A Techniquefor High Ratio LZW Compression

Michad J. Knieser

Indiana University Purdue

University Indianapolis
mknieser @iupu.edu

Francis G. Wolff

fxwl2@po.cwru.edu
Abstract

Reduction d both the test suite size andthe downloadtime
of test vedors is important in today's System-On-a-Chip
designs. Inthispaper, a methodfor compressngthe scan
test patterns using the LZW algorithm is presented. This
method levaages the large number of “ Don't-Cares’ in
test vedors in order to improve the mmpresson ratio
significantly. The hardware decompresson achitedure
presented here uses exsting onchip embedded memories.
Tests using the ISCAS89 andhe ITC99 kenchmarks show
that this method achieves high compresson ratios.

1. I ntroduction

Testing Systems-on-a-Chip (SoC) devices or embedded
Intelledual Property (IP) is dominated by two major
factors: time and size [1]. Thetime is a function of the
Automated Test Equipment (ATE) tester clock rate and
the number of applied test patterns. Unfortunately, the
clock rate is proportional to the price of the ATE. The
number of test patterns is a function of the test insertion
algorithm and the number of paralle test pattern scan
chains. Theselead to the size of the test patterns required
for proper verification of the austom silicon device This
volume also impacts the ATE memory size and it’s own
price proportionally. Built-In Self Test (BIST) addresses
the isaue of test set volume by embedding test vedors on-
chip. However, this reduction of test set volume by using
BIST [2] may work well for embedded memory cores but,
is not efficient for custom IP cores. Applying scan test
vedorsto chipsis dill the most preferred method.

1.1. Reated Work

In order to apply test vedors to a SoC, data
compresson methods have been proposed which focus on
efficiently transferring (i.e. downloading) test vedors
from the ATE to the SoC. This can be broken down
further into two cases: methods that require that the scan
chain to have a particular architedure or physical layout
[12, 19, 20], and those that are independent of the scan
architedure. Some of these methods in the independent
case @n be dassfied into their analogous classcal
software data compresson counterparts, some examples

1530-1591/03 $17.00 & 2003 IEEE

Chris A. Papachristou
Case Western Reserve University

cap2@po.cwru.edu

Danid J. Weyer David R. Mcintyre
Cisco Systems Cleveland State
University

of which are: Run-Length-Encoding [10, 11], Huffman or
statistical based coding [15, 16], and LZ77[3, §].

Many of these ompresson methods require areful
assgnment of “Don’'t-Car€’ hits with in test vedors to
achieve practical compresgon ratios. The number of these
bits is very high [9, 17, 18]. How these “Don’'t-Car€” hits
are assgned, given a compresson scheme, isvery critical.
These “Don’t-Car€’ hits need to be assgned in away that
favors the mmpresson algorithm. For example, a Run-
Length-Coding compresson scheme may find that
asdgning the “Don’t-Care” bitsto form the longest string
of I'sor 0'sisbest. Although a“Don’t-Care” assgnment
may be best for a given compresson scheme, the goal is
still maximum compresgon of atest vedor suite.

1.2. Our Work

In this paper, a method for compressng the scan test
patterns using LZW [4, 21-23] that does not require the
scan chain to have a particular architedure or layout is
presented. This method leverages the large number of
“Don’t-Cares’ in test vedors in order to improve the
compresson ratio significantly. An efficient hardware
dempresgon architedure is also presented using
existing in-chip embedded memories. In order to reduce
chip area overhead, existing BIST-based embedded cores
can be reused.

Some work has aready been done in LZW
architedures[24], but thisimplementation uses a complex
memory structure and has high deade times for
subpattern look-ups. Our method overcomes this
limitation by bounding the maximum dictionary pattern
size to the width of embedded memory word of the
decompresor.

Sedion 2, gives a brief overview. In Sedion 3, the
LZW compresson method is described with a brief
example. In Sedions 4 and 5 decompresson, and its
implementation, is $rown. Results on the ISCAS89 [5]
and the ITC99 [6, 7] benchmarks dhow that this method
achieves a high compresson ratio in Sedion 6. Finaly,
Sedion 7 concludes the paper.

2. Overview

Figure 1 and Figure 2 show the LZW-based test vedor
compresgon architedure. Figure 1 shows how the LZW
compressed vedors are developed. The embedded core

dweyer@cisco.com mcintyre@cis.csuohio.edu

test engineer generates his test vectors and then those
results are passed on to the compression tool. The
compression tool assigns the “‘Don't -Cares’ and
compresses the test vectors for the production tester.
Figure 2 shows the embedded core, including a LZW
decompressor, and how it interfaces to a tester. The
compressed test vector file for the embedded core tester is
then loaded. Since the tester is limited in speed, an
external fast clock is provided to the embedded core under
test to run the LZW decompression engine. Before the
embedded core is fabricated, the production scan test
chains, the production embedded core tester interface, any
board level testing interfaces, memory testing logic and
the LZW decompressor are all instantiated.

The LZW decompressor’s input consists of a
compressed scan input stream and theinternal clock. This
internal clock is used to drive the state machine of the
LZW algorithm. It also drivesthe core’s scan clock. Itis
assumed that this internal clock is faster than the tester’s
clock.

Test Generation Workstation

Test Insertion and Generation
Program

2

LZW Compresson with Dynamic
Don't-Care Assgnment

Figure 1. Test Generation Architecture

Tester Data

ATE Tester

i

Embedded Core
Interna Clock

v v
LZW Core Memory
Demmpressor Element

v
Scan Chain Inserted Core

A 4
Tester Interface

A

Figure 2. Test Application Architecture

3. LZW Compression

LZW compresdon is a dictionary lookup-based
algorithm. Two important features are that the dictionary
is built dynamically and the dictionary is included within
the oompressed message. This sheme works for the same
agorithm is wused for bah compresson and
decompresson. The agorithm requires me
configuration, thus a configurator block is required. The
LZW configurator allows for the sdledion of the LZW
dictionary size as well as the LZW character size. Any
configuration options for compresson are made through
this block and configuration isrequired prior to the start of
sending any compressed data.

Given an LZW dictionary, there are three basic
memory el ementsfor the LZW algorithm to function. The
first memory element is call ed the ‘buffer” which consists
of ‘C¢' hits. 'Cg' represents the number of encoded or
compressd character bits. The seand memory e ement
iscalled the ‘input” which is‘C p’, the number of deaded
or uncompresed character hits. The third memory
element is called the output” which it is'C ¢ insize. For
illustration purposes, an example of a 1-bit message
character is used to explain the operation of the LZW
algorithm as $own in Figure 3. Figure 3a shows that the
first message dharacter is dored in “Buffer” to initialize
this memory eement. The left-most character of the
“Uncompressed Input” is the @ntents of the ‘fnput”
memory element. In Figure 3b, the ‘Buffer” and “Input”
pair are dhedked for existencein the LZW dictionary.

If there is no compressed code in the dictionary for the
“Buffer, Input” pair, then “Buffer” isasdgned to “Output”
and “Input” is asdgned to “Buffer”. For example in
Figure 3b, the ‘0,1” pair is not in the dictionary. Thus,
compresed code 2 is asdgned to the ‘0,1 pair, then
“Buffer” is assgned to “Output” and “Input” is assgned
to “Buffer”. The dictionary reference of 2" is used
because bah “0" and “1” represent uncompressed
characters within the cmpressed output result. In the
general case, the first available dictionary entry is one
greater than the largest uncompressed representation.

If there is a compressed code in the dictionary, then
nothing is assgned to “Output” and the ampressed code
is asdgned to “Buffer”. Figure 3e shows that the ‘0,1"
pair isin the dictionary. Therefore, the mmpressd code
2" is asdgned to “Buffer” and to “Output”. Finally, the
next uncompressed input character is assgned to “Input”.

Figure 3f shows an instance where the ‘Buffer”
contains a compressd code and the ‘Buffer, Input” pair,
(2,2), is added to the dictionary. Here, the new dictionary
reference 5" represents an uncompressd string of ‘011"
bits. The mmpresson process continues until all of the
uncompressed input characters are read. After the last
iteration, Figure 3k, the mntent of “Buffer” isassgned to
the ‘Output” to complete the cmpresson process and
generates the resulting compressed output. There is a

limit on the number of physical dictionary elements that
can be included so both the compression and the
decompression algorithm need to recognizethisdictionary
limit.

Compressed Dictionary Uncompressed

Output Buffer I nput
a) 0 | | 100110101
b) 0|l 20,1 ||o0]|100110101
c) o1|| 3(1,0) ||1 ||00110101
d) 010 || 4(0,0) 0 || 0110101
€) 010 0 | | 110101
f) 0102 || 5(0,1,1) || 2 || 10101
) 0102 10101
h) 01023 || 6(1,01) || 3 || 101
i) 01023 1(|01
) 01023 3|1
k) 010236 6

Figure 3. LZW compression table
representation.

“Don't -Care” mapping is the key to quality
compression results for test vector sets. Many methods
were explored for assigning the “Don't -Care” bits. Most
of these methods focused on pre-processing the “Don't -
Care’ bits first and then applying the LZW compression.
All of these methods produced 40% to 60% test vector
compression. What finally produced the published results
was mapping the “Don't -Carée” hits of the test patterns, as
published in [8]. This mapping idea is a dynamic diding
window approach where “Don’t -Care” hits are assigned
while the LZW algorithm is processing the uncompressed
input bits.

4. LZW Decompression

The LZW compression scheme creates the dictionary
when compressing and reconstructs the dictionary when
decompressing. The dictionary references are contained
within the LZW compressed data stream. Using the
compressed results from Figure 3, the operation of the
LZW decompression algorithm (as shown in Figure 4)
recreates the original input data stream. The
decompression algorithm assigns either the “Input”

memory element or the “Input” referenced dictionary
contents to the “Output” memory element. When the
compressed input character represents an uncompressed
character, the “Input” is directly assigned to the “Output”.
When the input is a compressed character, this is a
reference to an uncompressed character string. Thisisto
be sent to the “Output” memory element from the memory
block.

The decompression process starts with Figure 4a
where the “Input” is assigned to “Output”. Then, in
Figure 4b the “Input” is assigned to the “Buffer” an d the
next “Input” character is sent to the output. Next, the
“Buffer, Input” pair is added to the LZW dictionary.
Figure 4d shows that when the compressed input character
represents a string of uncompressed characters, the
dictionary entry “2(0,1)" is accessed. Finaly, the
resulting uncompressed characters, “0,1”, are passed to
the output.

When “Input” is a compressed character, asin Figure
4d-f, the new dictionary entry contains the characters
represented by “Buffer” and the left -most character
represented by “Input”.

Figure 4f shows a special case of LZW wherethe input
compressed character isreferencing adictionary entry that
has not been created yet. For these cases, the
uncompressed character to be sent to “Output” contains
the characters represented by the contents of the “Buffer”
memory element and the left most character of that
“Buffer” memory e ement.

5. Implementation

5.1. Decompressor

Uncompressed Dictionary Compressed
Output Buffer Input
a) 0 010236
b) 01 2(0,1) 0 | | 10236
C) 010 3(1,0) 1 || 0236
d) 01001 4(0,0) 0236
€) 0100110 || 5(0,1,1) || 2 || 36
f) 0100110101 | | 6(1,0,1) || 3 || 6

Figure 4. LZW decompression table
representation.

To implement a reasonably performing LZW
decompressor, the dictionary memory needsto contain the
complete uncompressed character stream for each
compressed character. In software LZW agorithm

implementations bath a dictionary memory block and a
stack memory block are used. The reason being that it
minimizes the overall memory requirements. This,
however, incurs a performance penalty tradeoff.

1
Ce,l e Input Shifter
C:M LEN
+1
Y A 4 A 4 Y ¢
DataMerging MUX
A 4
Dataln
Address . emory Ce
— Read/Write
Data Out

I 2 A T

DataMerging MUX
CuLen » Cvpata
A 4
Cp Output Shifter | Co,
Cc
A 4
TuLast
:
Figure 5. LZW decompression architecture.
Therefore, a peformancedriven hardware
decompressor implementation was created. Figure 5

shows the high-level hardware architedure for the
decompressor. The process sarts when ‘Cg’ is fully
loaded in to its input shifter. The finite-state-machine
controls the data-merging muxes to ether read the
dictionary or pass‘Cg’ to the ‘Cp’ output shifter. The
dictionary will be read when ‘'C¢ is a compressd
character. The'Cp’ output shifter data-merging mux will
be set to passthe memory's dictionary entry to its output
shifter. If ‘Cg’ represents an uncompressed character,
then the *Cp’ output shifter data-merging mux will be set
to pass‘C¢' to its output shifter. ‘Cc’ isused to denote a
single uncompressed character. After either case, and if

there is an avail able dictionary entry, the memory’s data-
merging MUX is configured to write to that location.
When creating a new dictionary entry, it isimplied that a
new character is being appended to another character or
preexisting string of characters. Thus, a ‘Cyey'
incrementor is neaded. ‘Cyasr iS equivalent to the
“Buffer” memory element as discussed when explaining

the LZW compresson and decompresson algorithms. It
isalso used in the aeation of new dictionary entries.

5.2. Embedded Memory

The LZW demmpressor requires a memory block
from the embedded core to minimize its area overhead.
The memory requirement is known prior to the
completion of the embedded core and before integration
techniques are started. The memory utili zed for the LZW
decompressor architedureis iown in Figure 6. Thesize
of the dictionary is ‘N’. Each memory location contains
two data dementss the number of uncompressd
characters ‘Cyen' and the uncompressed characters
themselves with alength of * Cypata’

J L

Memory
bus
M 10111 01010,...,01010
BIST)L(J 10001 | 11011,...,01010
Inpu '\S CumLen CuvpaTa
LZW |x
inpu
N: 00111 00011,...,11000
BIST
LZW | sdea
sdea Cuien, Cupata

Figure 6. LZW decompression memory
utilization of the core memory blocks.

Since it is desirable to reuse any memory elements
from the drcuit under test, it is posgble that it can be
integrated in the same fashion as memory BIST testing.
Figure 6 shows how the mntrol signals for the memory
devices can be added in order to not impede normal circuit
operation. Normal memory BIST adds muxes in front of
the memory control signals. Another mux can be added
on to the memory BIST side to enable LZW
decompresgon. Asfor the additi on loads on the outputs, a
single buffer can be added to isolate the memory BIST
and LZW demmpresson output loads. This would
minimize the impact of the production test circuitry.

6. Results

A software program was developed for the LZW
compressor. The ISCAS89 benchmarks were easily
applied as the input to this tool; however, the ITC99
benchmarks required test insertion and test pattern
generation prior to compression. To accomplish this
Synopsys dc_shell, DFT-compiler and TetraMAX tools
were used.

With the LZW compression and an efficient technique
for assigning the “Don't -Care” hits, we first generated
compression results that allowed comparison to other
documented compression techniques. Table 1 shows
comparison results for the LZW, LZ77 [8] and RLE [11]
compression techniques.

Test Compression Ratios
LZW LZ77 RLE
s13207f 81.69% 81.45% 81.30%
s15850f 76.26% 61.90% 65.83%
s38417f 70.60% 61.56% 60.55%
S38584f 75.14% 59.97% 61.13%
$9234f 70.67% 37.66% 44.96%

Table 1. Compression Comparison Results

The LZW compression result generated above used a
64-bit dictionary entry and a 7-bit character
representation. s13207f, s15850f and s9234f al have a
1024 dictionary size while s38417f and s38584f have a
2048 dictionary size. All of these tests are based on a
single scan chain input and output.

After attaining quality compression results, the
architecture required to implement the LZW
decompressor became the focus. Using the architecture as
described, Table 2 shows attainable performance results.

Test Dict. Decompress Clock
Size 4x 8x 10x
s13207f | 1024x64 | 56.19% | 67.69% | 70.85%
s15850f | 1024x64 | 51.27% | 62.79% | 65.71%
s38417f | 2048x64 | 43.81% | 55.46% | 57.99%
s38584f | 2048x64 | 49.34% | 60.83% | 63.80%
S9234f | 1024x64 | 45.75% | 57.34% | 59.97%

Table 2. Download Performance
Improvement Results and Memory Sizes

Even with a clock four times faster than the tester
clock rate, performance improvements of about only 50%
were attainable. With a ten times faster clock relative to
the tester clock rate, the performance is a 10% lesser
difference from the compression rate. The performance
improvement can match the compression rate; however,
the dictionary size must be increased to accommodate.

Many more of the ISCAS89 and ITC99 test benches
were used to verify algorithm effectiveness. Table 3
shows selected results from both test bench suites. For
each test bench the percentage of “Don't -Care” bitswithin

each test isnoted. In general, the amount of compression
is proportional to the “Don't -Care” data ratio. Also in
Table 3, the uncompressed test bench size and the
resulting LZW dictionary size is reported. Upon
examining theseresults, it was observed that the growth of
the dictionary size is a factor of powers of 2 as the test
size grows larger.

Test Don't Orig. Comp- | Dict.
Cares Size ression Size

s13207f | 93.15% | 165200 | 81.69% | 1024
s15850f | 83.56% | 76986 | 76.26% | 1024
s35932f | 35.30% | 28208 | 72.65% | 128
s38417f | 68.08% | 164736 | 70.60% | 2048
s38584f | 82.28% | 199104 | 75.14% | 2048
sH5378f | 72.62% | 23754 | 59.00% | 1024
s9234f | 73.00% | 39273 | 70.67% | 1024
itch04 | 87.34% | 46980 | 80.86% | 512
itch05 | 97.95% | 128554 | 86.76% | 256
itcb07 | 82.14% | 19209 | 80.27% | 512
itchl2 | 92.01% | 152750 | 83.19% | 1024
itchl3 | 90.06% | 23986 | 84.20% | 512

Table 3. ISCAS89 and ITC99 Benchmark
Results

Test LZW Character Sizein Bits (Cg)
1 4 7 10
s13207f | 75.21% | 80.10% | 79.50% | 0.00%
s15850f | 59.98% | 74.57% | 74.78% | 0.01%
s38417f | 50.58% | 61.85% | 65.54% | 0.00%
s38584f | 52.31% | 61.50% | 64.08% | 0.00%
$9234f | 54.17% | 67.84% | 69.44% | 0.00%

Table 4. Compression versus LZW
Character Size

Test Dictionary Entry Size in Bits (Cypata)
60 123 250 505
s13207f | 79.50% | 88.02% | 91.56% | 92.53%
s15850f | 74.79% | 80.89% | 81.06% | 81.06%
s38417f | 65.54% | 66.47% | 66.47% | 66.47%
s38584f | 64.08% | 65.26% | 65.26% | 65.26%
S9234f 69.44% | 73.54% | 73.88% | 73.88%

Table 5. Compression versus Entry Size

Table 4 shows the effect of LZW character size given
compression. The data was generated with N = 1024 and
Cupata = 63. The results show that the “Don't -Care’
assignment improves as the character size increases. At
about a 10-bit character size with adictionary of sizeN =
1024, there are no more compress codes available. Thus
poor compression results are observed.

Table 5 shows the effect of the LZW dictionary entry
size given compression. The data was generated with N =
1024 and Cc = 7. The results show that the larger the
dictionary entry, the higher the compression.

Test Longest CwupaTa
String 60 123 505
513207 483 69.30% | 77.99% | 82.33%
515850 126 64.60% | 70.63% | 70.73%
s38417% 91 55.38% | 56.25% | 56.25%
38584 91 54.07% | 55.11% | 55.11%
59234 189 59.34% | 63.34% | 63.63%

Table 6. Performance versus entry size.

Table 6 shows the dfea of the sametestsasin Table5
except performance improvement metrics were generated
with a 10x internal clock relative to the ATE tester clock.
However, Table 6 has the longest string column, which
shows why bath the mmpresson and the performance
increase and then level out when the dictionary entry
increases. Given the LZW compresgon, each test bench
generated a longest uncompressed string representation.
Until the dictionary entry size is large ewough to
incorporate the longest string, sub optimal compresson
and performance is experienced. However, the memory
for any given embedded core may be the limiti ng factor.
For example, if s13207 is an embedded core and optimal
compresson was desired, the following parameters of N =
1024 C. =7 and Cypata >= 483 are neaded. This causes
a1024by 490-bit memory requirement.

7. Conclusion

A technique for high compresson ratio was described
which exploits the high number of “Don't -Care” bits that
ocaur in test sets. This tedhnique reduced the test set size
in terms of number of bits. A fast hardware decompressor
is also necessary and thus designed to reduce the test set
download time. In addition, reusing BIST-based
embedded memory cores or by making this hardware
compresson engine part of normal operation, can further
reduce or diminate the chip area overhead. Engineeing
tradeoffs auch as the dictionary entry size, uncompressd
character size and longest support compressd string are
reguired to gptimize performanceand minimizearea. The
benchmark results ow that goad results can be achieved
by seleding a reasonable dictionary size, dictionary entry
width and character width.

References

[1] E. H.Voakerink, A. Khoche, J. Rivoir, and K. D. Hilli ges.
Test economics for multi -site test with modern cost
reduction techniques. In Proc. VLSI Test Symp., pages
411-416, 2002

[2] Y. Zorian, E. J. Marinisen, and S. Dey. Testing
embedded-core-based system chips. Computer, 32(6):52-
60, 1999

[3] J ZivandA. Lempel. A universa agorithm for sequential
data compresson. IEEE Trans. on Information Theory,
23(3):337-343 May 1977.

[4] J ZivandA. Lempel. Compresson of individual
sequences via variable rate coding. IEEE Trans. on
Information Theory, 24(5):530-536, 1978

[5] F.Brglez, D. Bryan, and K. Kozminski. Combinatorial
profiles of sequential benchmark circuits. In Proc. Int' |
Symp. on Circuits and Systems, pages 1129 1234 1989

[6] L. Basto. First Results of ITC'99 kenchmark results. IEEE
Design & Test of Computers, 17(3):54-59, July 2000

[7] S. Davidson. ITC'99 Benchmark Circuits — Preliminary
Results. In Int' | Test Conf., pages 1128125 1999

[8] Wadlff, F. G., Papachristou, C., “Multi scan -based Test
Compresson and Hardware Decomposition Using LZ77,”
ITC, 2002

[9] C.Barnhart, V. Brunktorst, F. Distler, O. Farnsworth, B.
Keller, and B. Koeneman. Opmisr: The foundation for
compressed atpg vectors. In Proc. Int' | Test Conf., pages
748757, 2001

[10] A. Chandra and K. Chakrabarty. System-on-a-chip test-
data compresson and decompresson architecture based on
gdomb codes. IEEE Trans. on CAD/ICAS, (3):355-368
March 2001

[11] A. Chandra and K. Chakrabarty. Reduction of soc test data
volume, scan power and testing time using aternating run-
length codes. In Proc. Design Automation Conference,
pages 673678 June 2002

[12] R. Dorsch and H.-J. Wunderlich. Tail oring atpg for
embedded testing. In Int' | Test Conf., pages 53637, 2001

[13] H. Ichihara, A. Ogawa, T. Inoue, and A. Tamura. Dynamic
test compresson using statisical coding. In Proc. of Asian
Test Symposium, pages 143-148 2001

[14] V. lyengar, K. Chakrabarty, and B. T. Murray.
Deterministic built-in pattern generation for sequential
circuits. JETTA, 15:97-115, October 199.

[15] A. Jas, J. Ghosh-Dastidar, and N. A. Touba. Scan vector
compresgon/decompresson using statisical coding. In
Proc. VLS| Test Symp., pages 114120, April 1999

[16] A. JasandN. Touba. Test vector decompresson via
cyclical scan chains. In Proc. Int' | Test Conf., pages 458
464, 1998

[17] S Kgihara andK. Miyase. Onidentifyingdon' t careinpus
of test patterns for combinational circuits. In Proc. Int' |
Conf. Computer-Aided Design, pages 364 369 2001

[18] A. Khoche, E. H. Volkerink, J. Rivair, and S. Mitra. Test
vector compresson using eda-ate synergies. In Proc. VLS
Test Symp., pages 97-102, 2002

[19] B. Koeneman, C. Barnhart, B. Keller, T. Snethen, O.
Farnsworth, and D. Wheaer. A smartbist variant with
guaranteed encoding. In Proc. Asian Test Conf., pages 325
330 2001

[20] J. Rajski. Dft for high-quality low cost manufacturing test.
In Asian Test Symp., pages 3-8, 2001

[2]] K. Loudon. Mastering Algarithmswith C. O' Reilly, 1999

[22] M. NelsonandJ. L. Gailly. The Data Compresson Book.
M & T Books, New York, 1996

[23] T. A. Welch. A technique for high-performance data
compresgon. IEEE Computer, 17(6):8-19, June 1984

[24] C.Su, C. Yen, J. Yo. Hardware dficient updating
technique of LZW CODEC design. Proc. Circuit and
Systems Symp., pages 2797280Q 1997.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

