
A Technique for High Ratio LZW Compression

Michael J. Knieser Francis G. Wolff Chris A. Papachristou Daniel J. Weyer David R. McIntyre
Indiana University Purdue
University Indianapolis

Case Western Reserve University Cisco Systems Cleveland State
University

mknieser@iupui.edu fxw12@po.cwru.edu cap2@po.cwru.edu dweyer@cisco.com mcintyre@cis.csuohio.edu

Abstract

Reduction of both the test suite size and the download time
of test vectors is important in today's System-On-a-Chip
designs. In this paper, a method for compressing the scan
test patterns using the LZW algorithm is presented. This
method leverages the large number of “ Don't-Cares” in
test vectors in order to improve the compression ratio
signifi cantly. The hardware decompression architecture
presented here uses existing on-chip embedded memories.
Tests using the ISCAS89 and the ITC99 benchmarks show
that this method achieves high compression ratios.

1. Introduction

Testing Systems-on-a-Chip (SoC) devices or embedded
Intellectual Property (IP) is dominated by two major
factors: time and size [1]. The time is a function of the
Automated Test Equipment (ATE) tester clock rate and
the number of applied test patterns. Unfortunately, the
clock rate is proportional to the price of the ATE. The
number of test patterns is a function of the test insertion
algorithm and the number of parallel test pattern scan
chains. These lead to the size of the test patterns required
for proper verification of the custom sili con device. This
volume also impacts the ATE memory size and it’s own
price proportionally. Built -In Self Test (BIST) addresses
the issue of test set volume by embedding test vectors on-
chip. However, this reduction of test set volume by using
BIST [2] may work well for embedded memory cores but,
is not eff icient for custom IP cores. Applying scan test
vectors to chips is still t he most preferred method.

1.1. Related Work

In order to apply test vectors to a SoC, data
compression methods have been proposed which focus on
eff iciently transferring (i.e. downloading) test vectors
from the ATE to the SoC. This can be broken down
further into two cases: methods that require that the scan
chain to have a particular architecture or physical layout
[12, 19, 20], and those that are independent of the scan
architecture. Some of these methods in the independent
case can be classified into their analogous classical
software data compression counterparts, some examples

of which are: Run-Length-Encoding [10, 11], Huffman or
statistical based coding [15, 16], and LZ77 [3, 8].

Many of these compression methods require careful
assignment of “Don’ t-Care” bits with in test vectors to
achieve practical compression ratios. The number of these
bits is very high [9, 17, 18]. How these “Don’ t-Care” bits
are assigned, given a compression scheme, is very criti cal.
These “Don’ t-Care” bits need to be assigned in a way that
favors the compression algorithm. For example, a Run-
Length-Coding compression scheme may find that
assigning the “Don’ t-Care” bits to form the longest string
of 1’s or 0’s is best. Although a “Don’ t-Care” assignment
may be best for a given compression scheme, the goal is
still maximum compression of a test vector suite.

1.2. Our Work

In this paper, a method for compressing the scan test
patterns using LZW [4, 21-23] that does not require the
scan chain to have a particular architecture or layout is
presented. This method leverages the large number of
“Don’ t-Cares” in test vectors in order to improve the
compression ratio significantly. An eff icient hardware
decompression architecture is also presented using
existing in-chip embedded memories. In order to reduce
chip area overhead, existing BIST-based embedded cores
can be reused.

Some work has already been done in LZW
architectures [24], but this implementation uses a complex
memory structure and has high decode times for
subpattern look-ups. Our method overcomes this
limitation by bounding the maximum dictionary pattern
size to the width of embedded memory word of the
decompressor.

Section 2, gives a brief overview. In Section 3, the
LZW compression method is described with a brief
example. In Sections 4 and 5, decompression, and its
implementation, is shown. Results on the ISCAS89 [5]
and the ITC99 [6, 7] benchmarks show that this method
achieves a high compression ratio in Section 6. Finall y,
Section 7 concludes the paper.

2. Overview

Figure 1 and Figure 2 show the LZW-based test vector
compression architecture. Figure 1 shows how the LZW
compressed vectors are developed. The embedded core

1530-1591/03 $17.00  2003 IEEE

test engineer generates his test vectors and then those
results are passed on to the compression tool. The
compression tool assigns the “Don’t -Cares” and
compresses the test vectors for the production tester.
Figure 2 shows the embedded core, including a LZW
decompressor, and how it interfaces to a tester. The
compressed test vector file for the embedded core tester is
then loaded. Since the tester is limited in speed, an
external fast clock is provided to the embedded core under
test to run the LZW decompression engine. Before the
embedded core is fabricated, the production scan test
chains, the production embedded core tester interface, any
board level testing interfaces, memory testing logic and
the LZW decompressor are all instantiated.

The LZW decompressor’s input consists of a
compressed scan input stream and the internal clock. This
internal clock is used to drive the state machine of the
LZW algorithm. It also drives the core’s scan clock. It is
assumed that this internal clock is faster than the tester’s
clock.

Tester Data

Test Generation Workstation

LZW Compression with Dynamic
Don’t -Care Assignment

Test Insertion and Generation
Program

Figure 1. Test Generation Architecture

Embedded Core
Tester Interface

LZW
Decompressor

Scan Chain Inserted Core

Core Memory
Element

Internal Clock

ATE Tester

Tester Data

Figure 2. Test Application Architecture

3. LZW Compression

LZW compression is a dictionary lookup-based
algorithm. Two important features are that the dictionary
is built dynamicall y and the dictionary is included within
the compressed message. This scheme works for the same
algorithm is used for both compression and
decompression. The algorithm requires some
configuration, thus a configurator block is required. The
LZW configurator allows for the selection of the LZW
dictionary size as well as the LZW character size. Any
configuration options for compression are made through
this block and configuration is required prior to the start of
sending any compressed data.

Given an LZW dictionary, there are three basic
memory elements for the LZW algorithm to function. The
first memory element is called the “buffer” which consists
of ‘CE‘ bits. ‘CE‘ represents the number of encoded or
compressed character bits. The second memory element
is called the “input” which is ‘C D’, the number of decoded
or uncompressed character bits. The third memory
element is called the “output” which it is ‘C E‘ in size. For
ill ustration purposes, an example of a 1-bit message
character is used to explain the operation of the LZW
algorithm as shown in Figure 3. Figure 3a shows that the
first message character is stored in “Buffer” to initiali ze
this memory element. The left-most character of the
“Uncompressed Input” is the contents of the “input”
memory element. In Figure 3b, the “Buffer” and “Input”
pair are checked for existence in the LZW dictionary.

If there is no compressed code in the dictionary for the
“Buffer, Input” pair, then “Buffer” is assigned to “Output”
and “Input” is assigned to “Buffer”. For example in
Figure 3b, the “0,1” pair is not in the dictionary. Thus,
compressed code “2” is assigned to the “0,1” pair, then
“Buffer” is assigned to “Output” and “Input” is assigned
to “Buffer”. The dictionary reference of “2” is used
because both “0” an d “1” represent uncompressed
characters within the compressed output result. In the
general case, the first available dictionary entry is one
greater than the largest uncompressed representation.

If there is a compressed code in the dictionary, then
nothing is assigned to “Output” and the compressed code
is assigned to “Buffer”. Figure 3e shows that the “0,1”
pair is in the dictionary. Therefore, the compressed code
“2” is assigned to “Buffer” and to “Output”. Finall y, the
next uncompressed input character is assigned to “Input”.

Figure 3f shows an instance where the “Buffer”
contains a compressed code and the “Buffer, Input” pair,
(2,1), is added to the dictionary. Here, the new dictionary
reference “5” represents an uncompressed string of “011”
bits. The compression process continues until all of the
uncompressed input characters are read. After the last
iteration, Figure 3k, the content of “Buffer” is assigned to
the “Output” to complete the compression process and
generates the resulting compressed output. There is a

limit on the number of physical dictionary elements that
can be included so both the compression and the
decompression algorithm need to recognize this dictionary
limit.
 Compressed

Output
Dictionary

Buffer
Uncompressed

Input

100110101 0 a)

100110101 0 2(0,1) 0 b)

00110101 1 3(1,0) 01 c)

0110101 0 4(0,0) 010 d)

110101 0 010 e)

10101 2 5(0,1,1) 0102 f)

0101 1 0102 g)

101 3 6(1,0,1) 01023 h)

01 1 01023 i)

1 3 01023 j)

 6 010236 k)

Figure 3. LZW compression table
representation.

“Don’t -Care” mapping is the key to quality
compression results for test vector sets. Many methods
were explored for assigning the “Don’t -Care” bits. Most
of these methods focused on pre-processing the “Don’t -
Care” bits first and then applying the LZW compression.
All of these methods produced 40% to 60% test vector
compression. What finally produced the published results
was mapping the “Don’t -Care” bits of the test patterns, as
published in [8]. This mapping idea is a dynamic sliding
window approach where “Don’t -Care” bits are assigned
while the LZW algorithm is processing the uncompressed
input bits.

4. LZW Decompression

The LZW compression scheme creates the dictionary
when compressing and reconstructs the dictionary when
decompressing. The dictionary references are contained
within the LZW compressed data stream. Using the
compressed results from Figure 3, the operation of the
LZW decompression algorithm (as shown in Figure 4)
recreates the original input data stream. The
decompression algorithm assigns either the “Input”

memory element or the “Input” referenced dictionary
contents to the “Output” memory element. When the
compressed input character represents an uncompressed
character, the “Input” is directly assigned to the “Output”.
When the input is a compressed character, this is a
reference to an uncompressed character string. This is to
be sent to the “Output” memory element from the memory
block.

The decompression process starts with Figure 4a
where the “Input” is assigned to “Output”. Then, in
Figure 4b the “Input” is assigned to the “Buffer” an d the
next “Input” character is sent to the output. Next, the
“Buffer, Input” pair is added to the LZW dictionary.
Figure 4d shows that when the compressed input character
represents a string of uncompressed characters, the
dictionary entry “2(0,1)” is accessed. Finally, the
resulting uncompressed characters, “0,1”, are passed to
the output.

When “Input” is a compressed character, as in Figure
4d-f, the new dictionary entry contains the characters
represented by “Buffer” and the left -most character
represented by “Input”.

Figure 4f shows a special case of LZW where the input
compressed character is referencing a dictionary entry that
has not been created yet. For these cases, the
uncompressed character to be sent to “Output” contains
the characters represented by the contents of the “Buffer”
memory element and the left most character of that
“Buffer” memory element.

5. Implementation

5.1. Decompressor

 Uncompressed
Output

Dictionary
Buffer

Compressed
Input

010236 0 a)

10236 0 2(0,1) 01 b)

0236 1 3(1,0) 010 c)

236 0 4(0,0) 01001 d)

36 2 5(0,1,1) 0100110 e)

6 3 6(1,0,1) 0100110101 f)

Figure 4. LZW decompression table
representation.

To implement a reasonably performing LZW
decompressor, the dictionary memory needs to contain the
complete uncompressed character stream for each
compressed character. In software LZW algorithm

implementations both a dictionary memory block and a
stack memory block are used. The reason being that it
minimizes the overall memory requirements. This,
however, incurs a performance penalty tradeoff.

Data Merging MUX

CE CE Input Shifter

Data In
Address
Read/Write

Data Out

CD Output Shifter CD

CMLEN

+1

1

CMLEN , CMDATA

CC

Data Merging MUX

Memory

TMLAST

CC

Figure 5. LZW decompression architecture.

Therefore, a performance-driven hardware
decompressor implementation was created. Figure 5
shows the high-level hardware architecture for the
decompressor. The process starts when ‘CE’ is full y
loaded in to its input shifter. The finite-state-machine
controls the data-merging muxes to either read the
dictionary or pass ‘CE’ to the ‘CD’ output shifter. The
dictionary will be read when ‘CE’ is a compressed
character. The ‘CD’ output shifter data-merging mux will
be set to pass the memory’s dictionary entry to its output
shifter. If ‘CE’ represents an uncompressed character,
then the ‘CD’ output shifter data-merging mux will be set
to pass ‘CE’ to its output shifter. ‘CC’ is used to denote a
single uncompressed character. After either case, and if

there is an available dictionary entry, the memory’s data-
merging MUX is configured to write to that location.
When creating a new dictionary entry, it is implied that a
new character is being appended to another character or
preexisting string of characters. Thus, a ‘CMLEN’
incrementor is needed. ‘CMLAST’ is equivalent to the
“Buffer” memory element as discussed when explaining
the LZW compression and decompression algorithms. It
is also used in the creation of new dictionary entries.

5.2. Embedded Memory

The LZW decompressor requires a memory block
from the embedded core to minimize its area overhead.
The memory requirement is known prior to the
completion of the embedded core and before integration
techniques are started. The memory utili zed for the LZW
decompressor architecture is shown in Figure 6. The size
of the dictionary is ‘N’. Each memory location contains
two data elements: the number of uncompressed
characters ‘CMLEN’ and the uncompressed characters
themselves with a length of ‘CMDATA’.

Memory
bus

BIST
input

BIST
select LZW

select

LZW
input

01010,…,01010 10111

11011,…,01010 10001

00011,…,11000 00111

… …

1:

2:

CMDATA CMLEN 3:

N:

CMLEN, CMDATA

M
U
X

M
U
X

Figure 6. LZW decompression memory
utilization of the core memory blocks.

Since it is desirable to reuse any memory elements
from the circuit under test, it is possible that it can be
integrated in the same fashion as memory BIST testing.
Figure 6 shows how the control signals for the memory
devices can be added in order to not impede normal circuit
operation. Normal memory BIST adds muxes in front of
the memory control signals. Another mux can be added
on to the memory BIST side to enable LZW
decompression. As for the addition loads on the outputs, a
single buffer can be added to isolate the memory BIST
and LZW decompression output loads. This would
minimize the impact of the production test circuitry.

6. Results

A software program was developed for the LZW
compressor. The ISCAS89 benchmarks were easily
applied as the input to this tool; however, the ITC99
benchmarks required test insertion and test pattern
generation prior to compression. To accomplish this
Synopsys dc_shell, DFT-compiler and TetraMAX tools
were used.

With the LZW compression and an efficient technique
for assigning the “Don’t -Care” bits, we first genera ted
compression results that allowed comparison to other
documented compression techniques. Table 1 shows
comparison results for the LZW, LZ77 [8] and RLE [11]
compression techniques.

Compression Ratios Test
LZW LZ77 RLE

s13207f 81.69% 81.45% 81.30%
s15850f 76.26% 61.90% 65.83%
s38417f 70.60% 61.56% 60.55%
s38584f 75.14% 59.97% 61.13%
s9234f 70.67% 37.66% 44.96%

 Table 1. Compression Comparison Results

The LZW compression result generated above used a
64-bit dictionary entry and a 7-bit character
representation. s13207f, s15850f and s9234f all have a
1024 dictionary size while s38417f and s38584f have a
2048 dictionary size. All of these tests are based on a
single scan chain input and output.

After attaining quality compression results, the
architecture required to implement the LZW
decompressor became the focus. Using the architecture as
described, Table 2 shows attainable performance results.

Decompress Clock Test Dict.
Size 4x 8x 10x

s13207f 1024x64 56.19% 67.69% 70.85%
s15850f 1024x64 51.27% 62.79% 65.71%
s38417f 2048x64 43.81% 55.46% 57.99%
s38584f 2048x64 49.34% 60.83% 63.80%
s9234f 1024x64 45.75% 57.34% 59.97%
 Table 2. Download Performance
Improvement Results and Memory Sizes

Even with a clock four times faster than the tester
clock rate, performance improvements of about only 50%
were attainable. With a ten times faster clock relative to
the tester clock rate, the performance is a 10% lesser
difference from the compression rate. The performance
improvement can match the compression rate; however,
the dictionary size must be increased to accommodate.

Many more of the ISCAS89 and ITC99 test benches
were used to verify algorithm effectiveness. Table 3
shows selected results from both test bench suites. For
each test bench the percentage of “Don’t -Care” bits within

each test is noted. In general, the amount of compression
is proportional to the “Don’t -Care” data ratio. Also in
Table 3, the uncompressed test bench size and the
resulting LZW dictionary size is reported. Upon
examining these results, it was observed that the growth of
the dictionary size is a factor of powers of 2 as the test
size grows larger.

Test Don’t
Cares

Orig.
Size

Comp-
ression

Dict.
Size

s13207f 93.15% 165200 81.69% 1024
s15850f 83.56% 76986 76.26% 1024
s35932f 35.30% 28208 72.65% 128
s38417f 68.08% 164736 70.60% 2048
s38584f 82.28% 199104 75.14% 2048
s5378f 72.62% 23754 59.00% 1024
s9234f 73.00% 39273 70.67% 1024
itc b04 87.34% 46980 80.86% 512
itc b05 97.95% 128554 86.76% 256
itc b07 82.14% 19209 80.27% 512
itc b12 92.01% 152750 83.19% 1024
itc b13 90.06% 23986 84.20% 512

Table 3. ISCAS89 and ITC99 Benchmark
Results

LZW Character Size in Bits (CC) Test
1 4 7 10

s13207f 75.21% 80.10% 79.50% 0.00%
s15850f 59.98% 74.57% 74.78% 0.01%
s38417f 50.58% 61.85% 65.54% 0.00%
s38584f 52.31% 61.50% 64.08% 0.00%
s9234f 54.17% 67.84% 69.44% 0.00%
 Table 4. Compression versus LZW
Character Size

Dictionary Entry Size in Bits (CMDATA) Test
60 123 250 505

s13207f 79.50% 88.02% 91.56% 92.53%
s15850f 74.79% 80.89% 81.06% 81.06%
s38417f 65.54% 66.47% 66.47% 66.47%
s38584f 64.08% 65.26% 65.26% 65.26%
s9234f 69.44% 73.54% 73.88% 73.88%

 Table 5. Compression versus Entry Size

Table 4 shows the effect of LZW character size given
compression. The data was generated with N = 1024 and
CMDATA = 63. The results show that the “Don’t -Care”
assignment improves as the character size increases. At
about a 10-bit character size with a dictionary of size N =
1024, there are no more compress codes available. Thus
poor compression results are observed.

Table 5 shows the effect of the LZW dictionary entry
size given compression. The data was generated with N =
1024 and CC = 7. The results show that the larger the
dictionary entry, the higher the compression.

 CMDATA Test Longest
String 60 123 505

s13207f 483 69.30% 77.99% 82.33%
s15850f 126 64.60% 70.63% 70.73%
s38417f 91 55.38% 56.25% 56.25%
s38584f 91 54.07% 55.11% 55.11%
s9234f 189 59.34% 63.34% 63.63%
 Table 6. Performance versus entry size.

Table 6 shows the effect of the same tests as in Table 5
except performance improvement metrics were generated
with a 10x internal clock relative to the ATE tester clock.
However, Table 6 has the longest string column, which
shows why both the compression and the performance
increase and then level out when the dictionary entry
increases. Given the LZW compression, each test bench
generated a longest uncompressed string representation.
Until the dictionary entry size is large enough to
incorporate the longest string, sub optimal compression
and performance is experienced. However, the memory
for any given embedded core may be the limiti ng factor.
For example, if s13207f is an embedded core and optimal
compression was desired, the following parameters of N =
1024, CC = 7 and CMDATA >= 483 are needed. This causes
a 1024 by 490-bit memory requirement.

7. Conclusion

A technique for high compression ratio was described
which exploits the high number of “Don’t -Care” bits that
occur in test sets. This technique reduced the test set size
in terms of number of bits. A fast hardware decompressor
is also necessary and thus designed to reduce the test set
download time. In addition, reusing BIST–based
embedded memory cores or by making this hardware
compression engine part of normal operation, can further
reduce or eliminate the chip area overhead. Engineering
tradeoffs such as the dictionary entry size, uncompressed
character size and longest support compressed string are
required to optimize performance and minimize area. The
benchmark results show that good results can be achieved
by selecting a reasonable dictionary size, dictionary entry
width and character width.

References

[1] E. H. Volkerink, A. Khoche, J. Rivoir, and K. D. Hilli ges.
Test economics for multi -site test with modern cost
reduction techniques. In Proc. VLSI Test Symp., pages
411-416, 2002.

[2] Y. Zorian, E. J. Marinissen, and S. Dey. Testing
embedded-core-based system chips. Computer, 32(6):52-
60, 1999.

[3] J. Ziv and A. Lempel. A universal algorithm for sequential
data compression. IEEE Trans. on Information Theory,
23(3):337-343, May 1977.

[4] J. Ziv and A. Lempel. Compression of individual
sequences via variable rate coding. IEEE Trans. on
Information Theory, 24(5):530-536, 1978.

[5] F. Brglez, D. Bryan, and K. Kozminski. Combinatorial
profil es of sequential benchmark circuits. In Proc. Int' l
Symp. on Circuits and Systems, pages 1129- 1234, 1989.

[6] L. Basto. First Results of ITC’99 benchmark results. IEEE
Design & Test of Computers, 17(3):54-59, July 2000.

[7] S. Davidson. ITC’99 Benchmark Circuits – Preliminary
Results. In Int' l Test Conf., pages 1125-1125, 1999.

[8] Wolff , F. G., Papachristou, C., “Multi scan-based Test
Compression and Hardware Decomposition Using LZ77,”
ITC, 2002

[9] C. Barnhart, V. Brunkhorst, F. Distler, O. Farnsworth, B.
Keller, and B. Koeneman. Opmisr: The foundation for
compressed atpg vectors. In Proc. Int' l Test Conf., pages
748-757, 2001.

[10] A. Chandra and K. Chakrabarty. System-on-a-chip test-
data compression and decompression architecture based on
golomb codes. IEEE Trans. on CAD/ICAS, (3):355-368,
March 2001.

[11] A. Chandra and K. Chakrabarty. Reduction of soc test data
volume, scan power and testing time using alternating run-
length codes. In Proc. Design Automation Conference,
pages 673-678, June 2002.

[12] R. Dorsch and H.-J. Wunderli ch. Tailoring atpg for
embedded testing. In Int' l Test Conf., pages 530-537, 2001.

[13] H. Ichihara, A. Ogawa, T. Inoue, and A. Tamura. Dynamic
test compression using statisical coding. In Proc. of Asian
Test Symposium, pages 143-148, 2001.

[14] V. Iyengar, K. Chakrabarty, and B. T. Murray.
Deterministic built -in pattern generation for sequential
circuits. JETTA, 15:97-115, October 1999.

[15] A. Jas, J. Ghosh-Dastidar, and N. A. Touba. Scan vector
compression/decompression using statisical coding. In
Proc. VLSI Test Symp., pages 114-120, April 1999.

[16] A. Jas and N. Touba. Test vector decompression via
cycli cal scan chains. In Proc. Int' l Test Conf., pages 458-
464, 1998.

[17] S. Kajihara and K. Miyase. On identifying don' t care inputs
of test patterns for combinational circuits. In Proc. Int' l
Conf. Computer-Aided Design, pages 364- 369, 2001.

[18] A. Khoche, E. H. Volkerink, J. Rivoir, and S. Mitra. Test
vector compression using eda-ate synergies. In Proc. VLSI
Test Symp., pages 97-102, 2002.

[19] B. Koeneman, C. Barnhart, B. Keller, T. Snethen, O.
Farnsworth, and D. Wheater. A smartbist variant with
guaranteed encoding. In Proc. Asian Test Conf., pages 325-
330, 2001.

[20] J. Rajski. Dft for high-qualit y low cost manufacturing test.
In Asian Test Symp., pages 3-8, 2001.

[21] K. Loudon. Mastering Algorithms with C. O' Reill y, 1999.
[22] M. Nelson and J. L. Gaill y. The Data Compression Book.

M & T Books, New York, 1996.
[23] T. A. Welch. A technique for high-performance data

compression. IEEE Computer, 17(6):8-19, June 1984.
[24] C. Su, C. Yen, J. Yo. Hardware eff icient updating

technique of LZW CODEC design. Proc. Circuit and
Systems Symp., pages 2797-2800, 1997.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

