
Test Pattern Compression Using Prelude Vectors In
Fan-out Scan Chain with Feedback Architecture

Nahmsuk Oh, Rohit Kapur, T. W. Williams, and Jim Sproch
Synopsys Inc., 700 E. Middlefield Road, Mountain View, CA 94043

{nahmsuk, rkapur, tww, jims}@synopsys.com

Abstract
This paper proposes a new test compression technique
that employs Fan-out SCAN chain with Feedback
(FSCANF) architecture. It allows us to use prelude
vectors to resolve dependencies created by fanning out
multiple scan chains from a single scan-in pin. This paper
describes the new proposed architecture as well as the
algorithm that generates compressed test vectors using
vertex coloring algorithm. The distribution of specified
bits in each test pattern determines the compression ratio
of the individual test pattern. Therefore, our technique
optimizes the overall compression ratio and shows higher
reduction in test data and application time than previous
techniques, which use the extreme case of serializing all
the scan chains in the presence of conflicts across the fan-
out scan chains. The FSCANF architecture has small
hardware overhead and is independent of scan cell orders
in the scan chains. Experimental results show that our
technique significantly reduces both the test data volume
and test application time in six of the largest ISCAS 89
sequential benchmark circuits compared to the previous
techniques.

1. Introduction

DFT technology has matured over the years with Scan
Design becoming common to most design flows. The test
industry is now focused on optimizing the scan design
techniques to minimize the cost of test as measured by the
test data volume and more importantly the test application
time. The time taken to apply a scan test pattern is
dominated by the shift operation of the scan chain. To
reduce this time, the general approach taken is to create
more parallel scan chains. Since the number of flip-flops
in the design is a constant, more parallel scan chains
means fewer flip-flops per scan chain, resulting in shorter
chains and thus shorter application time. In the traditional
approaches, however, the number of available I/O pins on
the chip limits the number of parallel scan chains.
 One notable approach is that of encoding a test pattern
into a seed, which is applied through fewer inputs and the
decoding process on chip (possibly LFSR based), could
transmit the data to many more scan chains than the
physically supported though the I/O’s of the chip. It
allows us to reduce not only test application time but also
test data volume. Figure 1.1(a) is a pictorial representation
of this concept. This approach relies on considerable
amount of DFT overhead to solve the problem.
 Another approach is the fan-out scan chain
architecture, in which a single scan input fans out to
multiple chains (Figure 1.1 (b)). This approach creates
significant dependencies in values across scan chains
because the same vector is shifted into those scan chains.

For example, the benefits of this approach come when the
dependencies in the values of the scan chains do not
interfere with the requirements of the test patterns.
However, when conflicts are encountered across scan
chains, a very conservative configuration is so far adopted
to provide the problematic test patterns - All the scan
chains are serialized. This approach has significant
benefits because of its simplicity in DFT. However, the
benefits are dependent on the ability to create test patterns
that do not require conflicting values from scan chains
that are dependent on each other because of the fan-out of
the scan inputs.

Few inputs

M any scan chains

Decom pressor

Scan inputs

Scan chains

CUT

(a) (b)

CUT

Figure 1.1. (a) Decompression based approaches for short
parallel scan chains. (b)Fan-out scan chain structure to create
shorter scan chains with a limited number of scan inputs.

In this paper, we improve on the compression technique
that uses fan-out scan chains and create a solution in
which dependencies caused by the fan-out scan chain
structure do not interfere in the application of test
patterns. Conflicts across the fan-out scan chains are
handled by using prelude vectors whose purpose is not to
detect faults but to resolve conflicts in a test pattern. The
number of prelude vectors is a function of the number of
conflicts in an individual test pattern: fewer prelude
vectors for fewer conflicts, and more prelude vectors for
more conflicts. Therefore, we avoid the extreme solution
of serializing all the scan chains to resolve conflicts.

2. Previous Works

A technique using a single input supporting multiple scan
chains was proposed in [1]. The number of scan chains is
equal to the number of independent circuits, but this
technique requires multiple scan chains to be in
independent circuits.
 The Illinois Scan Architecture (ILS) shown in Figure
2.1 [2] overcomes this limitation by using two modes of
operation. The first mode is called the broadcast scan
mode in which the same vector is shifted into multiple
scan chains through one scan-in pin. This is similar to the
fan-out scan chain structure shown in Figure 1.1 (b). The

1530-1591/03 $17.00 2003 IEEE

second mode is called the serial scan mode, in which all
the scan chains are connected in series. The serial scan
mode is used whenever the broadcast scan mode cannot
be used due to conflicts across multiple scan chains. Since
the serial scan mode requires a full scan test pattern, it is
very important to reduce the number of test patterns
applied in the serial scan mode. In other words, reducing
the number of conflicts across multiple scan chains is a
key factor for test compression, and heavily dependent on
the scan chain configuration, i.e., the number of the scan
chains and the assignment of scan cells to the scan chains.
Finding the optimum scan chain configuration that will
produce the minimum number of test cycles is an NP-hard
problem [2]. The ILS uses a heuristic algorithm to achieve
optimal mapping of scan cells to scan chains, but requires
scan chain reordering. Reordering scan chains is very
expensive because it requires changing the place and
route information of the scan cells and may change the
timing of the circuit [3]. Reconfiguring ILS with a
different scan chain length was proposed in [4] to avoid
reordering scan chains and reduced the number of
undetectable faults in the broadcast scan mode, but yet
didn’t solve the fundamental problem of breaking
dependencies across multiple scan chains in the fan-out
scan chain architecture.

sc
a
n
 c
h
a
in
 1

sc
a
n
 c
h
a
in
 3

sc
a
n
 c
h
a
in
 2

M ISR

sc
a
n
 c
h
a
in
 1

sc
a
n
 c
h
a
in
 3

sc
a
n
 c
h
a
in
 2

scan-in scan-in

scan-out scan-out

(a) (b)

Figure 2.1. Illinois scan architecture: (a) broadcast scan mode,
(b) serial scan mode.

3. Fan-out Scan Chain with Feedback
(FSCANF) Architecture

3.1. Basic Fan-out of Scan Chains
 Let us describe the basic concept of the technique with
a small design as an example. The design consists of three
scan chains that have three scan cells in each as shown in
Figure 3.1. The input pins of the scan chains are tied to
one input pin, which is a scan-in pin. A scan-in vector is a
vector that is shifted into the scan-in pin to fill in the scan
cells with the required logic values to detect faults. A test
cube is a two dimensional matrix representation of a test
pattern in which each element of the test cube represents a
scan-in logic value of one scan cell of the design. In this
paper, each column of the test cube represents one scan
chain, and the nth row of the test cube represents the nth
scan cells from the input pins of the scan chains. In this
example, a test cube is a 3 by 3 matrix.
 Suppose three of the nine scan cells are specified bits
and the rest of the scan cells are don’t cares as shown in

Figure 3.1 (a). A test cube for this pattern is shown in
Figure 3.1 (b). Since each row of the test cube has only
one specified bit, a scan-in vector 011 can fill in the
specified bits successfully with the correct logic values as
illustrated in Figure 3.1 (c) and Figure 3.1 (d). The rest of
the bits are don’t cares and filled with the same values as
the specified bits in the same rows.

0

X 1

X

X

X

X X1

sc3sc2sc1

0

1 1

0

1

0

1 11

sc3sc2sc1

0

X 1

X

0

X

X XX

sc3sc2sc1
?

(a) (d) (e)

sc3sc2sc1
011

(c)

scan-in

0 X X

X X 1

X 1 X

(b)

t = 0 t = 3

Figure 3.1. A 3 by 3 test cube as an example.

However, consider the test cube in Figure 3.1 (e). Two
different logic values are specified in the second row of
the cube, i.e., there exists a conflict across two scan chains
in the second row, and no vector shifted into the scan-in
pin can specify the required values. We call this row an
irregular row of the test cube, because different logic
values, 0 and 1, exist in the same row.

3.2. Breaking Dependencies with Prelude Vectors

0 1 0 1 0 1

configuration
register

scan-in

M ISR

CCLK

SCLK

Figure 3.2. The FSCANF architecture.

The FSCANF architecture shown in Figure 3.2 allows for
the scan chains to be loaded through one of the two input
paths: loading path and feedback path.
� The loading path supplies values directly from the

scan-in pin to the scan chains connected.
� The feedback path supplies values through a XOR

filter that allows for the values to be passed through
or inverted depending on the pre-existing values in
the scan cells of the associated chain.

Furthermore, the FSCAF architecture allows an individual
scan chain to select filtered values or direct values
through a configuration register. The ith bit of the
configuration register is connected to the multiplexor of
the ith scan chain and selects the input path of the scan

chain. The configuration register is loaded by separate
clocking signal CCLK. It might have a reset pin for fast
restoration of broadcast mode.
 The filtering mechanism is dependent on pre-loaded
values in the scan chains. These values are loaded as a
prelude vector into the scan chains. The values in the
prelude vector perform XOR operation on the next scan-
in vector in selected scan chains to load conflicting values
in irregular rows. Thus, the prelude vector is the vector
whose purpose is not to detect faults but to load certain
values onto the scan chains so that the next scan-in vector
can specify bits in irregular rows.

1 0 1 0 1 0

0
0
0

config
reg

v0 = 010

0 1 0

0

1

0

1 0

0

1

0

1 0

0

1

0

1 0

0
0
0

config
reg

s0 s1 s2

s0 s1 s2

1 0 1 0 1 0

config
reg

c0 =000

s0 s1 s2

0

1

0

1 0

0

1

0

1 0

0

1

0

1 0

0
0
0

config
reg s0 s1 s2

c1 = 100

0

1

0

1 0

0

1

0

1 0

0

1

0

1 0

1
0
0

config
reg

v1 = 001

s0 s1 s2
0

0

1

1 0

0

0

1

1 0

0

1

1

1 0

1
0
0

config
reg s0 s1 s2

001 010 = 011

(a) (b)

(c) (d)

(e) (f)

SCLK

SCLK

Figure 3.3. Conflict resolution example.

 Let us illustrate how this mechanism works by taking
the same example shown in Figure 3.1 (e). In the first
stage, we load a configuration vector c0 = 000 to the
configuration register by clocking CCLK as shown in
Figure 3.3 (a). In this paper, we assume that the rightmost
bit of the vector is first shifted into the scan chain and the
leftmost bit last shifted into the scan chain. It enables us
to load the prelude vector v0 = 010 into the scan cells by
clocking SCLK as shown in Figure 3.3 (b). After v0 is
loaded into the scan cells, the scan cells are filled with the
same logic values as the specified bits. A snap shot of the
scan cells after loading v0 is shown in Figure 3.3 (c). In
the second stage, we clock CCLK again and load
configuration vector c1 = 100 into the configuration
register. In Figure 3.3 (d), the bit on the top of the

configuration register is 1 (the leftmost bit of c1), which
configures scan chain s2 with the feedback path. The scan
chain s0 and s1 are configured with the loading paths.
Therefore, in s2, an XOR operation is performed on the
scan-in vector v1 with the previously loaded prelude
vector v0, and the new values are shifted into s2 as shown
in Figure 3.3 (e). Since the second bit of the prelude
vector v0 = 010 is 1, the second bit of the scan-in vector v1
= 001 in s2 is inverted to 1, which successfully specifies
the required logic value in the second scan cell of s2.
Thus, we can specify different logic values in the irregular
row and fill in the scan cells with the required specified
values as shown in Figure 3.3 (f).
 In our technique, a compressed test vector of a test
pattern is one of the following: (1) a scan-in vector (2) a
configuration vector and a prelude vector (3) a
configuration vector and a scan-in vector. In this example,
two test vectors, (v0 c0) = 010 000 and (v1 c1) = 001 100,
were obtained, and the total number of bits is 12. Since
the number of scan cells is 9, we did not reduce the size of
the test pattern in this small example. However, the
reduction ratio would be higher if the scan chain contains
more cells in it. For example, if each of three scan chains
contains 100 cells, the size of the test vector is 103 (3 bits
for the configuration vector and 100 bits for the scan-in
vector). There are 300 cells in the CUT, thus, the
reduction is 31% with a prelude vector (1 – 2*103/300).
Furthermore, if no irregular row exists in the test cube, the
reduction would be 66% (1 – 103/300). This illustrates
how the compression ratio changes from one pattern to
another based on the distribution of specified bits.

3.3. Test Vector Computation Algorithm
In general, multiple prelude vectors are required to
specify different values in the multiple irregular rows of a
test cube. The prelude vector computation algorithm is
shown in Figure 3.4. The conflict graph described in the
algorithm is the graph where the vertices represent the
scan chains, and the edges between two vertices shows
that two scan chains have different logic values in the
same irregular row. A minimum vertex coloring of that
graph yields the minimum number of prelude vectors that
are needed.

1 /* construct a conflict graph */
2 Identify irregular rows in the test cube
3 For each irregular row
4 If scan chain sk and sl have different specified bits,
5 Add an edge (sk, sl) to the conflict graph
6
7 /* apply the vertex coloring algorithm */
8 Apply the vertex coloring algorithm to the graph and number the

colors �0, �1, …, �m

9
10 For each color �i from �0 to �m-1 {
11 /* construct vi */
12 For each scan chain sj with color �i {
13 Specify bits in scan-in vector vi with the specified bits in sj
14 }
15 /* modify vi-1 */
16 vi-1 = vi-1

� vi, if i � 0

17 /* construct configuration vector ci */
18 For each scan chain sj with color from �0 to �i-1 if i � 0 {
19 Put 1 in the bit indicating sj in configuration vector ci

20 }
21 }

Figure 3.4. The prelude vector and scan-in vector computation
algorithm.

1 X X

X 0 1

0 1 X

s0 s2s1
s2

s0s1

1 X X

X 0 1

0 1 X

s0 s2s1

(a) (b) (c)

Figure 3.5. (a) An example test cube that has multiple irregular
rows and illustrates constructing a conflict graph.

 Let us explain the algorithm with the same example
previously shown in Figure 3.1, but the test cube has one
more specified bit in the third row as illustrated in Figure
3.5 (a). Figure 3.5 (b) shows the two irregular rows that
are boxed in the test cube (line 2 of the algorithm). The
irregular row in the second row has two different logic
values between s1 and s2. Thus an edge connecting vertex
s1 and s2 is drawn in the conflict graph as illustrated in
Figure 3.5 (c) (line 3 – 5 of the algorithm). Similarly, the
irregular row in the last row draws an edge connecting s0
and s1 in the graph. The vertex coloring algorithm colors
the graph two colors: s0 and s2 with color �0 (gray) and s1
with �1 (black).

1
X
0

s0

X
1
X

s2

1
1
0

v0

X
0
1

s1

0
0
1

v1

1
1
0

v0

0
0
1

v1

1
1
1

v0

1
1
1

v0

0
0
0

c0

0
0
1

v1

1
0
1

c1

(a) (b) (c) (d)

Figure 3.6. (a) The scan-in vector v0 is obtained from s0 and s2
of the test cube shown in Figure 3.1 (a). (b) v1 is obtained from
s1. (c) v0 is recomputed by performing XOR operation on it with
v1. (d) The final two test vectors are obtained: (v0 c0) = 111 000,
(v1 c1) = 001 101.

 Now, in the lines 10-14 of the algorithm, we pick color
�0 (i = 0) and construct scan-in vector v0 from the
specified bits in s0 and s2 that have the same color �0
(Figure 3.6 (a)). Since i = 0, the lines 15 - 20 are skipped.
In the next step, we pick color �1 (i = 1) and build scan-in
vector v1 as shown in Figure 3.6 (b). The previous vector
v0 is recomputed in line 16. The resulting v0 is shown in
Figure 3.6 (c). Since s0 and s2 were colored �0 (j = 0 and
2), in lines 17 - 20 of the algorithm, we construct a
configuration vector c1 in such a way that s0 and s2 are
with the feedback path. Finally, Figure 3.6 (d) shows the
resulting two test vectors obtained.
 Figure 3.7 illustrates the state of the scan cells after
loading the prelude vector v0 and the scan-in vector v1
shown in Figure 3.6 (d). The required specified bits are
shown again in Figure 3.7 (a). Since the configuration

vector c0 is 000, the scan-in vector v0, 111, is loaded onto
the scan chains with the loading paths, and the final
values are shown in Figure 3.7 (b). Then, when we load
v1, 001, an XOR operation is performed on v1 with the
previous values (111) in s0 and s2 because the
configuration vector c1 = 101. The final values after
loading v1 in the scan cells are shown in Figure 3.7 (c),
and we can observe that the required bits are all specified
correctly with the desired values.

1 X X

X 0 1

0 1 X

1 1 1

1 1 1

1 1 1

1 0 1

1 0 1

0 1 0

s0 s2s1 s0 s2s1 s0 s2s1

To be XORed with v1

(a) (b) (c)

Figure 3.7. (a) The test cube with the specified bits circled. (b) A
snap shot of the scan cells after loading the prelude vector v0.
(c) A snap shot after loading the scan-in vector v1. All the
specified bits have required logic values.

 As shown in this section, the distribution of the
specified bits in test cubes determines the number of
prelude vectors. If the number of specified bits is small in
the test patterns, the compression ratio will be high
because the probability of having irregular rows is very
low, and few prelude vectors are needed. On the other
hand, if the number of the specified bits is large, the
compression ratio will be low because the probability of
having one of more irregular rows is very high, thus the
number of prelude vectors will increase.

1 0 1

0 0 1

0 1 1

s0 s2s1

s2

s0s1

1
0
0

s0

1
0
0

v0

0
0
1

s1

0
0
1

v1

1
0
0

v0

0
0
1

v1

1
0
1

v0

1
0
1

v0

0
0
0

c0

1
1
0

v1

1
0
0

c1

1 0 1

0 0 1

0 1 1

s0 s2s1

(a) (b) (c)

(d) (e)

(g)

1
1
1

s2

1
1
1

v1

0
0
1

v1

1
1
1

v2

1
1
0

v1

1
1
1

v2

1
1
0

c2

(f)

,

,

Figure 3.8. (a) A test cube with every bit specified. (b) Three
irregular rows boxed. (c) A corresponding conflict graph. The
minimum number of colors is three (white, gray, and black).
Therefore, two prelude vectors and one scan-in vector are
required. (d) v0 is obtained from s0. (e) v1 is obtained from s1,
and v0 is recomputed. (f) v2 is obtained, and v1 is recomputed.
(g) The final three test vectors: prelude vector v0 and v1, and
scan-in vector v2, and three associated configuration vectors.

1 1 1

0 0 0

1 1 1

s0 s2s1

0 1 1

1 1 1

1 0 0

s0 s2s1

1 0 1

0 0 1

0 1 1

s0 s2s1

XORed with v0 XORed with v1

(a) (c)(b)

Figure 3.9. (a) A snap shot of the scan cells after loading v0. (b)
A snap shot after loading v1. (c) A snap shot after loading v2.

The worst case scenario is to specify every bit in a test
cube. Our technique achieves this by having multiple
prelude vectors. An example is shown in Figure 3.8, in
which each of the steps of the algorithm is shown. We can
specify all the bits in the test cube by using two prelude
vectors. Snap shots of scan cells at each state after loading
prelude vectors are shown Figure 3.9.

3.4. Reducing Test Application Time by Loading
Configuration in Parallel

0 1 0 1 0 1

 config.
register

scan-in

M ISR

shift
register

capture clock

configuration
vector in

Figure 3.10. FSCANF architecture for parallel configuration
load.

A configuration vector for a next vector can be loaded in
parallel with a prelude vector or a scan-in vector by
adding one more shift registers next to the configuration
register as shown Figure 3.10. When a capture clock is
applied to all the scan cells, it is also applied to the
configuration register, which transfers the value in the
shifter register to the configuration register. Therefore, the
new configuration is set up for the next vector to be
shifted in, and test application time to load configuration
vectors can be saved.

4. Experimental Results

In this section, we take the largest of the ISCAS 89
sequential benchmark circuits, and demonstrate how
much test data and test application time can be reduced.
Table 4.1 shows the characteristics of the six benchmark
circuits used in our experiment. The number of scan cells

is the number of sequential elements in the circuit. It also
shows the average percentage of the specified bits in test
patterns, which were obtained by one of the commercial
ATPG tools with the highest pattern merge effort. With
this highest merge effort option, the ATPG tool
repeatedly compresses the test patterns, which often
reduces 90% of the original patterns. The number of
patterns and the percentage of specified bits shown in this
table are obtained after this ATPG tool compression.

Table 4.1. Benchmark circuit characteristics.
Circuit name s13207 s15850 s38417 s38584 s5378 s9234

Number of scan cells 638 534 1636 1426 179 211
Number of patterns 117 107 417 125 113 128

Specified bits 13.1% 20.1% 6.3% 18.2% 25.2% 26.3%

 We show two sets of experimental data: test data
volume reduction and test application time reduction. In
the test data volume reduction, we obtain the total test
data including configuration vectors and compare it with
the original test data. In test application time reduction,
we obtain the total elapsed time to test the circuit that
employs the FSCAF architecture with parallel
configuration loading, and compare it with original test
time. In contrast to the test data volume reduction, the test
application time includes only the elapsed time applying
test vectors since configuration vectors can be applied to
CUT in parallel with test vectors. The equations to
compute the compression ratio for our technique are:

%100)
data test original

sion vectorconfigurat vectorspreludein vectors-scan1(

:reductionvolumedataTest

�
��

�

%100)
patterns test original applying of test time

 vectors)preludein vectors-(scan applying of test time1(

:reductionn timeapplicatioTest

�

�

�

.

For comparison, we also compute test data and
application time reduction of ILS, in which one full scan
vector is fed into scan chains in the serial scan mode
whenever there is one or more irregular rows in the test
patterns. Because we assume that the scan chains already
exist in the CUT and scan chain reordering is prohibited,
the data shown for ILS do not use the optimal mapping
method [2] that maps flip flops to scan chains in such a
way that the number of serialized patterns is minimized.
 The test data volume reduction depends on the number
of scan chains. As the number of scan chains increases,
the scan chain length decreases resulting in reducing the
test data volume. However, the probability of irregular
rows increases because each row of the test cube has more
scan cells. Thus, the number of prelude vectors as well as
the size of the configuration vector increases. For
example, as shown in Figure 4.1, the test data volume
reduction percentage increases as the number of scan
chains increases until it reaches a peak where the
increased number of prelude vectors and configuration
vectors offsets the reduction of the volume of scan-in
vectors. If the number of scan chains keeps growing, the
test data volume reduction percentage starts decreasing.
On the other hand, fewer scan chains show better results
in ILS because the increased number of irregular rows
increases the number of full scan vectors in broadcast
mode which are required to feed all scan cells in series.

0%

10%

20%

30%

40%

4 8 12 16 20 32

Number of scan chains

Te
st

 d
at

a
re

du
ct

io
n

0%

10%

20%

30%

40%

50%

60%

4 8 12 16 20 32
Number of scan chains

Te
st

 ti
m

e
re

du
ct

io
n

FSCANF ILS

Figure 4.1. Test data and application time reduction of s38584
in FSCANF and ILS with different number of fan-out scan
chains. The FSCANF shows a bell-shape curve with the peak at
16 scan chains in test data volume reduction and a continuously
increasing curve in test application time reduction.

 The test application time reduction does not depend on
the size of configuration vectors, and the reduction
percentage increases as the number of scan chains grows
in our technique. Therefore, the test time is reduced the
most with the largest number of scan chains. On the other
hand, the previous technique still suffers as the number of
scan chains increases because, anyway, the full scan
vector is fed into the scan chains in series in the broadcast
mode. Thus, our technique shows much better
performance in terms of reducing test time.
 Changing the number of scan chains in the circuits, we
obtained the test data and test application time reduction
percentage of our technique and previous technique, and
show the results in Table 4.2 and Table 4.3.
 The percentage of specified bits in test patterns also
plays an important role in reducing the test data volume as
well as test time. Our technique shows better results than
the previous technique as the number of specified bits
increases. For example, specified bits of test patterns in
s38417 are only 6.7%. Our technique reduces 74.8% of
test data, but the previous technique also reduces 64.5%,
which shows only 10% difference. However, consider
s5378 whose specified bits in test patterns are 25.2%. The
highest reduction is 10.6% in the previous technique, but
our technique reduces 56.5% of the test data, which is five
times higher than the previous technique.

Table 4.2. Test data reduction in different number of fan-out
scan chains.

Number of scan chains
Circuit technique

4 8 12 16 20 32

FSCANF 46.5% 57.7% 58.1% 53.9% 51.3% 37.0%
s13207

ILS 35.9% 35.0% 29.2% 10.3% 20.2% 8.6%

FSCANF 29.8% 36.8% 34.6% 33.0% 23.2% -6.7%
s15850

ILS 25.9% 21.5% 21.6% 19.1% 14.5% 16.3%

FSCANF 56.2% 69.2% 72.0% 73.9% 74.8% 73.3%
s38417

ILS 55.2% 61.8% 64.5% 64.4% 60.9% 63.5%

FSCANF 20.4% 35.3% 37.5% 38.1% 33.5% 26.8%
s38584

ILS 9.6% 10.3% 8.1% 10.1% 5.2% 6.7%

FSCANF 38.8% 55.2% 37.6% 23.2% 0.2%
s5378

ILS 10.6% 0.8% 0.8% 0.8% 0.8%

FSCANF 27.0% 31.2% 17.2% 5.3% N/A
s9234

ILS 12.9% 4.8% 3.0% 3.6% 3.6%

Table 4.3. Test application time reduction in different number of
fan-out scan chains.

Number of scan chains
Circuit technique

4 8 12 16 20 32

FSCANF 47.2% 60.5% 64.3% 65.5% 68.4% 74.6%
s13207

ILS 35.9% 35.0% 29.2% 10.3% 20.2% 8.6%

FSCANF 31.1% 42.3% 46.8% 52.9% 54.4% 62.4%
s15850

ILS 25.9% 21.5% 21.6% 19.1% 14.5% 16.3%

FSCANF 56.4% 70.0% 73.6% 76.7% 78.8% 82.4%
s38417

ILS 55.2% 61.8% 64.5% 64.4% 60.9% 63.5%

FSCANF 21.0% 37.5% 42.5% 46.5% 47.0% 56.3%
s38584

ILS 9.6% 10.3% 8.1% 10.1% 5.2% 6.7%

FSCANF 41.8% 55.2% 62.6% 65.0% 67.9%
s5378

ILS 10.6% 0.8% 0.8% 0.8% 0.8%

FSCANF 30.5% 44.5% 48.0% 54.1% 59.1%
s9234

ILS 12.9% 4.8% 3.0% 3.6% 3.6%

 Note that our data shown for the previous technique
may not be the best representation of the technique since
we used a different ATPG tool, and the scan chain order
is different from theirs. However, our technique can still
enhance the compression ratio of the previous technique
as long as it has test patterns in the serial scan mode
because we can compress those serial patterns by using
prelude vectors.

5. Conclusion

The fan-out scan chain structure is attractive in terms of
reducing test data and application time because one test
vector can fill in multiple scan chains at the same time.
However, its usage is limited because it cannot be used if
any conflicts exist across the fan-out scan chains.
Previous techniques overcome this limitation by
connecting all scan chains in series. Our proposed
technique avoids this extreme case of serializing the scan
chains. The compression ratio is optimized for individual
patterns based on the distribution of specified bits in the
pattern. The experimental results show that our technique
significantly reduces test data volume as well as test
application time.

6. References
[1] K-J. Lee, J-J. Chen, and C-H. Huang, “Using a single input

to support multiple scan chains,” Dig. Tech. Papers, 1998
IEEE/ACM Int. Conf. Computer-Aided Design, Nov. 1998,
pp. 74-78.

[2] I. Hamzaoglu and J. Patel, “Reducing test application time
for full scan embedded cores,” Dig. Papers, 29th Int. Symp.
Fault-Tolerant Comp., June 1999, pp. 260-267.

[3] S. Makar, “A layout-based approach for ordering scan chain
flip-flops,” Proc. of the Int. Test Conf., October 1998, pp.
341-347

[4] A Pandey and J. Patel, “Reconfiguration technique for
reducing test time and test data volume in Illinois scan
architecture based designs,” Proc. of IEEE VLSI Test Symp.,
April 2002.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

