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Abstract 
This paper describes automation methods for device driver 
development in IP-based embedded systems in order to achieve 
high reliability, productivity, reusability and fast time to market.  
We formally specify device behaviors using event driven finite 
state machines, communication channels, declaratively described 
rules, constraints and synthesis patterns. A driver is synthesized 
from this specification for a virtual environment that is platform 
(processor, operating system and other hardware) independent. 
The virtual environment is mapped to a specific platform to 
complete the driver implementation. The illustrative application of 
our approach for a USB device driver in Linux demonstrates 
improved productivity and reusability. 

 
 1. Introduction 

Device drivers provide a bridge between a peripheral device 
and the upper layers of the operating system and the application 
software. They are critical software elements that significantly 
affect design quality and productivity. Given the typical lifecycle 
of chipsets being only 12 to 24 months, system designers have to 
redesign the hardware and software regularly to keep up with the 
pace of new product releases. This requires constant updates of 
the device drivers. Design and verification of device drivers is 
very complicated due to necessity of thorough knowledge about 
chips and boards, processors, peripherals, operating systems, 
compilers, logic and timing requirements; each of which is 
considered to be tedious. For example, Motorola MPC860 
PowerQUICC is an SoC micro-controller used in communications 
and networking applications. Its board support package (BSP) 
(essentially drivers) has 25000 lines of C code [6] – an indication 
of its complexity. With time-to-market requirements being pushed 
below one year, driver development is quickly becoming a 
bottleneck in IP-based embedded system design. Automation 
methods, software reusability and other approaches are badly 
needed to improve productivity and are the subject of this paper.  

The design and implementation of reliable device drivers is 
notoriously difficult and constitutes the main portion of system 
failures. As an example, a recent report on Microsoft Windows 
XP crash data [7] shows that 61% of XP crashes are caused by 
driver problems. The proposed approach addresses reliability in 
two ways. Formal specification models provide for the ability to 
validate the specification using formal analysis techniques. For 
example, the event-driven state machine models used in our 
approach are amenable to model checking techniques. Correct by 
construction synthesis attempts to eliminate implementation bugs. 

Further, the formal specifications can be used as manuals for 
reusing this component, and inputs for automating the 
composition with other components. 

Another key concern in driver development is portability. 
Device drivers are highly platform (processor, operating system 
and other hardware) dependent. This is especially a problem when 
design space exploration involves selecting from multiple 
platforms. Significant effort is required to port the drivers to 
different platforms. Universal specifications that can be rapidly 
mapped to a diverse range of platforms, such as provided by our 
approach, are required to shorten the design exploration time. 

The approach presented in this paper addresses the 
complexity and portability issues raised above by proposing a 
methodology and a tool for driver development. This 
methodology is based on a careful analysis of devices, device 
drivers and best practices of expert device driver writers. Our 
approach codifies these by clearly defining a device behavior 
specification, as well as a driver development flow with an 
associated tool. We formally specify device behaviors by 
describing clearly demarcated behavior components and their 
interactions. This enables a designer to easily specify the relevant 
aspects of the behavior in a clearly specified manner. A driver is 
synthesized from this specification for a virtual environment that 
is platform (processor, operating system and other hardware) 
independent. The virtual environment is then mapped to a specific 
platform to complete the driver implementation. 

The remainder of this paper is organized as follows: Section 2 
reviews related work; Section 3 describes the framework for our 
methodology; Section 4 presents the formal specification of 
device behavior using the Universal Serial Bus (USB) as an 
example; Section 5 discusses driver synthesis; Section 6 describes 
our case study; and finally Section 7 discusses future work and 
directions.   

 
2. Related Work 

Recent years have seen some attention devoted to this issue in 
both academia and industry. Devil [3] defines an interface 
definition language (IDL) to abstract device register accesses, 
including complex bit-level operations. From the IDL 
specification, it generates a library of register access functions and 
supports partial analysis for these functions. While Devil provides 
some abstraction for the developer by hiding the low-level details 
of bit-level programming, its approach is limited to register 
accesses and it does not address the other issues in device driver 
development outlined above.  

In the context of co-design automation, O’Nils and Jantsch [4] 
propose a regular language called ProGram to specify 
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hardware/software communication protocols, which can be 
compiled to software code. While there are some interesting 
features, this does not completely address the device driver 
problems as described here, particularly due to its inability to 
include an external OS. Other efforts in the co-design area [1,2] 
are limited to the mapping of the communications between 
hardware and software to interrupt routines that are a small 
fraction of a real device driver. 
    I2O (Intelligent Input Output) [8] defines a standard 
architecture for intelligent I/O that is independent of both the 
specific device being controlled and the host operating system. 
The device driver portability problem is handled by specifying a 
communication protocol between the host system and the device. 
Because of the large overhead of the implementation of the 
communication protocol, this approach is limited to high-
performance markets. Like I2O, UDI [9] (Uniform Driver 
Interface) is an attempt to address portability. It defines a set of 
Application Programming Interfaces (APIs) between the driver 
and the platform. Divers and operating systems are developed 
independently. UDI API’s are OS and platform neutral and thus 
source-code level reuse of driver code is achieved. Although UDI 
and our methodology share the common feature of platform and 
OS neutral service abstraction, our methodology is based on a 
formal model that enables verification and synthesis. 
 
3. Methodology Framework  

Devices are function extensions of processors. They exchange 
data with processors, respond to processor requests and actively 
interact with processors, typically through interrupts. Processors 
control and observe devices through the device-programming 
interface, which defines I/O registers and mapped memories. 

Figure 1 sketches the relationship between devices, processors, the 
operating system and device drivers. 

Processors access devices through memory mapped I/O, 
programmed I/O or DMA. A data path (or communication 
channel) is a specific path for exchanging data between the 
processor and the device as illustrated in Figure 1.  

To hide the details of device accesses, device drivers are 
designed to be a layer between the high-level software and low-
level device. In most cases, a device driver is part of the kernel. 
Application software, which resides in user space, uses system 
calls to access the kernel driver. System calls use traps to enter 
kernel mode and dispatch requests to a specific driver. Hence we 
can partition a device driver into three parts as illustrated in Figure 
1 and explained below: 
• Core functions, which trace the states of devices, enforce 

device state transitions required for certain operations, and 
operate data paths. Because such actions depend on the 
current states of the device, synchronization with the device 
is necessary. Common synchronization approaches are 
interrupts, polling and timer delay. In our approach, core 
functions are synthesized from a device specification. They 
interact with a platform independent framework called 
virtual environment. The device specification itself is 
explained in Section 4, and synthesis of core functions in 
Section 5. 

• Platform functions that glue the core functions to the 
hardware and OS platform. The virtual environment abstracts 
architectural behaviors such as big or little endian, 
programmed I/O, memory mapped I/O. It also specifies OS 
services and OS requirements such as memory management, 
DMA/bus controllers, synchronization mechanisms etc. This 
virtual environment is then mapped to a particular platform 
(hardware and OS) by providing the platform functions that 
have platform specific code for the above details.  

• Registry functions that export driver services into the kernel 
or application name space. For example, the interface can 
register a driver class to the NT I/O manager (IOM) or fill 
one entry of the VFS (Virtual File Switching) structure of the 
Unix kernel. 

Figure 2 outlines our framework and illustrates how the three 
parts of the driver come together. It takes as input (1) the device 

specification, which is platform neutral and (2) the driver 
configuration, which specifies the device instance and 
environment; and outputs the device driver (C program) for a 
particular device in a particular environment. 
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The device specification provides all the information about the 
device required by the driver core function synthesis process 
(Core Gen). Core functions are implemented in the virtual 
environment. The mapper maps core functions in the virtual 
environment to the target environment. This mapping process 
does (1) platform mapping, by binding virtual OS service 
functions to the targeted OS, and virtual hardware functions to the 
targeted hardware; (2) registry mapping by translating core 
functions to the OS specific registry functions. It does this using 
the developer specified driver configuration. The driver 
configuration defines the target platform and necessary 
parameters. It includes the OS name, processor name, bus name, 
device instance parameters (such as interrupt vector number, base 
address), driver type (such as char device, network device), driver 

type specific parameters (such as maximum transfer unit for a 
network device) etc. These configurations are specified by 
keywords. Figure 3 shows the sketch of an example. This direct 
specification is sufficient for the mapper to target the core 
functions to a specific platform. While this requires the 
specification writer to have specific knowledge of the various 
elements of the configuration, information such as driver type and 
driver type specific parameters are encoded once and then reused 
across platform specifications.   

 
4. Device Specification 

In this section we describe the different parts of the device 
specification, which is the input to the generation of the core 
functions (see Figure 2). Based on our study of devices and device 
drivers, we partition this specification into the following parts: 
data path, device control, event handlers, core functions and 
device programming interface. Figure 1 provides some motivation 
for this division. The data path describes the transfer of data 
between the processor and the device. The device control 
describes the transitions between the states of the device using 
event driven finite state machines (EFSM) [5]. The processing of 
events in the event driven state machines is specified in event 
handlers. The core functions provide the device services to the 
upper layers of the software – the OS and the application. The 
device-programming interface provides the low-level access 
functions to the device registers. Eventually it is the core functions 
that need to be synthesized in C as the driver – however, this 
synthesis will need all the other parts of this specification to 
understand the complete device behavior. This partitioning of the 
specification allows for a separation of the various domains, 
which the device driver has to interact with, and is similar to the 
approach used by expert device driver writers.  

 
 Data Path  

A data unit is a data block moving between the device and 
the software by a primitive hardware operation. For example, we 
can define a DMA access as a primitive hardware operation. A 

data unit is modeled as a tuple of data unit size, the event enabling 
a new data unit operation, starter function, the event indicating the 
end of a data unit operation, stopper function, the events 
indicating errors and access operations. Starter functions are the 
operations performed before data accesses. Stopper functions are 
the cleanup operations performed when the hardware data access 
operations end. Figure 4 defines the DMA data unit of the transmit 

channel of the SA1100 USB device controller (UDC). While the 
details of the specification are beyond the scope of the paper, this 
illustrates the nature of the information required here.  

A data path is defined as a stream of data units. The last part 
of Figure 4 provides an example of a data path specification. It 
specifies data transfer direction and the data unit of the data path.  

 
Device Control  

The device control specifies the state changes of a device. 
Because a device may be composed of several sub-devices 
operating in parallel, we use a concurrency model, event driven 
finite state machines [5], to formally model the device control. It 
has several synchronization properties: (1) the execution of event 
handlers and state transitions are free of race conditions, and (2) 
finite state machines do not share data and communicate through 
events if necessary. The synthesizer enforces the race condition 
free property by disabling the context switches appropriately.  
Figure 5 gives the sketch of an example of device control 
specification of a sub-component, USB setup protocol, of SA1100 
UDC. Again, detailed syntax and semantics of the specification 
are beyond the scope of this paper, we will focus on illustrating 
the salient features of the specification. 

There are four types of events: hardware events, input events, 
output events and internal events. Devices generate hardware 
events to indicate changes of hardware states. A typical hardware 
event is an interrupt. Higher layer modules send input events (also 
called service requests) to the driver. Events sent to higher-layer 
modules are called output events.  As an example, USB host 
assigns a USB address to the UDC. The driver can emit an output 
event that carries the address information when the host assigns 
the address. The upper-layer software observes the USB address 
of the device through the output event. All other events are 
internal. Events can be considered as messages conveying 
information. In addition to the event name, an event 

.drv ep2_drv ( .config { 

.os Linux 2.4.x  .processor SA1100 

.irq 13          .io_base 0x80000000 

.io_ext 0x30     .drvType Ethnet 
… ## .drv ep2_drv 
} ) { … } 
 

Figure 3: SA1100 USB Device Controller (UDC) 
Driver Configuration 

## DMA transmit FIFO 
.dma udc_wt = dr_fifo@ep2_space .o 
 .setup %{ IVAR CS2 TPC FLIP;          
       IREG_IMP_WRITE(IDMA_SIZE-1); %} 
  .cleanup    %{ IVAR_CS2_SST_FLIP; %} 
  .abort  ep2_not_ready  
              %{ IVAR_CS2_SST_FLIP; %} 
  .abort  ep2_tpe_or_tur  
              %{ IVAR_CS2_SST_FLIP; %};
 
## data unit 
  .du ep2_du = udc_wt[64]; 
 
## data path 
  .dp ep2 = ep2_du .o .interface 
   .block %{ IVAR_CS2_FST_WRITE(1); %} 
   .reset %{ IVAR_CS2_FST_WRITE(0); %};

Figure 4: SA1100 UDC Transmit Channel Data Unit 
and Data Path Specification 



may convey information by carrying a parameter. Events are 
stored in a global event queue. 

As shown in Figure 5, an event handler handles a particular 

event for a particular state of a state machine. The event handlers 
of a finite state machine may share data. Event handlers are non-
blocking. As a result, blocking behaviors are explicitly specified 
by states. To remove a blocking operation from an event handler, 
the specification writer can restructure the state machine by 
splitting the handler at the operation and inserting a new state. 
Thus, we describe synchronization behaviors declaratively using 
states, rather than procedurally, which enables better checking. 
Specifically, interrupt processing is modeled as a couple of 
hardware event handlers.  
 
Control Function Specification 

A core function is responsible for providing the device 
services to the upper layers of software. As illustrated in Figure 1, 
core functions are responsible for managing data accesses and 
manipulating device states. Data accesses follow well-defined 
semantics, which specify, for example, that a block of data has to 
be transferred between the processor and device. Control 
functions are responsible for changing the control state of the 
device according to the state machines. As illustrated in the lower 
part of Figure 5, a core control function has an input event and a 
final state set. It accomplishes specific functions by triggering a 
sequence of transitions.  Because a transition may emit multiple 
output events, multiple transitions can be enabled at one time. The 
core control function selectively fires eligible transitions, i.e. finds 
a transition path from the current state to the final state set. For 
example, the start function of SA1100 UDC is defined as the 
union of start event and a set of states, as shown in Figure 5. 
When the application calls the start function, it generates the input 
event (service request) start. It then finds a transition path to states 
(usb_protocol, ZombieSuspend), (ep1, idle), (ep2, idle) and 
completes. If the current state does not accept the start event, the 
function returns abnormally. Timeout is optionally defined to 
avoid infinite waiting.  

Although a data flow does not have an explicit control state 
machine specified, a state machine is implicitly generated for it to 
manage the control states such as reset and blocking.  

 
Device Programming Interface Specification 

To model device register accesses, we use the concepts of 
register and variable (see Figure 6) - similar definitions can be 
found in Devil [3]. Event handlers and core functions access the 

device registers through a set of APIs such as IREG_name_READ 
and IREG_name_WRITE that use these registers and variables. 
These API’s are synthesized from the register and variable 
specifications, and extend the virtual environment. In addition to a 
basic programming interface, we provide additional features that 
enable common access mechanisms to be described succinctly. 
For example, FIFO is a common device-programming interface. It 
is always accessed through a register. Different devices use 
different mechanisms to indicate the number of data in the FIFO. 
To enable the synthesis of FIFO access routines, we have defined 
the concept of a hardware FIFO mapped register that is not 
illustrated in detail here because of limited space.  

 

5. Synthesis 
Given all the parts of the specification, the synthesis process 

synthesizes the C code for the entire driver.  The functions that 
need to be provided are the core functions that provide the device 
services to the upper layers of software. In synthesizing these 
functions, all parts of the specification are used. This section 
outlines the synthesis process.  
 
5.1 Platform Function and Registry Function Mapping    

The platform interface includes fundamental virtual data types 
and a basic virtual API for the following categories: 

(1) Synchronization functions, 
(2) Timer management functions, 
(3) Memory management functions, 
(4) DMA and bus access functions, 
(5) Interrupt handling (setup, enable, disable, etc.), 
(6) Tracing functions, 
(7) Register/memory access functions.  

All virtual data types and API are mapped into platform 
specific types and API. This part is done manually based on an 
understanding of the platform. Note that while this is not 
synthesized, this approach provides for significant reuse as this 
needs to be done only once for each platform (or part of a 
platform). 

.fsm usb_protocol { 
## The start state is Disabled. It accepts event start.   
## Event handler is enclosed in %{ and %}. The  
## destination state is ZombieSuspend. 
 
Disabled start ZombieSuspend %{  
     IVAR_CR_UDD_WRITE(0);   
     iudelay(100); 
     IEvtOut(ep1_reset);  
     IEvtOut(ep2_reset); 
   %}; 
    … 
} 
 
##  Control function. The request event is start. This  
##  function moves the usb_protocol state machine to  
## ZombieSuspend state, ep1 and ep2 to idle state.  
##  ( Note: ep1 and ep2 are the implicit state  
##  machines for data flows ep1 and ep2. ) 
 
.ctrl start (ep1, idle) (ep2, idle)  
(usb_protocol, ZombieSuspend); 

Figure 5: SA1100 UDC USB Setup Specification 

## Eight bit register cs2 is at offset 0x18. The 6th and 
##    7th bits of udccs2 are reserved and read as 0.  
.reg cs2 = base[0x18] .mask <00----->  
           .slow : 8 bit; 
 
## Variable definition for register cs2: except for  
## the two reserved bits, each bit of register cs2 
## is a variable. We generate functions such as  
## “set”, “clear” for them. 
.vars cs2 [ *, *, fst, sst, tur, tpe, 
          tpc, tfs]; 

Figure 6: SA1100 UDC Transmit Channel Register 
and Variable Specification Example 



Figure 7(a) illustrates a platform interface abstraction, 

synchronization primitive, in the platform independent virtual 
environment. Figure 7(b) shows the mapping of it on Linux kernel 

2.4 that implements the interface defined in Figure 7(a) with 
Linux 2.4 kernel data type and functions. For lack of space, we do 
not show the mappings on other platforms.  

We adopt a template-based approach to map the registry 
function interface to a specific platform by creating a library of 
platform specific templates. The synthesizer generates appropriate 
code to tailor the template for a particular device. Although the 
registry function generation is platform specific, it is reused for 
drivers for different devices.  
 
5.2 Driver Core Function Synthesis 

As illustrated in Figure 1, device driver core functions are 
either data access functions or control functions. We synthesize 
data access functions from the data path specification, and control 
functions from the device control specification.  

Section 3 mentioned that driver core functions synchronize 
with the device through one of the 3 synchronization mechanisms: 
interrupt, poll and timer delay. As a result, our driver core 
function synthesizer synthesizes both the driver functions and the 
synchronization routines that are sufficient to completely define 
the platform independent part of the driver.  

Synchronization Mechanisms Let us consider the 
synchronization mechanisms first. An interrupt is essentially an 
asynchronous communication mechanism whereby the interrupt 
handler is called when the interrupt occurs. Both polling and timer 
delay are either asynchronous or blocking. For example, a timer 
delay can be a busy wait that is blocking. On the other hand, we 

can register a routine that is executed by the system when the 
timer expires which is an asynchronous behavior. For brevity, we 
only describe the synthesis of asynchronous communication 
routines (e.g., interrupt handlers for interrupts), which are critical 
to synchronization mechanism synthesis.  

Data Access Function A data access function in our 
framework is asynchronous: it does not wait for the completion of 
data access but returns right after the data access is enabled. This 
asynchronous behavior enables the overlap of data transfer and 
computation. A callback function can be registered to notify the 
completion of a data transfer. Synchronous communication is 
achieved by synchronizing the caller and the callback function.  

A data path is modeled as a stream of data units. Hence, the 
data access function is implemented by iterating data unit accesses 
until the entire data block is transferred. If an error occurs, the 
whole data path access aborts. The device control can block or 
reset a data path.  

Control Function A control function moves the device to a 
particular state. The execution of application software depends on 
such a state change. Hence, a control function is blocking 
(synchronous) in our framework, i.e., it will not return unless the 
final state set is reached. The control functions do not return 
values. The device is observed through output events, as 
illustrated in Section 4. We declare a variable for each output 
event. Device status is observed by reading such variables. 

A control function involves a series of state transitions. It 
completes when the final state set is reached. Since our model is 
based on event driven finite state machines, a control function 

essentially consists of a sequence of event firings. The state 
machines are checked to see if the final state set of the control 

/*synchronization object */ 
Data Type: iblk_unit   
   
Operations:    
IDECLARE_BLK_UNIT(name) 
/* block on bu */ 
inline void iblk(iblk_unit bu);      
/* unblock */  
inline void iunblock(iblk_unit bu);   
/*check if any one is blocked on bu*/
inline int ichk_blk(iblk_unit bu);   

Figure 7(a): synchronization primitive abstraction

typedef wait_queue_head_t iblk_unit; 
 
#define IDECLARE_BLK_UNIT(name) \ 
     DECLARE_WAIT_QUEUE_HEAD(name) 
inline void iblk(iblk_unit *bu)  
 {  sleep_on(bu);   } 
 
inline void iunblock(iblk_unit *bu)  
 {  wake_up (bu);    } 
 
inline int ichk_blk(iblk_unit *bu)  
 { return(waitqueue_active(bu)); } 

Figure 7(b): Linux 2.4 Mapping of the Primitive 
Specified in Figure 7(a) 

void ctrl(DEV_PRIV_DS  *priv,  
          IEsmEvtVal val) { 
  Enqueue the input event; 
  while (true)  { 
    while(firable transitions exist){
      Fire the transition; 
      if(final state set is reached)  
        return; 
    }     
    block(time_out_value); 
  } 
} 

Figure8: Control Function 

void interrupt() { 
 clear the interrupt; 
 Enqueue the hardware event; 
 if (event queue was not empty)   
   return; 
 if (a process/thread is blocked) { 
   unblock it and return; 
 }  else { 
   while (firable transitions exist) 
     Fire the transition; 
 } 
} 

Figure 9: Interrupt Handler 



function is reached. If the control function is not time out and the 
final state set is reached, it returns successfully.  

Execution of EFSM We schedule the finite state machines 
using a round-robin scheduling policy.  The events are consumed 
in a First Come First Served manner. A multi-processor safe, non-
preemptive queue is implemented. Driver functions are executed 
in the context of a process/thread. We view the execution of 
interrupt handlers as a special kernel thread. Hence, the essence of 
the core function synthesis is to distribute the event handler 
executions and state transitions to the interrupt handlers and driver 
functions. We dynamically make this decision by checking 
whether there is a blocked process/thread. If yes, the driver 
function does the work; otherwise, the interrupt handler does it. 
Figure 8 and 9 show the sketches of control functions and 
interrupt handlers respectively. 

   
6. Case Study 

The Intel StrongArm SA1100 [10] is one of the more popular 
microprocessors used in embedded systems. Its peripheral control 
module contains a universal serial bus (USB) endpoint controller. 
This USB device controller (UDC) operates at half-duplex with a 
baud rate of 12Mbps. It supports three endpoints: endpoint 0 (ep0) 
through which a USB host controls the UDC, endpoint 1 (ep1) 
which is the transmit FIFO and end point 2 (ep2) which is the 
receive FIFO.  

The Linux UDC (USB device controller) driver (ported to 
Strong-Arm SA1100) implements USB device protocol [11] (data 
transfer and USB connection setup) through coordination with the 
UDC hardware. An Ethernet device driver interface has been 
implemented on top of the USB data flow.  

To evaluate our methodology, we modeled UDC and 
synthesized a UDC Linux device driver that has an Ethernet driver 
interface and manages data transfer and USB connection setup. 
UDC ep1 is modeled as an OUT data path. Its data unit is a data 
packet of no more than 64 bytes transferred via DMA. Similarly 
UDC ep2 is modeled as an IN data path. The UDC control has 4 
state machines: one state machine for each endpoint and one state 
machine managing the USB protocol state of the device. The state 
machines for data flow ep1 and ep2 are implicitly generated. 
Table 1 shows a comparison of code sizes for the original Linux 
driver, the specification in our framework and the final 
synthesized driver.  

 
 Linux UDC 

Driver 
Specification Driver 

Synthesized 
Line Count 2002 585 2157 

 
Table 1: Comparison of Code Size 

 
The reduction in code size is one measure of increased 

productivity. More importantly, the format and definition of the 
specification enables less experienced designers to relatively 
easily specify the device behavior. The declarative feature of our 
specification also enables easy synthesis of drivers of different 
styles. For example, the original UDC character device driver 
interface (without comments and blank lines) has 498 lines of 
code while our specification only requires a few extra lines. 
Furthermore, the code synthesized is only slightly bigger than the 
original code.  

The correctness of the synthesized UDC driver is tested on a 
HP iPaq3600 handheld, a SA1100 based device. We setup a USB 
connection between the handheld and a 686 based desktop 

through a USB cradle. Familiar v0.5.3 of Linux kernel 2.4.17 is 
installed on the iPaq and RedHat 7.2 of Linux kernel 2.4.9 is 
installed on the desktop. We compiled the synthesized code to a 
loadable kernel module with a cross-compiler for ARM, loaded 
the newly created module on the iPaq, bound IP socket layer over 
our module and successfully tested the correctness with the 
standard TCP/IP command ping.  

 
7. Conclusions and future work 

Device driver development has traditionally been cumbersome 
and error prone. This trend is only worsening with IP based 
embedded system design where different devices need to be used 
with different platforms. The paper presents a methodology and a 
tool for the development of device drivers that addresses the 
complexity and portability issues. A platform independent 
specification is used to synthesize platform independent driver 
code, which is then mapped to a specific platform using platform 
specific library functions. The latter need to be developed only 
once for each component of the platform and can be heavily 
reused between different drivers. We believe this methodology 
greatly simplifies driver development as it makes it possible for 
developers to provide this specification and then leverage the 
synthesis procedures as well as the library code reuse to derive 
significant productivity benefits.  

In the future, we plan to exploit the similarities between 
devices of the same type. With an appropriate inheritance 
mechanism, the reusability of device specification will be largely 
increased. We will also study optimization issues such as code 
size, performance and power consumption. 
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