

 Modeling and Integration of Peripheral Devices in Embedded Systems

Shaojie Wang[1] , Sharad Malik[2], Reinaldo A. Bergamaschi [3]

[1,2] Electrical Engineering Department, Princeton University, Princeton, NJ, USA
[3] IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

Abstract
This paper describes automation methods for device driver
development in IP-based embedded systems in order to achieve
high reliability, productivity, reusability and fast time to market.
We formally specify device behaviors using event driven finite
state machines, communication channels, declaratively described
rules, constraints and synthesis patterns. A driver is synthesized
from this specification for a virtual environment that is platform
(processor, operating system and other hardware) independent.
The virtual environment is mapped to a specific platform to
complete the driver implementation. The illustrative application of
our approach for a USB device driver in Linux demonstrates
improved productivity and reusability.

 1. Introduction

Device drivers provide a bridge between a peripheral device
and the upper layers of the operating system and the application
software. They are critical software elements that significantly
affect design quality and productivity. Given the typical lifecycle
of chipsets being only 12 to 24 months, system designers have to
redesign the hardware and software regularly to keep up with the
pace of new product releases. This requires constant updates of
the device drivers. Design and verification of device drivers is
very complicated due to necessity of thorough knowledge about
chips and boards, processors, peripherals, operating systems,
compilers, logic and timing requirements; each of which is
considered to be tedious. For example, Motorola MPC860
PowerQUICC is an SoC micro-controller used in communications
and networking applications. Its board support package (BSP)
(essentially drivers) has 25000 lines of C code [6] – an indication
of its complexity. With time-to-market requirements being pushed
below one year, driver development is quickly becoming a
bottleneck in IP-based embedded system design. Automation
methods, software reusability and other approaches are badly
needed to improve productivity and are the subject of this paper.

The design and implementation of reliable device drivers is
notoriously difficult and constitutes the main portion of system
failures. As an example, a recent report on Microsoft Windows
XP crash data [7] shows that 61% of XP crashes are caused by
driver problems. The proposed approach addresses reliability in
two ways. Formal specification models provide for the ability to
validate the specification using formal analysis techniques. For
example, the event-driven state machine models used in our
approach are amenable to model checking techniques. Correct by
construction synthesis attempts to eliminate implementation bugs.

Further, the formal specifications can be used as manuals for
reusing this component, and inputs for automating the
composition with other components.

Another key concern in driver development is portability.
Device drivers are highly platform (processor, operating system
and other hardware) dependent. This is especially a problem when
design space exploration involves selecting from multiple
platforms. Significant effort is required to port the drivers to
different platforms. Universal specifications that can be rapidly
mapped to a diverse range of platforms, such as provided by our
approach, are required to shorten the design exploration time.

The approach presented in this paper addresses the
complexity and portability issues raised above by proposing a
methodology and a tool for driver development. This
methodology is based on a careful analysis of devices, device
drivers and best practices of expert device driver writers. Our
approach codifies these by clearly defining a device behavior
specification, as well as a driver development flow with an
associated tool. We formally specify device behaviors by
describing clearly demarcated behavior components and their
interactions. This enables a designer to easily specify the relevant
aspects of the behavior in a clearly specified manner. A driver is
synthesized from this specification for a virtual environment that
is platform (processor, operating system and other hardware)
independent. The virtual environment is then mapped to a specific
platform to complete the driver implementation.

The remainder of this paper is organized as follows: Section 2
reviews related work; Section 3 describes the framework for our
methodology; Section 4 presents the formal specification of
device behavior using the Universal Serial Bus (USB) as an
example; Section 5 discusses driver synthesis; Section 6 describes
our case study; and finally Section 7 discusses future work and
directions.

2. Related Work

Recent years have seen some attention devoted to this issue in
both academia and industry. Devil [3] defines an interface
definition language (IDL) to abstract device register accesses,
including complex bit-level operations. From the IDL
specification, it generates a library of register access functions and
supports partial analysis for these functions. While Devil provides
some abstraction for the developer by hiding the low-level details
of bit-level programming, its approach is limited to register
accesses and it does not address the other issues in device driver
development outlined above.

In the context of co-design automation, O’Nils and Jantsch [4]
propose a regular language called ProGram to specify

1530-1591/03 $17.00  2003 IEEE

hardware/software communication protocols, which can be
compiled to software code. While there are some interesting
features, this does not completely address the device driver
problems as described here, particularly due to its inability to
include an external OS. Other efforts in the co-design area [1,2]
are limited to the mapping of the communications between
hardware and software to interrupt routines that are a small
fraction of a real device driver.
 I2O (Intelligent Input Output) [8] defines a standard
architecture for intelligent I/O that is independent of both the
specific device being controlled and the host operating system.
The device driver portability problem is handled by specifying a
communication protocol between the host system and the device.
Because of the large overhead of the implementation of the
communication protocol, this approach is limited to high-
performance markets. Like I2O, UDI [9] (Uniform Driver
Interface) is an attempt to address portability. It defines a set of
Application Programming Interfaces (APIs) between the driver
and the platform. Divers and operating systems are developed
independently. UDI API’s are OS and platform neutral and thus
source-code level reuse of driver code is achieved. Although UDI
and our methodology share the common feature of platform and
OS neutral service abstraction, our methodology is based on a
formal model that enables verification and synthesis.

3. Methodology Framework

Devices are function extensions of processors. They exchange
data with processors, respond to processor requests and actively
interact with processors, typically through interrupts. Processors
control and observe devices through the device-programming
interface, which defines I/O registers and mapped memories.

Figure 1 sketches the relationship between devices, processors, the
operating system and device drivers.

Processors access devices through memory mapped I/O,
programmed I/O or DMA. A data path (or communication
channel) is a specific path for exchanging data between the
processor and the device as illustrated in Figure 1.

To hide the details of device accesses, device drivers are
designed to be a layer between the high-level software and low-
level device. In most cases, a device driver is part of the kernel.
Application software, which resides in user space, uses system
calls to access the kernel driver. System calls use traps to enter
kernel mode and dispatch requests to a specific driver. Hence we
can partition a device driver into three parts as illustrated in Figure
1 and explained below:
• Core functions, which trace the states of devices, enforce

device state transitions required for certain operations, and
operate data paths. Because such actions depend on the
current states of the device, synchronization with the device
is necessary. Common synchronization approaches are
interrupts, polling and timer delay. In our approach, core
functions are synthesized from a device specification. They
interact with a platform independent framework called
virtual environment. The device specification itself is
explained in Section 4, and synthesis of core functions in
Section 5.

• Platform functions that glue the core functions to the
hardware and OS platform. The virtual environment abstracts
architectural behaviors such as big or little endian,
programmed I/O, memory mapped I/O. It also specifies OS
services and OS requirements such as memory management,
DMA/bus controllers, synchronization mechanisms etc. This
virtual environment is then mapped to a particular platform
(hardware and OS) by providing the platform functions that
have platform specific code for the above details.

• Registry functions that export driver services into the kernel
or application name space. For example, the interface can
register a driver class to the NT I/O manager (IOM) or fill
one entry of the VFS (Virtual File Switching) structure of the
Unix kernel.

Figure 2 outlines our framework and illustrates how the three
parts of the driver come together. It takes as input (1) the device

specification, which is platform neutral and (2) the driver
configuration, which specifies the device instance and
environment; and outputs the device driver (C program) for a
particular device in a particular environment.

Processor

Software

User Mode:
Application

Driver

Kernel mode

IOM/VFS

System
trap Registry

Function

Core
function

Platform
Function

Register

Register

Memory Memory

Device Interrupt

DMA

Data
access

Control

I/O

(BUS)

Figure 1: Driver Environment

Data Unit Data Unit

Data Path

Data

Figure 2: Framework Overview

Input

 Core Functions (C code)

Device Driver (C code)

Core Gen

Mapper

Device
Specification

Driver
Configuration

Target
Environment
(library etc.)

The device specification provides all the information about the
device required by the driver core function synthesis process
(Core Gen). Core functions are implemented in the virtual
environment. The mapper maps core functions in the virtual
environment to the target environment. This mapping process
does (1) platform mapping, by binding virtual OS service
functions to the targeted OS, and virtual hardware functions to the
targeted hardware; (2) registry mapping by translating core
functions to the OS specific registry functions. It does this using
the developer specified driver configuration. The driver
configuration defines the target platform and necessary
parameters. It includes the OS name, processor name, bus name,
device instance parameters (such as interrupt vector number, base
address), driver type (such as char device, network device), driver

type specific parameters (such as maximum transfer unit for a
network device) etc. These configurations are specified by
keywords. Figure 3 shows the sketch of an example. This direct
specification is sufficient for the mapper to target the core
functions to a specific platform. While this requires the
specification writer to have specific knowledge of the various
elements of the configuration, information such as driver type and
driver type specific parameters are encoded once and then reused
across platform specifications.

4. Device Specification

In this section we describe the different parts of the device
specification, which is the input to the generation of the core
functions (see Figure 2). Based on our study of devices and device
drivers, we partition this specification into the following parts:
data path, device control, event handlers, core functions and
device programming interface. Figure 1 provides some motivation
for this division. The data path describes the transfer of data
between the processor and the device. The device control
describes the transitions between the states of the device using
event driven finite state machines (EFSM) [5]. The processing of
events in the event driven state machines is specified in event
handlers. The core functions provide the device services to the
upper layers of the software – the OS and the application. The
device-programming interface provides the low-level access
functions to the device registers. Eventually it is the core functions
that need to be synthesized in C as the driver – however, this
synthesis will need all the other parts of this specification to
understand the complete device behavior. This partitioning of the
specification allows for a separation of the various domains,
which the device driver has to interact with, and is similar to the
approach used by expert device driver writers.

 Data Path

A data unit is a data block moving between the device and
the software by a primitive hardware operation. For example, we
can define a DMA access as a primitive hardware operation. A

data unit is modeled as a tuple of data unit size, the event enabling
a new data unit operation, starter function, the event indicating the
end of a data unit operation, stopper function, the events
indicating errors and access operations. Starter functions are the
operations performed before data accesses. Stopper functions are
the cleanup operations performed when the hardware data access
operations end. Figure 4 defines the DMA data unit of the transmit

channel of the SA1100 USB device controller (UDC). While the
details of the specification are beyond the scope of the paper, this
illustrates the nature of the information required here.

A data path is defined as a stream of data units. The last part
of Figure 4 provides an example of a data path specification. It
specifies data transfer direction and the data unit of the data path.

Device Control

The device control specifies the state changes of a device.
Because a device may be composed of several sub-devices
operating in parallel, we use a concurrency model, event driven
finite state machines [5], to formally model the device control. It
has several synchronization properties: (1) the execution of event
handlers and state transitions are free of race conditions, and (2)
finite state machines do not share data and communicate through
events if necessary. The synthesizer enforces the race condition
free property by disabling the context switches appropriately.
Figure 5 gives the sketch of an example of device control
specification of a sub-component, USB setup protocol, of SA1100
UDC. Again, detailed syntax and semantics of the specification
are beyond the scope of this paper, we will focus on illustrating
the salient features of the specification.

There are four types of events: hardware events, input events,
output events and internal events. Devices generate hardware
events to indicate changes of hardware states. A typical hardware
event is an interrupt. Higher layer modules send input events (also
called service requests) to the driver. Events sent to higher-layer
modules are called output events. As an example, USB host
assigns a USB address to the UDC. The driver can emit an output
event that carries the address information when the host assigns
the address. The upper-layer software observes the USB address
of the device through the output event. All other events are
internal. Events can be considered as messages conveying
information. In addition to the event name, an event

.drv ep2_drv (.config {

.os Linux 2.4.x .processor SA1100

.irq 13 .io_base 0x80000000

.io_ext 0x30 .drvType Ethnet
… ## .drv ep2_drv
}) { … }

Figure 3: SA1100 USB Device Controller (UDC)
Driver Configuration

DMA transmit FIFO
.dma udc_wt = dr_fifo@ep2_space .o
 .setup %{ IVAR CS2 TPC FLIP;
 IREG_IMP_WRITE(IDMA_SIZE-1); %}
 .cleanup %{ IVAR_CS2_SST_FLIP; %}
 .abort ep2_not_ready
 %{ IVAR_CS2_SST_FLIP; %}
 .abort ep2_tpe_or_tur
 %{ IVAR_CS2_SST_FLIP; %};

data unit
 .du ep2_du = udc_wt[64];

data path
 .dp ep2 = ep2_du .o .interface
 .block %{ IVAR_CS2_FST_WRITE(1); %}
 .reset %{ IVAR_CS2_FST_WRITE(0); %};

Figure 4: SA1100 UDC Transmit Channel Data Unit
and Data Path Specification

may convey information by carrying a parameter. Events are
stored in a global event queue.

As shown in Figure 5, an event handler handles a particular

event for a particular state of a state machine. The event handlers
of a finite state machine may share data. Event handlers are non-
blocking. As a result, blocking behaviors are explicitly specified
by states. To remove a blocking operation from an event handler,
the specification writer can restructure the state machine by
splitting the handler at the operation and inserting a new state.
Thus, we describe synchronization behaviors declaratively using
states, rather than procedurally, which enables better checking.
Specifically, interrupt processing is modeled as a couple of
hardware event handlers.

Control Function Specification

A core function is responsible for providing the device
services to the upper layers of software. As illustrated in Figure 1,
core functions are responsible for managing data accesses and
manipulating device states. Data accesses follow well-defined
semantics, which specify, for example, that a block of data has to
be transferred between the processor and device. Control
functions are responsible for changing the control state of the
device according to the state machines. As illustrated in the lower
part of Figure 5, a core control function has an input event and a
final state set. It accomplishes specific functions by triggering a
sequence of transitions. Because a transition may emit multiple
output events, multiple transitions can be enabled at one time. The
core control function selectively fires eligible transitions, i.e. finds
a transition path from the current state to the final state set. For
example, the start function of SA1100 UDC is defined as the
union of start event and a set of states, as shown in Figure 5.
When the application calls the start function, it generates the input
event (service request) start. It then finds a transition path to states
(usb_protocol, ZombieSuspend), (ep1, idle), (ep2, idle) and
completes. If the current state does not accept the start event, the
function returns abnormally. Timeout is optionally defined to
avoid infinite waiting.

Although a data flow does not have an explicit control state
machine specified, a state machine is implicitly generated for it to
manage the control states such as reset and blocking.

Device Programming Interface Specification

To model device register accesses, we use the concepts of
register and variable (see Figure 6) - similar definitions can be
found in Devil [3]. Event handlers and core functions access the

device registers through a set of APIs such as IREG_name_READ
and IREG_name_WRITE that use these registers and variables.
These API’s are synthesized from the register and variable
specifications, and extend the virtual environment. In addition to a
basic programming interface, we provide additional features that
enable common access mechanisms to be described succinctly.
For example, FIFO is a common device-programming interface. It
is always accessed through a register. Different devices use
different mechanisms to indicate the number of data in the FIFO.
To enable the synthesis of FIFO access routines, we have defined
the concept of a hardware FIFO mapped register that is not
illustrated in detail here because of limited space.

5. Synthesis
Given all the parts of the specification, the synthesis process

synthesizes the C code for the entire driver. The functions that
need to be provided are the core functions that provide the device
services to the upper layers of software. In synthesizing these
functions, all parts of the specification are used. This section
outlines the synthesis process.

5.1 Platform Function and Registry Function Mapping

The platform interface includes fundamental virtual data types
and a basic virtual API for the following categories:

(1) Synchronization functions,
(2) Timer management functions,
(3) Memory management functions,
(4) DMA and bus access functions,
(5) Interrupt handling (setup, enable, disable, etc.),
(6) Tracing functions,
(7) Register/memory access functions.

All virtual data types and API are mapped into platform
specific types and API. This part is done manually based on an
understanding of the platform. Note that while this is not
synthesized, this approach provides for significant reuse as this
needs to be done only once for each platform (or part of a
platform).

.fsm usb_protocol {
The start state is Disabled. It accepts event start.
Event handler is enclosed in %{ and %}. The
destination state is ZombieSuspend.

Disabled start ZombieSuspend %{
 IVAR_CR_UDD_WRITE(0);
 iudelay(100);
 IEvtOut(ep1_reset);
 IEvtOut(ep2_reset);
 %};
 …
}

Control function. The request event is start. This
function moves the usb_protocol state machine to
ZombieSuspend state, ep1 and ep2 to idle state.
(Note: ep1 and ep2 are the implicit state
machines for data flows ep1 and ep2.)

.ctrl start (ep1, idle) (ep2, idle)
(usb_protocol, ZombieSuspend);

Figure 5: SA1100 UDC USB Setup Specification

Eight bit register cs2 is at offset 0x18. The 6th and
7th bits of udccs2 are reserved and read as 0.
.reg cs2 = base[0x18] .mask <00----->
 .slow : 8 bit;

Variable definition for register cs2: except for
the two reserved bits, each bit of register cs2
is a variable. We generate functions such as
“set”, “clear” for them.
.vars cs2 [*, *, fst, sst, tur, tpe,
 tpc, tfs];

Figure 6: SA1100 UDC Transmit Channel Register
and Variable Specification Example

Figure 7(a) illustrates a platform interface abstraction,

synchronization primitive, in the platform independent virtual
environment. Figure 7(b) shows the mapping of it on Linux kernel

2.4 that implements the interface defined in Figure 7(a) with
Linux 2.4 kernel data type and functions. For lack of space, we do
not show the mappings on other platforms.

We adopt a template-based approach to map the registry
function interface to a specific platform by creating a library of
platform specific templates. The synthesizer generates appropriate
code to tailor the template for a particular device. Although the
registry function generation is platform specific, it is reused for
drivers for different devices.

5.2 Driver Core Function Synthesis

As illustrated in Figure 1, device driver core functions are
either data access functions or control functions. We synthesize
data access functions from the data path specification, and control
functions from the device control specification.

Section 3 mentioned that driver core functions synchronize
with the device through one of the 3 synchronization mechanisms:
interrupt, poll and timer delay. As a result, our driver core
function synthesizer synthesizes both the driver functions and the
synchronization routines that are sufficient to completely define
the platform independent part of the driver.

Synchronization Mechanisms Let us consider the
synchronization mechanisms first. An interrupt is essentially an
asynchronous communication mechanism whereby the interrupt
handler is called when the interrupt occurs. Both polling and timer
delay are either asynchronous or blocking. For example, a timer
delay can be a busy wait that is blocking. On the other hand, we

can register a routine that is executed by the system when the
timer expires which is an asynchronous behavior. For brevity, we
only describe the synthesis of asynchronous communication
routines (e.g., interrupt handlers for interrupts), which are critical
to synchronization mechanism synthesis.

Data Access Function A data access function in our
framework is asynchronous: it does not wait for the completion of
data access but returns right after the data access is enabled. This
asynchronous behavior enables the overlap of data transfer and
computation. A callback function can be registered to notify the
completion of a data transfer. Synchronous communication is
achieved by synchronizing the caller and the callback function.

A data path is modeled as a stream of data units. Hence, the
data access function is implemented by iterating data unit accesses
until the entire data block is transferred. If an error occurs, the
whole data path access aborts. The device control can block or
reset a data path.

Control Function A control function moves the device to a
particular state. The execution of application software depends on
such a state change. Hence, a control function is blocking
(synchronous) in our framework, i.e., it will not return unless the
final state set is reached. The control functions do not return
values. The device is observed through output events, as
illustrated in Section 4. We declare a variable for each output
event. Device status is observed by reading such variables.

A control function involves a series of state transitions. It
completes when the final state set is reached. Since our model is
based on event driven finite state machines, a control function

essentially consists of a sequence of event firings. The state
machines are checked to see if the final state set of the control

/*synchronization object */
Data Type: iblk_unit

Operations:
IDECLARE_BLK_UNIT(name)
/* block on bu */
inline void iblk(iblk_unit bu);
/* unblock */
inline void iunblock(iblk_unit bu);
/*check if any one is blocked on bu*/
inline int ichk_blk(iblk_unit bu);

Figure 7(a): synchronization primitive abstraction

typedef wait_queue_head_t iblk_unit;

#define IDECLARE_BLK_UNIT(name) \
 DECLARE_WAIT_QUEUE_HEAD(name)
inline void iblk(iblk_unit *bu)
 { sleep_on(bu); }

inline void iunblock(iblk_unit *bu)
 { wake_up (bu); }

inline int ichk_blk(iblk_unit *bu)
 { return(waitqueue_active(bu)); }

Figure 7(b): Linux 2.4 Mapping of the Primitive
Specified in Figure 7(a)

void ctrl(DEV_PRIV_DS *priv,
 IEsmEvtVal val) {
 Enqueue the input event;
 while (true) {
 while(firable transitions exist){
 Fire the transition;
 if(final state set is reached)
 return;
 }
 block(time_out_value);
 }
}

Figure8: Control Function

void interrupt() {
 clear the interrupt;
 Enqueue the hardware event;
 if (event queue was not empty)
 return;
 if (a process/thread is blocked) {
 unblock it and return;
 } else {
 while (firable transitions exist)
 Fire the transition;
 }
}

Figure 9: Interrupt Handler

function is reached. If the control function is not time out and the
final state set is reached, it returns successfully.

Execution of EFSM We schedule the finite state machines
using a round-robin scheduling policy. The events are consumed
in a First Come First Served manner. A multi-processor safe, non-
preemptive queue is implemented. Driver functions are executed
in the context of a process/thread. We view the execution of
interrupt handlers as a special kernel thread. Hence, the essence of
the core function synthesis is to distribute the event handler
executions and state transitions to the interrupt handlers and driver
functions. We dynamically make this decision by checking
whether there is a blocked process/thread. If yes, the driver
function does the work; otherwise, the interrupt handler does it.
Figure 8 and 9 show the sketches of control functions and
interrupt handlers respectively.

6. Case Study

The Intel StrongArm SA1100 [10] is one of the more popular
microprocessors used in embedded systems. Its peripheral control
module contains a universal serial bus (USB) endpoint controller.
This USB device controller (UDC) operates at half-duplex with a
baud rate of 12Mbps. It supports three endpoints: endpoint 0 (ep0)
through which a USB host controls the UDC, endpoint 1 (ep1)
which is the transmit FIFO and end point 2 (ep2) which is the
receive FIFO.

The Linux UDC (USB device controller) driver (ported to
Strong-Arm SA1100) implements USB device protocol [11] (data
transfer and USB connection setup) through coordination with the
UDC hardware. An Ethernet device driver interface has been
implemented on top of the USB data flow.

To evaluate our methodology, we modeled UDC and
synthesized a UDC Linux device driver that has an Ethernet driver
interface and manages data transfer and USB connection setup.
UDC ep1 is modeled as an OUT data path. Its data unit is a data
packet of no more than 64 bytes transferred via DMA. Similarly
UDC ep2 is modeled as an IN data path. The UDC control has 4
state machines: one state machine for each endpoint and one state
machine managing the USB protocol state of the device. The state
machines for data flow ep1 and ep2 are implicitly generated.
Table 1 shows a comparison of code sizes for the original Linux
driver, the specification in our framework and the final
synthesized driver.

 Linux UDC

Driver
Specification Driver

Synthesized
Line Count 2002 585 2157

Table 1: Comparison of Code Size

The reduction in code size is one measure of increased

productivity. More importantly, the format and definition of the
specification enables less experienced designers to relatively
easily specify the device behavior. The declarative feature of our
specification also enables easy synthesis of drivers of different
styles. For example, the original UDC character device driver
interface (without comments and blank lines) has 498 lines of
code while our specification only requires a few extra lines.
Furthermore, the code synthesized is only slightly bigger than the
original code.

The correctness of the synthesized UDC driver is tested on a
HP iPaq3600 handheld, a SA1100 based device. We setup a USB
connection between the handheld and a 686 based desktop

through a USB cradle. Familiar v0.5.3 of Linux kernel 2.4.17 is
installed on the iPaq and RedHat 7.2 of Linux kernel 2.4.9 is
installed on the desktop. We compiled the synthesized code to a
loadable kernel module with a cross-compiler for ARM, loaded
the newly created module on the iPaq, bound IP socket layer over
our module and successfully tested the correctness with the
standard TCP/IP command ping.

7. Conclusions and future work

Device driver development has traditionally been cumbersome
and error prone. This trend is only worsening with IP based
embedded system design where different devices need to be used
with different platforms. The paper presents a methodology and a
tool for the development of device drivers that addresses the
complexity and portability issues. A platform independent
specification is used to synthesize platform independent driver
code, which is then mapped to a specific platform using platform
specific library functions. The latter need to be developed only
once for each component of the platform and can be heavily
reused between different drivers. We believe this methodology
greatly simplifies driver development as it makes it possible for
developers to provide this specification and then leverage the
synthesis procedures as well as the library code reuse to derive
significant productivity benefits.

In the future, we plan to exploit the similarities between
devices of the same type. With an appropriate inheritance
mechanism, the reusability of device specification will be largely
increased. We will also study optimization issues such as code
size, performance and power consumption.

8. References
[1] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L.
Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich,
K. Suzuki, and B. Tabbara, Hardware-Software Co-Design of
Embedded Systems: The Polis Approach, Kluwer Academic Press,
June 1997.
[2] I. Bolsen, H. J. De Man, B. Lin, K. van Rompaey, S.
Vercauteren, and D. Verkest, “Hardware/software co-design of
digital telecommunication systems”, Proceeding of the IEEE, Vol.
85, No. 3, 1997, pp. 391-418.
 [3] F. Merillon, L. Reveillere, C. Consel, R. Marlet and G.
Muller, “Devil: An IDL for hardware programming”, 4th
symposium on operating systems design and implementation, San
Diego, October 2000, pp. 17-30.
[4] M. O’Bils, and A. Jantsch, “Device driver and DMA controller
synthesis from HW/SW communication protocol specifications”,
Design Automation for Embedded Systems, Kluwer Academic
Publishers, Vol. 6, No. 2, April 2001, pp. 177-205.
[5] E. A. Lee, "Embedded Software," to appear in Advances in
Computers (M. Zelkowitz, editor), Vol. 56, Academic Press,
London, 2002.
[6] http://www.aisysinc.com, November 2001
[7] www.microsoft.com/winhec/sessions2001/DriverDev.htm,
March 2002.
[8] http://www.intelligent-io.com, July 2002
[9] http://www.projectudi.org/, July 2002
[10] http://www.intel.com/design/strong/manuals/27828806.pdf,
October 2002
[11] http://www.usb.org/developers/docs.html, July 2002

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

