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Abstract 

Reduction of both the test suite size and the download time 
of test vectors is important in today's System-On-a-Chip 
designs.  In this paper, a method for compressing the scan 
test patterns using the LZW algorithm is presented.  This 
method leverages the large number of “ Don't-Cares” in 
test vectors in order to improve the compression ratio 
signifi cantly.   The hardware decompression architecture 
presented here uses existing on-chip embedded memories.  
Tests using the ISCAS89 and the ITC99 benchmarks show 
that this method achieves high compression ratios. 

1. Introduction 

Testing Systems-on-a-Chip (SoC) devices or embedded 
Intellectual Property (IP) is dominated by two major 
factors: time and size [1].  The time is a function of the 
Automated Test Equipment (ATE) tester clock rate and 
the number of applied test patterns.  Unfortunately, the 
clock rate is proportional to the price of the ATE.  The 
number of test patterns is a function of the test insertion 
algorithm and the number of parallel test pattern scan 
chains.  These lead to the size of the test patterns required 
for proper verification of the custom sili con device.  This 
volume also impacts the ATE memory size and it’s own 
price proportionally.  Built -In Self Test (BIST) addresses 
the issue of test set volume by embedding test vectors on-
chip.  However, this reduction of test set volume by using 
BIST [2] may work well for embedded memory cores but, 
is not eff icient for custom IP cores.  Applying scan test 
vectors to chips is still t he most preferred method. 

1.1. Related Work 

In order to apply test vectors to a SoC, data 
compression methods have been proposed which focus on 
eff iciently transferring (i.e. downloading) test vectors 
from the ATE to the SoC.  This can be broken down 
further into two cases: methods that require that the scan 
chain to have a particular architecture or physical layout 
[12, 19, 20], and those that are independent of the scan 
architecture.  Some of these methods in the independent 
case can be classified into their analogous classical 
software data compression counterparts, some examples 

of which are:  Run-Length-Encoding [10, 11], Huffman or 
statistical based coding [15, 16], and LZ77 [3, 8].  

Many of these compression methods require careful 
assignment of “Don’ t-Care” bits with in test vectors to 
achieve practical compression ratios. The number of these 
bits is very high [9, 17, 18]. How these “Don’ t-Care” bits 
are assigned, given a compression scheme, is very criti cal.  
These “Don’ t-Care” bits need to be assigned in a way that 
favors the compression algorithm. For example, a Run-
Length-Coding compression scheme may find that 
assigning the “Don’ t-Care” bits to form the longest string 
of 1’s or 0’s is best.  Although a “Don’ t-Care” assignment 
may be best for a given compression scheme, the goal is 
still maximum compression of a test vector suite.   

1.2. Our Work 

In this paper, a method for compressing the scan test 
patterns using LZW [4, 21-23] that does not require the 
scan chain to have a particular architecture or layout is 
presented.  This method leverages the large number of 
“Don’ t-Cares” in test vectors in order to improve the 
compression ratio significantly. An eff icient hardware 
decompression architecture is also presented using 
existing in-chip embedded memories. In order to reduce 
chip area overhead, existing BIST-based embedded cores 
can be reused.  

Some work has already been done in LZW 
architectures [24], but this implementation uses a complex 
memory structure and has high decode times for 
subpattern look-ups. Our method overcomes this 
limitation by bounding the maximum dictionary pattern 
size to the width of embedded memory word of the 
decompressor.  

Section 2, gives a brief overview. In Section 3, the 
LZW compression method is described with a brief 
example. In Sections 4 and 5, decompression, and its 
implementation, is shown. Results on the ISCAS89 [5] 
and the ITC99 [6, 7] benchmarks show that this method 
achieves a high compression ratio in Section 6. Finall y, 
Section 7 concludes the paper.  

2. Overview 

Figure 1 and Figure 2 show the LZW-based test vector 
compression architecture.  Figure 1 shows how the LZW 
compressed vectors are developed.  The embedded core 
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test engineer generates his test vectors and then those 
results are passed on to the compression tool.  The 
compression tool assigns the “Don’t -Cares” and 
compresses the test vectors for the production tester.  
Figure 2 shows the embedded core, including a LZW 
decompressor, and how it interfaces to a tester.  The 
compressed test vector file for the embedded core tester is 
then loaded.  Since the tester is limited in speed, an 
external fast clock is provided to the embedded core under 
test to run the LZW decompression engine.  Before the 
embedded core is fabricated, the production scan test 
chains, the production embedded core tester interface, any 
board level testing interfaces, memory testing logic and 
the LZW decompressor are all instantiated. 

The LZW decompressor’s input consists of a 
compressed scan input stream and the internal clock.  This 
internal clock is used to drive the state machine of the 
LZW algorithm.  It also drives the core’s scan clock.  It is 
assumed that this internal clock is faster than the tester’s 
clock. 
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Figure 1.  Test Generation Architecture 
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Figure 2.  Test Application Architecture 

3. LZW Compression 

LZW compression is a dictionary lookup-based 
algorithm.  Two important features are that the dictionary 
is built dynamicall y and the dictionary is included within 
the compressed message.  This scheme works for the same 
algorithm is used for both compression and 
decompression.  The algorithm requires some 
configuration, thus a configurator block is required.  The 
LZW configurator allows for the selection of the LZW 
dictionary size as well as the LZW character size.  Any 
configuration options for compression are made through 
this block and configuration is required prior to the start of 
sending any compressed data. 

Given an LZW dictionary, there are three basic 
memory elements for the LZW algorithm to function.  The 
first memory element is called the “buffer” which consists 
of ‘CE‘ bits.  ‘CE‘ represents the number of encoded or 
compressed character bits.   The second memory element 
is called the “input” which is ‘C D’, the number of decoded 
or uncompressed character bits.  The third memory 
element is called the “output” which it is ‘C E‘ in size.  For 
ill ustration purposes, an example of a 1-bit message 
character is used to explain the operation of the LZW 
algorithm as shown in Figure 3.  Figure 3a shows that the 
first message character is stored in “Buffer” to initiali ze 
this memory element.  The left-most character of the 
“Uncompressed Input” is the contents of the “input” 
memory element.  In Figure 3b, the “Buffer” and “Input” 
pair are checked for existence in the LZW dictionary. 

If there is no compressed code in the dictionary for the 
“Buffer, Input” pair, then “Buffer” is assigned to “Output” 
and “Input” is assigned to “Buffer”.  For example in 
Figure 3b, the “0,1” pair is not in the dictionary.  Thus, 
compressed code “2” is assigned to the “0,1” pair, then 
“Buffer” is assigned to “Output” and “Input” is assigned 
to “Buffer”.  The dictionary reference of “2” is used 
because both “0” an d “1” represent uncompressed 
characters within the compressed output result.  In the 
general case, the first available dictionary entry is one 
greater than the largest uncompressed representation. 

If there is a compressed code in the dictionary, then 
nothing is assigned to “Output” and the compressed code 
is assigned to “Buffer”.  Figure 3e shows that the “0,1” 
pair is in the dictionary.  Therefore, the compressed code 
“2” is assigned to “Buffer” and to “Output”.  Finall y, the 
next uncompressed input character is assigned to “Input”.  

Figure 3f shows an instance where the “Buffer” 
contains a compressed code and the “Buffer, Input” pair, 
(2,1), is added to the dictionary.  Here, the new dictionary 
reference “5”  represents an uncompressed string of “011” 
bits.  The compression process continues until all of the 
uncompressed input characters are read.  After the last 
iteration, Figure 3k, the content of “Buffer” is assigned to 
the “Output”  to complete the compression process and 
generates the resulting compressed output.  There is a 



limit on the number of physical dictionary elements that 
can be included so both the compression and the 
decompression algorithm need to recognize this dictionary 
limit. 
 Compressed 

Output 
Dictionary 

Buffer 
Uncompressed 

Input 

100110101 0   a) 

100110101 0 2(0,1) 0 b) 

00110101 1 3(1,0) 01 c) 

0110101 0 4(0,0) 010 d) 

110101 0  010 e) 

10101 2 5(0,1,1) 0102 f) 

0101 1  0102 g) 

101 3 6(1,0,1) 01023 h) 

01 1  01023 i) 

1 3  01023 j) 

 6  010236 k) 
 

Figure 3.  LZW compression table 
representation. 

“Don’t -Care” mapping is the key to quality 
compression results for test vector sets.  Many methods 
were explored for assigning the “Don’t -Care” bits.  Most 
of these methods focused on pre-processing the “Don’t -
Care” bits first and then applying the LZW compression.  
All of these methods produced 40% to 60% test vector 
compression.  What finally produced the published results 
was mapping the “Don’t -Care” bits of the test patterns, as 
published in [8].  This mapping idea is a dynamic sliding 
window approach where “Don’t -Care” bits are assigned 
while the LZW algorithm is processing the uncompressed 
input bits. 

4. LZW Decompression 

The LZW compression scheme creates the dictionary 
when compressing and reconstructs the dictionary when 
decompressing.  The dictionary references are contained 
within the LZW compressed data stream.  Using the 
compressed results from Figure 3, the operation of the 
LZW decompression algorithm (as shown in Figure 4) 
recreates the original input data stream.  The 
decompression algorithm assigns either the “Input” 

memory element or the “Input” referenced dictionary 
contents to the “Output” memory  element.  When the 
compressed input character represents an uncompressed 
character, the “Input” is directly assigned to the “Output”.  
When the input is a compressed character, this is a 
reference to an uncompressed character string.  This is to 
be sent to the “Output” memory element from the memory 
block. 

The decompression process starts with Figure 4a 
where the “Input” is assigned to “Output”.  Then, in 
Figure 4b the “Input” is assigned to the “Buffer” an d the 
next “Input” character is sent to the output.  Next, the 
“Buffer, Input” pair is added to the LZW dictionary.  
Figure 4d shows that when the compressed input character 
represents a string of uncompressed characters, the 
dictionary entry “2(0,1)” is accessed.  Finally, the 
resulting uncompressed characters, “0,1”, are passed to 
the output. 

When “Input” is a compressed character, as in Figure 
4d-f, the new dictionary entry contains the characters 
represented by “Buffer” and the left -most character 
represented by “Input”.  

Figure 4f shows a special case of LZW where the input 
compressed character is referencing a dictionary entry that 
has not been created yet.  For these cases, the 
uncompressed character to be sent to “Output” contains 
the characters represented by the contents of the “Buffer” 
memory element and the left most character of that 
“Buffer” memory element.  

5. Implementation 

5.1. Decompressor 

 Uncompressed 
Output 

Dictionary 
Buffer 

Compressed 
Input 

010236   0 a) 

10236 0 2(0,1) 01 b) 

0236 1 3(1,0) 010 c) 

236 0 4(0,0) 01001 d) 

36 2 5(0,1,1) 0100110 e) 

6 3 6(1,0,1) 0100110101 f) 
 

Figure 4.  LZW decompression table 
representation. 

To implement a reasonably performing LZW 
decompressor, the dictionary memory needs to contain the 
complete uncompressed character stream for each 
compressed character.  In software LZW algorithm   



implementations both a dictionary memory block and a 
stack memory block are used.  The reason being that it 
minimizes the overall memory requirements.  This, 
however, incurs a performance penalty tradeoff. 
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Figure 5.  LZW decompression architecture. 

Therefore, a performance-driven hardware 
decompressor implementation was created.  Figure 5 
shows the high-level hardware architecture for the 
decompressor.  The process starts when ‘CE’ is full y 
loaded in to its input shifter.  The finite-state-machine 
controls the data-merging muxes to either read the 
dictionary or pass ‘CE’ to the ‘CD’ output shifter.  The 
dictionary will be read when ‘CE’ is a compressed 
character.  The ‘CD’ output shifter data-merging mux will 
be set to pass the memory’s dictionary entry to its output 
shifter.  If ‘CE’ represents an uncompressed character, 
then the ‘CD’ output shifter data-merging mux will be set 
to pass ‘CE’ to its output shifter.  ‘CC’ is used to denote a 
single uncompressed character.  After either case, and if 

there is an available dictionary entry, the memory’s data-
merging MUX is configured to write to that location.  
When creating a new dictionary entry, it is implied that a 
new character is being appended to another character or 
preexisting string of characters.  Thus, a ‘CMLEN’ 
incrementor is needed.  ‘CMLAST’ is equivalent to the 
“Buffer” memory element as discussed when explaining 
the LZW compression and decompression algorithms.  It 
is also used in the creation of new dictionary entries. 

5.2. Embedded Memory 

The LZW decompressor requires a memory block 
from the embedded core to minimize its area overhead.  
The memory requirement is known prior to the 
completion of the embedded core and before integration 
techniques are started.  The memory utili zed for the LZW 
decompressor architecture is shown in Figure 6.  The size 
of the dictionary is ‘N’.  Each memory location contains 
two data elements:  the number of uncompressed 
characters ‘CMLEN’ and the uncompressed characters 
themselves with a length of ‘CMDATA’.  
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Figure 6.  LZW decompression memory 
utilization of the core memory blocks. 

Since it is desirable to reuse any memory elements 
from the circuit under test, it is possible that it can be 
integrated in the same fashion as memory BIST testing.  
Figure 6 shows how the control signals for the memory 
devices can be added in order to not impede normal circuit 
operation.  Normal memory BIST adds muxes in front of 
the memory control signals.  Another mux can be added 
on to the memory BIST side to enable LZW 
decompression.  As for the addition loads on the outputs, a 
single buffer can be added to isolate the memory BIST 
and LZW decompression output loads.  This would 
minimize the impact of the production test circuitry. 



6. Results 

A software program was developed for the LZW 
compressor.  The ISCAS89 benchmarks were easily 
applied as the input to this tool; however, the ITC99 
benchmarks required test insertion and test pattern 
generation prior to compression.  To accomplish this 
Synopsys dc_shell, DFT-compiler and TetraMAX tools 
were used. 

With the LZW compression and an efficient technique 
for assigning the “Don’t -Care” bits, we first genera ted 
compression results that allowed comparison to other 
documented compression techniques.  Table 1 shows 
comparison results for the LZW, LZ77 [8] and RLE [11] 
compression techniques. 

Compression Ratios Test 
LZW LZ77 RLE 

s13207f 81.69% 81.45% 81.30% 
s15850f 76.26% 61.90% 65.83% 
s38417f 70.60% 61.56% 60.55% 
s38584f 75.14% 59.97% 61.13% 
s9234f 70.67% 37.66% 44.96% 

 Table 1.  Compression Comparison Results 

The LZW compression result generated above used a 
64-bit dictionary entry and a 7-bit character 
representation.  s13207f, s15850f and s9234f all have a 
1024 dictionary size while s38417f and s38584f have a 
2048 dictionary size.  All of these tests are based on a 
single scan chain input and output. 

After attaining quality compression results, the 
architecture required to implement the LZW 
decompressor became the focus.  Using the architecture as 
described, Table 2 shows attainable performance results. 

Decompress Clock Test Dict.  
Size 4x 8x 10x 

s13207f 1024x64 56.19% 67.69% 70.85% 
s15850f 1024x64 51.27% 62.79% 65.71% 
s38417f 2048x64 43.81% 55.46% 57.99% 
s38584f 2048x64 49.34% 60.83% 63.80% 
s9234f 1024x64 45.75% 57.34% 59.97% 
 Table 2.  Download Performance 
Improvement Results and Memory Sizes 

Even with a clock four times faster than the tester 
clock rate, performance improvements of about only 50% 
were attainable.  With a ten times faster clock relative to 
the tester clock rate, the performance is a 10% lesser 
difference from the compression rate.  The performance 
improvement can match the compression rate; however, 
the dictionary size must be increased to accommodate. 

Many more of the ISCAS89 and ITC99 test benches 
were used to verify algorithm effectiveness.  Table 3 
shows selected results from both test bench suites.  For 
each test bench the percentage of “Don’t -Care” bits within 

each test is noted.  In general, the amount of compression 
is proportional to the “Don’t -Care” data ratio.  Also in 
Table 3, the uncompressed test bench size and the 
resulting LZW dictionary size is reported.  Upon 
examining these results, it was observed that the growth of 
the dictionary size is a factor of powers of 2 as the test 
size grows larger. 

Test Don’t  
Cares 

Orig. 
Size 

Comp-
ression 

Dict. 
Size 

s13207f 93.15% 165200 81.69% 1024 
s15850f 83.56% 76986 76.26% 1024 
s35932f 35.30% 28208 72.65% 128 
s38417f 68.08% 164736 70.60% 2048 
s38584f 82.28% 199104 75.14% 2048 
s5378f 72.62% 23754 59.00% 1024 
s9234f 73.00% 39273 70.67% 1024 
itc b04 87.34% 46980 80.86% 512 
itc b05 97.95% 128554 86.76% 256 
itc b07 82.14% 19209 80.27% 512 
itc b12 92.01% 152750 83.19% 1024 
itc b13 90.06% 23986 84.20% 512 

Table 3.  ISCAS89 and ITC99 Benchmark 
Results 

LZW Character Size in Bits  (CC) Test 
1 4 7 10 

s13207f 75.21% 80.10% 79.50% 0.00% 
s15850f 59.98% 74.57% 74.78% 0.01% 
s38417f 50.58% 61.85% 65.54% 0.00% 
s38584f 52.31% 61.50% 64.08% 0.00% 
s9234f 54.17% 67.84% 69.44% 0.00% 
 Table 4.  Compression versus LZW 
Character Size 

Dictionary Entry Size in Bits (CMDATA) Test 
60 123 250 505 

s13207f 79.50% 88.02% 91.56% 92.53% 
s15850f 74.79% 80.89% 81.06% 81.06% 
s38417f 65.54% 66.47% 66.47% 66.47% 
s38584f 64.08% 65.26% 65.26% 65.26% 
s9234f 69.44% 73.54% 73.88% 73.88% 

 Table 5.  Compression versus Entry Size 

Table 4 shows the effect of LZW character size given 
compression.  The data was generated with N = 1024 and 
CMDATA = 63.  The results show that the “Don’t -Care” 
assignment improves as the character size increases.  At 
about a 10-bit character size with a dictionary of size N = 
1024, there are no more compress codes available.  Thus 
poor compression results are observed. 

Table 5 shows the effect of the LZW dictionary entry 
size given compression.  The data was generated with N = 
1024 and CC = 7.  The results show that the larger the 
dictionary entry, the higher the compression. 



 CMDATA Test Longest 
String 60 123 505 

s13207f 483 69.30% 77.99% 82.33% 
s15850f 126 64.60% 70.63% 70.73% 
s38417f 91 55.38% 56.25% 56.25% 
s38584f 91 54.07% 55.11% 55.11% 
s9234f 189 59.34% 63.34% 63.63% 
 Table 6.  Performance versus entry size. 

Table 6 shows the effect of the same tests as in Table 5 
except performance improvement metrics were generated 
with a 10x internal clock relative to the ATE tester clock.  
However, Table 6 has the longest string column, which 
shows why both the compression and the performance 
increase and then level out when the dictionary entry 
increases.  Given the LZW compression, each test bench 
generated a longest uncompressed string representation.  
Until the dictionary entry size is large enough to 
incorporate the longest string, sub optimal compression 
and performance is experienced.  However, the memory 
for any given embedded core may be the limiti ng factor.  
For example, if s13207f is an embedded core and optimal 
compression was desired, the following parameters of N = 
1024, CC = 7 and CMDATA >= 483 are needed.  This causes 
a 1024 by 490-bit memory requirement.  

7. Conclusion 

A technique for high compression ratio was described 
which exploits the high number of “Don’t -Care” bits that 
occur in test sets. This technique reduced the test set size 
in terms of number of bits. A fast hardware decompressor 
is also necessary and thus designed to reduce the test set 
download time. In addition, reusing BIST–based 
embedded memory cores or by making this hardware 
compression engine part of normal operation, can further 
reduce or eliminate the chip area overhead.  Engineering 
tradeoffs such as the dictionary entry size, uncompressed 
character size and longest support compressed string are 
required to optimize performance and minimize area.  The 
benchmark results show that good results can be achieved 
by selecting a reasonable dictionary size, dictionary entry 
width and character width. 
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