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Abstract† 

Noise performance is a critical analog and RF 
circuit design constraint, and can impact the selection of 
the IC system-level architecture. It is therefore imperative 
that some model of the noise is represented at the highest 
levels of abstraction during the design process. In this 
paper we propose a noise macromodel for analog circuits 
and demonstrate it by way of implementation in a system 
level simulator based on MATLAB. We also explain our 
process of macromodel extraction via reformulation of 
frequency-domain noise analysis results, and the 
corresponding steps of model order reduction. The results 
demonstrate the efficacy of this macromodel for frequency 
domain system level simulation. 
 
1. Introduction 

Noise performance in RF circuits links directly to 
system level specifications such as Signal-to-Noise-Ratio 
(SNR) and Bit-error-rate – which corresponds to the 
radius of service and data transfer rate for wireless 
communication applications. An efficient system level 
model and analysis that can include non-idealities such as 
noise can facilitate high-level architectural optimization 
and exploration that would otherwise be impossible. 
Although noise figure (NF) has been widely used by 
circuit designers for back-of-the-envelope calculations, it 
only specifies noise performance at a given frequency. In 
order to obtain noise characteristics in general requires 
analysis of the complete analog system.  For this purpose 
we require a system-level noise macromodel with 
sufficient accuracy to capture noise behavior over a range 
of frequencies and in terms of key input design 
parameters. 
 

Several advances have been made for modeling RF 
and analog circuit noise behavior, but in general they are 
not directly of the form required for system level 
simulation. The authors in [1] first introduced model order 
reduction techniques for noise modeling of linear time-
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invariant (LTI) systems. While these models are compact 
and suitable for system-level macromodeling, they are 
insufficient for RF circuits that are time-varying systems. 
Importantly, a mixer is known for its time-varying 
property since its function involves frequency translation. 
Moreover, low Noise Amplifiers (LNA) are usually 
treated as LTI systems, but when there is a large blocking 
signal in an adjacent channel, they too will behave as 
time-varying systems.  

 
In [2], a behavioral noise model for mixers was 

proposed which focused on the time-varying transfer 
functions from each noise source to the output, without 
congregating all of the noise as input or output referred 
equivalent noise sources. For large RF circuits this can 
result in a macromodel that is overly large and complex 
for efficient system level simulation. Alternatively, 
reduced order modeling for time-varying systems were 
presented in [3], and the author suggested that techniques 
similar to those in [1] could ultimately be used to model 
noise in time-varying reduced order transfer functions.  

 
In this paper we describe a variation on the noise 

macromodeling approach for time-varying systems that 
was outlined in [3], and demonstrate its implementation in 
a system level simulator. Our macromodel was simplified 
from that suggested in [3] by exploiting a symbolic 
representation of the noise power spectral density. This 
symbolic representation required fewer elements in the 
resultant noise analysis matrix than a corresponding 
numerical computation, and provided our macromodel 
with the relationship between the design parameters and 
the noise model. Our macromodel was further simplified 
by focusing on only the time-averaged power of the 
cyclostationary noise at the input and output ports of 
interest, thereby allowing us to model only the stationary 
noise component [5].  

 
Using this simplification and reformulating the noise 

results into the form of a transfer function as suggested in 
[3], we obtained a closed form rational expression of the 
noise power spectral density (PSD). This expression, 
however, was extremely large since it increases 
proportionally with circuit size and number of harmonics. 
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Therefore, as a final step we applied model reduction via 
PRIMA [7] to produce a more compact noise 
macromodel. This noise macromodel is applied in 
frequency domain system level simulation that computes 
signal power spectral distribution at every node. The 
efficiency of this noise macromodel in the frequency 
domain simulation is apparent since the noise PSD is 
modeled directly. 

 
We demonstrate the construction and application of 

our noise macromodels for two examples: an LNA with an 
adjacent channel blocking signal and a mixer with input 
port phase noise. The efficacy of these models is verified 
in a frequency domain system level simulation 
environment. 
 

The remainder of this paper is organized as follows. 
In section 2 existing noise analysis methods are reviewed.  
In section 3 order-reduction-based noise macromodeling 
techniques for time-varying system are developed. Our 
examples are extracted and applied in system level 
simulator in sections 4 and 5, followed by our conclusions 
in section 6. 

 
2. Review of circuit noise analysis 

RF circuits produce noise at their outputs for which 
power varies significantly with time. If the power varies in 
a periodic fashion, the noise is said to be cyclostaionary. 
The time-averaged noise power represents the stationary 
component of cyclostationary noise. Traditional noise 
analysis algorithms that are available in tools such as 
Spice are not able to compute cyclostationary noise for RF 
circuits. We begin with a review of these noise analysis 
algorithms for time-invariant systems, then move on to 
describe more recent work for cyclostationary noise 
analysis for time-varying systems [4] [12]. We further 
describe extensions of cyclostationary noise analysis to 
account for input phase noise.  
 

The general form of any nonlinear circuit noise 
analysis can be expressed in the stochastic differential 
equation as following: 

 0)()()()( =+++ tAutbXIXQ
dt

d  (1) 

where u(t) denotes the stochastic noise signals. Differing 
from standard differential equations, now X is stochastic 
process that represents the time-domain circuit state 
variables, such as node voltage, etc. Vector b(t) contains 
the large-signal excitations, and I and Q represent the 
“resistive”  and “reactive”  nonlinear elements of the 
circuit, respectively. The last term Au(t) represents 
“small”  perturbations to the system, e.g., from noise 
sources in devices or noise at input ports. A is an 
incidence matrix which describes how these noise sources 
are connected to the circuit. 

 

When a nonlinear circuit operates under small signal 
conditions, the operating-point does not change the circuit 
can be analyzed as if it has only time-invariant (DC) 
excitations. The circuits are linearized about their DC 
operating point to construct an LTI model for noise 
analysis. From a Taylor expansion about the DC solution 
of (1) we obtain: 

 0)( =++ tAuX
dt

d
CGX  (2) 

Where G is admittance matrix and C is capacitance 
matrix.  
 

The noise analysis problem, therefore, reduces to 
that of the propagation of some stochastic process through 
an LTI system. The general expression of the noise PSD at 
the output of the linear system Syy(� ) is well known 
as[1]: 
 )()()()( ωωωω H

uuyy HSHS =  (3) 

where H(� ) is the transfer function from each noise 
source to output and )(ωHH  denotes the conjugate transpose 

of H(� ). Suu(� ) is a diagonal matrix, each element 
denotes the PSD of a noise sources, and Syy(� ) is a scalar 
function of frequency. The many-to-one vector transfer 
function H(� ) of the linear system from the noise sources 
to an output port is given by: 
 ACjGlH T 1)()( −+= ωω  (4) 

Where l denotes the incidence vector that corresponds to 
the output port of interest, A is same as denoted in (1). 
Combining (3) and (4) we obtain the expression for the 
noise PSD at the output of the LTI system:  
 lCjGAASCjGlS HT

uu
T

yy
−− ++= )()()()( 1 ωωωω  (5) 

       
When a nonlinear circuit has a large input signal, 

however, it causes the operating points of the active 
devices to change with time. At steady state the nonlinear 
circuit can be linearized about its time varying operating-
point to construct a linear time variant model for noise 
analysis [4].  

 
Expanding (1) about its time-varying steady-state 

solution, we obtain: 
 

0)()()( =++ tAuX
dt

d
tCXtJ

 (6) 

where  )()()( tCdtdtGtJ +=  

The difference between (6) and (2) is that the capacitance 
matrix becomes a function of time and the equivalent 
admittance matrix J(t) contains the time-varying 
admittance matrix and the time derivative of time-varying 
capacitance matrix. If the operating-point changes 
periodically, the system can be treated as a linear periodic 
time-varying (LPTV) system. Importantly, the bias 
dependent noise sources also become cyclostationary due 
to the time-varying operating-point. Equation (6) reflects 
the circuit response of cyclostationary noise sources 
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propagating through the LPTV system. Similarly, we can 
derive the output noise and time-varying transfer function 
from many noise sources to output as described in 
following: 
 )()()()( ωωωω H

FDuuFDyy HSHS =  (7) 

 
FDFDFD

T
FD ACjJDH 1)()( −+= ωω  (8) 

Here )(ωFDH  is frequency domain harmonic transfer 

function, 
FDA , 

FDJ and 
FDC are frequency domain 

representation of noise source incidence matrix and time-
varying equivalent admittance and capacitance matrices, 
and D denotes the incidence matrix that corresponds to the 
output port of interest. The detailed derivation of above 
equations is described in [4]. Combining  (7) and (8) we 
have a structurally similar expression as in (9) for the total 
output noise of time-varying system. This similarity will 
be exploited in later section when extracting the 
cyclostationary noise macromodel. 
 

DCjGASACjJDS H
FDFD

T
FDuuFDFDFD

T
yy

−− ++= )()()()( 1 ωωωω  

  (9) 
 
When the large deterministic signal that causes the 

system to vary with time is not purely sinusoidal due to 
the presence of input phase noise, the noise analysis 
technique in [5] extends the work in [4] to take this effect 
into account: 
 0)()()()()()( 0 =−++ tutXtCctAuX

dt

d
tCXtG s

�  (10) 

The time domain representation of phase noise is the 
signal period with increasing variance, which is reflected 
in the above equation by c to denote the rate of variance 
increase. )(tXs

�  is the time derivative of steady-state 

response. Equation (10) suggested that the contribution of 
input phase noise to the wide-band amplitude noise could 
be treated as an additional white noise source modulated 
by )()( tXtCc s

�

− . Hence we can modify the existing 

cyclostationary noise analysis technique described early to 
accommodate this effect.  
 

The frequency domain cyclostationary noise analysis 
discussed so far computes all of the harmonic PSD, which 
produces the frequency spectrum along with information 
about the correlations in the noise between sidebands. It 
has been proven that we only need to consider the 
stationary component of cyclostationary noise in non-
autonomous circuits[5]. This leads to our noise 
macromodeling approach that focuses on the stationary 
component of cyclostationary noise. 
 
3. Noise macromodel for  RF circuits 

When we build a noise macromodel for RF circuits it 
is often desirable to represent all of the noise contributions 
by some equivalent noise sources at the inputs or outputs. 

Unlike the internal noise source, such as thermal noise and 
flicker noise, which has relatively simple frequency 
dependence, the power spectral density of the input or 
output referred equivalent noise sources (even the 
stationary component) usually has complicated frequency-
dependence. This is because the nonlinear circuit contains 
energy storage elements, such as capacitors and inductors, 
which shape the PSD of the noise signal by its transfer 
characteristics. In order to reflect this frequency 
dependence accurately at the macromodel level, extensive 
computations of the original system are required, thus 
defeating the purpose of macromodeling. Therefore, to 
find approximate, yet computationally inexpensive forms 
of this frequency dependent noise is of great value. To 
achieve this goal, as suggested in [3], the noise PSD of a 
time-varying system can be reformulated because (9) is 
structurally similar to (5) – which has been effectively 
used for modeling noise of time-invariant system [1].  We 
will begin with reformulation of noise analysis results to 
obtain a closed form rational expression of the 
cyclostationary noise PSD, then simplify this result into 
our macromodel. 

 
If we denote s=j � , the output noise representation in 

(9) can be reformulated into the following form when only 
white noise sources are considered: 
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 This is because white noise sources Suu are not a 
function of frequency and can be absorbed into the 
frequency independent equivalent admittance matrix. The 
extension to non-white noise sources such as flicker noise 
can be achieved by expressing Suu(ω) as a matrix 
polynomial as adopted in [1]. The methodology of 
reformulation for non-white noise sources is similar to 
that for white noise except that the former results in larger 
equivalent admittance and capacitance matrices. For 
notational simplicity in this paper we restrict our 
discussion to white noise sources in the following 
sections.      

The reformulated form above has the same 
information as contained in (9) except that it is in the form 
of transfer function. The impact of phase noise is regarded 
as an additional white noise source that it is represented 
by the T

FDuuFD ASA− term. If we denote: 
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we arrive at the following form that is suitable for model 
order reduction:  
 [ ] DCsJDsS FDFD

T
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With the reformulated rational expression in (11), 

further simplification can be derived. Writing the noise 
analysis results explicitly as in (12), we see that )(ωyyS is 

an nn ×  matrix where n is the number of harmonic PSDs 
we considered. Each element )(ωyyiS  of this matrix denotes 

the ith harmonic PSD at frequency � . A close observation 
reveals that each column of the )(ωyyS  matrix represents 

the same harmonic PSD at different frequencies. For 
numercial simulation it is beneficial to obtain multiple 
responses, but for the symbolic representation of noise 
harmonic PSD it would be redundant to compute all the 
elements in )(ωyyS .  Instead, we need only to compute 

one element in each column to represent the 
corresponding harmonic PSD. Moreover, since we are 
only interested in the closed form of stationary noise PSD, 
only one element in the entire )(ωyyS  matrix needs to be 

computed. Instead of computing the nn × elements of the 
entire matrix, one element will suffice to represent the 
frequency dependence of the stationary noise PSD. 
Following these observations, we simplify (11) into: 
 [ ] lCsJlsS FDFD

T
yy

~~~~
)(

~ 1−
+=  (13) 

where l is only the center column of D matrix. The results 
will be a scalar function of frequency. 

 
After we derive the simplified reformulation of the 

noise PSD in the structure of a rational function, model 
order reduction is employed. This is imperative because 
the above expression is extremely large and increases with 
circuit size and number of harmonics of interest. With 
model order reduction we produce an approximation to 
match the first few moments of the rational function. 
These approximations have been well established for LTI 
systems via direct moment matching such as AWE [10], 
and implicit methods such as PVL [9] and PRIMA [7]. 
The author in [3] proposed a Time-varying Pade’  (TVP) 
approximation to perform order reduction for linear time-
varying systems. It essentially converts the time-varying 
system to an equivalent LTI system of much larger size. In 
this paper, the PRIMA algorithm is employed to 
implement the model order reduction step. 

  
To apply PRIMA as described in [7], we first 

construct an equivalent circuit equation:  

 


�
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=+

xli

ulxJ
dt
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C

T
p

pFDFD

~

~~~
 (14) 

This circuit equation denotes the same transfer 
characteristic as in (11), with the objective of calculating a 
subspace X, or Krylov subspace, of matrix 

FDFDCJA
~~ 1−−≡ , 

such that: 
 

q
T

q
T HAXXIXX == ,  (15) 

where Hq is a block Hessenberg matrix. The rank of X 
denoted as q is much smaller than the rank of the original 
matrix A. A reduced-order-model can be generated as 
follows: 
 lXlXCXCXJXJ T

FD
T

FD
T ~ˆ~ˆ~ˆ ===  (16) 

The macromodel of the stationary component of the 
cyclostationary noise, therefore, can be expressed as: 
 [ ] lCsJlsS FDFD

T
yy

ˆˆˆˆ)(ˆ 1−
+=  (17) 

 
This algorithm requires only matrix-vector products. 

Even when 
FDC

~  and 
FDJ

~  matrices are large, dense or 

difficult to factor, exploiting structure and using iterative 
linear algebra techniques can make these computations 
scale almost linearly with problem size. When these fast 
techniques are applied, the complexity grows 
approximately linearly with circuit size and number of 
harmonics, thus making it useful for large problems. 

 
The order of approximation, denoted as q in equation 

(15), represents the size of the resultant system after 
model order reduction. Usually approximations that are 
adequate for system level analysis are obtained with fairly 
low orders of approximation, as demonstrated in 
following section. 
 
4. Examples: noise macromodel for  LNA 

and Mixer  
We implemented our noise macromodeling 

algorithm in Matlab using a prototype frequency domain 
harmonic balance simulator to compute the steady-sate 
response and time-varying admittance and capacitance 
matrices. The simplified reformulation for the noise PSD 
is calculated, and then PRIMA is applied to generate the 
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reduced order noise macromodel. We present two 
examples to demonstrate the approach. 

 
4.1 LNA with single tone blocking signal in 

adjacent channel 
The first example is an LNA with blocking signal. 

The schematic of a single ended LNA is shown in Fig.1 
(a). As specified in most wireless communication 
blocking characteristics, a relatively large blocking signal 
at an adjacent channel will appear at the input of LNA. 
The large blocking signal will modulate the operating-
point of LNA periodically. This modulation can be 
interpreted as multiplication in time domain or 
convolution in frequency domain, thereby causing noise to 
mix up and down. This phenomenon is often referred to as 
noise folding, which is depicted graphically in Fig. 2. 
 
 
 
 
 
 
 
 
 
 

The simulation of a simple LNA reveals that, when 
the input signal power is –102dBm with a –38dBm 

blocking signal, which is specified in the GSM blocking 
characteristic, the output noise power spectral density 
increases by about 30% compared with no blocking 
signal. The macromodel of the noise PSD will capture this 
noise folding effect as shown in Fig. 3.  It requires a 
macromodel of order 18 to accurately represent this 
frequency dependency. The maximum error between 
macromodel and exact results, which is obtained using 
full-fledged cyclostationary noise analysis, is less than 
0.01%. 
 
4.2 Mixer  with phase noise at one input port 

A double balance mixer, shown in Fig.1 (b) is used 
as second example. It is analyzed first using a pure 
sinusoidal signal for the local oscillator (LO) signal. Then 
phase noise of –90dBc/Hz at 600Khz offset is added into 
the LO port to model the phase noise that is present in an 
actual system. About 10% of the noise power increase can 
be observed at the intermediate frequency (IF). Fig. 4 
shows that the noise macromodel with order of 20 
captures this impact of input phase noise together with 
noise folding effect. The error between macromodel and 
analysis results is also less than 0.01%. 

 
5. System level simulation results 

We incorporated our noise macromodels in a 
prototype frequency domain system level simulation 
platform that provides a high-level analysis and 
optimization tool for design of RF circuits. The interface 
signals in this system level simulation environment are 
represented as stochastic processes in terms of the PSD 
distribution. This representation makes it easy to 
incorporate the noise impact into the system level 
simulation since the noise PSD is macromodeled directly. 
The algorithm of computing the signal PSD propagating 
through time-varying system is revealed through the 
following equation:  

)()()(
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Where Si and S0 denote the input and out noise PSD,  
)( 0ωω nH i +−
represents the transfer function from input 

frequency of 
0ωω n+ to � . This means that noise at the 

output for a particular frequency �  has contributions from 
the sources at frequency 

0ωω n+ , where n is an integer 

and 
0ω is the fundamental frequency of the periodicity of 

the time-varying system.  
 
 Using the algorithm described above, we build a 
system level simulation platform for a GSM system.  The 
block diagram is shown in Fig. 5. 
 
 

 
 
 
 
 
 
 
 
 
The noise PSD distribution in each block is 

macromodeled and the impact to output is essentially to 
compute noise signals propagating through time-varying 
system. In this example, the LNA noise PSD is first 
macromodeled and then modulated by the linear time-
varying transfer function of mixer. The noise generated by 
mixer itself is added at the output. The total output noise 
PSD of mixer is shown in Fig. 6. Therefore, the noise 
macromodel is seamlessly incorporated into the frequency 
domain system level simulation. 
 

6. Conclusions 
A noise macromodel for radio frequency integrated 

circuits is extracted by simplified reformulation of 
frequency-domain noise analysis results and subsequent 

model order reduction via PRIMA. System-level 
simulation in terms of signal PSD is performed to 
incorporate the developed noise model. The efficiency of 
this macromodel is demonstrated in frequency domain 
system level simulation. 
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Fig.5 Block diagram of GSM system level 
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