VHDL descriptions of digital blocks or VHDL-

AMS descriptions of other analogue blocks (even a lower-

level VHDL-AMS description of any block of the Σ∆Μ
can be used). The capability to simulate Σ∆Μs within more

complex systems and the integration into commercial

design environments makes HDLs a profitable alternative

to the special-purpose Σ∆ behavioural simulators.
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Figure 12. Capacitor mismatching effect.
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