
Virtual Compression through
Test Vector Stitching for Scan Based Designs

Wenjing Rao �
CSE Department

University of California, San Diego
La Jolla, CA 92093
wrao@cs.ucsd.edu

Alex Orailoglu
CSE Department

University of California, San Diego
La Jolla, CA 92093
alex@cs.ucsd.edu

ABSTRACT
We propose a technique for compressing test vectors. The tech-

nique reduces test application time and tester memory requirements
by utilizing part of the predecessor response in constructing the
subsequent test vector. An algorithm is provided for stitching test
vectors that retains full fault coverage while appreciably reducing
time and tester requirements. The analysis provided enables sig-
nificant compression ratios, while necessitating no hardware out-
lay whatsoever, making the technique we propose particularly suit-
able for SOC testing. The test time benefits necessitate no MISR
utilization, ensuring no consequent aliasing loss. We examine a
number of implementation considerations for the new compression
technique and we provide experimental data that can be used to
guide an eventual commercial implementation. Experimental data
confirms the significant test application time and tester memory re-
ductions.

1. INTRODUCTION
The increasing ability to fabricate larger and denser chips is fu-

elling an electronics revolution, providing the ability to place ever
increasing functionality on SOCs. Yet our fabrication capabilities
are increasingly checkmated by onerous test requirements as den-
sity results in a necessity to consider an increased number of pos-
sible faults. A most critical concern is the decrease in the ratio of
pinouts to area and chip functionality, thus sharply limiting observ-
ability and controllability. Traditionally the decrease in controlla-
bility and observability has been resolved through the insertion of
scan chains. Nonetheless, the size and quantity of scan chains has
forced a dramatic increase in test application time. The situation
is compounded by the sheer quantity of test data, itself partially
an outcome of the large chip size, forcing an overspecification in
a large number of scan cells. While the aforementioned constitute
problems in all state-of-art chips, they particularly exacerbate our
ability to manufacture SOCs which constitute the forefront of the
technology envelope nowadays, both in terms of design and fabri-
cation.

Not only does scan insertion help alleviate the controllability and
�
The work of the first author is partially supported by a Cal-(IT)

�
Conexant Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DATE 2003, March 3–7, 2003, Messe Munich, Germany.
Copyright 2003 ACM 0-89791-88-6/97/05 ...$5.00.

the observability problems, but it furthermore obviates the neces-
sity to apply the test vectors in a particular order, as it essentially
turns the sequential ATPG problem into a combinational one. The
lack of order in test vector application constitutes an aspect ex-
ploitable in test compression literature. Particularly, in combination
with the sizable number of unspecified bits in test cubes, especially
prevalent in large SOCs, stitching the test vectors together in a ben-
eficial order promises to provide significant reductions both in test
vector application time and in test volume, a significant issue by it-
self for today’s costly ATEs, achieving these reductions essentially
at no hardware cost.

A number of challenges though need to be addressed so as to
deliver the aforementioned benefits. Perhaps, the more challeng-
ing one is an inherent dependency in that the stitching needs to tie
together the response of the previous test stimulus with the subse-
quent stimulus rather than two adjacent stimuli, as the responses of
the circuit under test are captured typically within the same scan
chain. An additional major challenge concerns the observability
of the fault captured in a test cycle. Typically faults captured in a
clock cycle are assumed to be immediately observable, the possible
aliasing characteristics of MISRs notwithstanding. The scheme we
propose reduces the number of shifting bits, thus reaping test ap-
plication benefits, but at the same time reduces the number of scan
chain bits being shifted out. For certain faults, it may well be that
the fault differentiating effect is strictly contained within the part
of the scan chain not being shifted out. The feasibility of whether
such faults can nonetheless be captured with certainty even though
their fault effect differentiating characteristics are buried within the
part of the scan chain not shifted out constitutes perhaps the second
major challenge of the approach we propose.

As the technique we propose represents a departure from the tra-
ditional way of test application, its use depends on the resolution
of a number of implementation challenges. Such issues include the
determination of the number of bits to be shifted in/out at any test
cycle, whether the number of bits being shifted should be fixed or
variable, the implementation of possible auxiliary hardware in the
form of XOR networks to aid controllability and observability, and
the order in which faults are handled during the proposed stitched
test generation. We provide both a theoretical and experimental
analysis of all these options in the latter part of the paper and pro-
ceed subsequently to show experimental data and comparisons, in
the amount of compression ratios that the technique we propose can
deliver on a number of benchmarks.

While the benefits of the technique we propose focus largely on
test application time and test volume reduction, a number of other
important benefits in comparison to other techniques previously
suggested in the literature are to be expected. Primary among them

1530-1591/03 $17.00 2003 IEEE

is the dramatic decrease in the hardware necessitated, as all prior
compression techniques typically require decompression hardware
on chip for test application time reduction and need to couple their
decompression techniques with MISR hardware on the output, lest
the time benefits that they achieve on the input side end up being
completely squandered on the output side. No such output hard-
ware requirement exists for the technique we propose and the fru-
gal hardware requirements if any, on the input side, necessitate no
additional hardware on the output side as all the benefits that we de-
liver accrue as a result of powerful analysis techniques rather than
extra hardware.

This paper is organized as follows: In section 2 we present rel-
evant previous work on reducing test time and memory for scan
chain based approaches. In section 3, the motivation and basic idea
of the proposed approach are illustrated through a simple example.
We introduce in section 4 a set of definitions needed to outline the
algorithmic framework for test vector generation in section 5. A
number of implementation considerations are discussed in section
6. Experimental results are discussed and analysed in section 7,
while section 8 draws a set of conclusions.

2. PREVIOUS WORK
A significant amount of previous work in test compression fo-

cuses on breaking a long scan chain into several shorter partitions,
thus reducing the length of shifting cycles. These approaches mainly
focus on the problem of controllability through the limited number
of input pins. The observability of these multiple scan chain par-
titions through the limited output pins, however, is usually dealt
by adding a MISR at the output side, at the possible cost of fault
aliasing and significant diagnosis challenges.

In the Virtual Scan Chain approach [1], an LFSR is assigned to
each scan chain partition to consequently provide pseudorandom
vectors. All the LFSRs are connected to form a chain so that the
pseudorandom seed can be shifted in. Each test cycle consists of
two stages. First the seeds of all the LFSRs are shifted in. Then
test vectors are filled into the scan chain partitions. Among the
partitions, only one of them is directly filled in with a test vector
from the main input pin, while the remaining partitions are filled by
the pseudorandom vector provided by an LFSR. The length of the
LFSR chain plus the length of one scan chain partition constitutes
the number of bits being shifted in each test cycle.

In a test per clock approach named “designed for high test com-
pression” (DFHTC) core [2], a test pattern is applied to the circuit
on every shifting clock. In order to approach this test per clock ca-
pability, as a test vector is being shifted into the scan chain, a num-
ber of LFSRs are used to provide pseudorandom test patterns for
the unshifted part of the scan chain. Thus the data in the scan chain
can be applied to the circuit at every clock regardless of whether
the expected test vector has been fully shifted into the scan chain.

In a Parallel Serial Full Scan approach [3], a long scan chain
is decomposed into several small scan chain partitions. Two test
modes, parallel and serial, are provided. In a parallel test mode, the
same test vector is shifted into all the scan chain partitions each test
cycle to reduce both test time and tester memory. In order to attain
full fault coverage, normal serial shifting of the whole scan chain
is also retained.

Bayraktaroglu and Orailoglu discuss a compression approach [4]
that exploits the unspecified bits of test vectors and applies com-
pressed test vectors into the circuit. The long scan chain is broken
into multiple shorter partitions, while a decompression network ei-
ther on the circuit under test or on the ATE is used to decode test
vectors to the multiple scan chain partitions. Through the test com-
pression approach presented by Reda and Orailoglu [5], test appli-

in

D

b

B C

E

a

A

c
scan outscan

F

1 1 0

0 0 1

1 0 0

1 1 1

0 1 0

0 0 0

0 1 0 0 1 0

Vector
Test Result

Figure 1: Circuit With Scan Chain of Length 3 and Test Vectors

cation time and test data is compressed by encoding the bits that
need to be flipped, thus attaining high compression ratios yet at the
cost of decompression hardware insertion.

An alternative approach attempts to find as many overlaps be-
tween test vectors, thus obtaining test data compression [6]. A
heuristic algorithm is provided to reorder test vectors in a way that
obtains the most overlapping. This work is based on the assumption
that two distinct scan chains exist separately for input and output,
an unlikely to be fulfilled assumption.

3. MOTIVATION
We illustrate our scheme through a simple example below. The

circuit in Figure 1 consists of three gates and a scan chain of length
3. For this circuit, the four test vectors suffice to catch all the faults
except for the redundant fault E-F/1. These test vectors and their
fault-free results are also shown in Figure 1.

Application of this set of four test vectors under the traditional
scan chain approach necessitates shifting each test vector into the
scan chain, and then applying the vector to the circuit under test.
The response is stored back into the scan chain and is shifted out
while the subsequent test vector is shifted in. At each test cycle,
three bits are shifted. The total test time consists of

�������
	��
shift cycles, while the memory requirement is

�������������
bits.

An analysis of the given test vectors and their results shows it is
possible to form the last three test vectors by only shifting in two
bits each time. The third bit is attained from the remaining one
bit of the preceding response in the scan chain. As the two bits
are shifted out, the leftmost bit is shifted to the rightmost scan cell.
The first test vector 110 generates the result 111. For the second
cycle, we only need to shift in two bits 00, which together with the
remaining 1 in the scan cell c make up the second test vector 001.
The third cycle and the fourth cycle operate similarly by shifting 10
to obtain the third test vector 100 and shifting 01 to obtain 010, the
last test vector.1

While controllability can be thus achieved by stitching the re-
sponse of the previous test vector, observability of fault effects re-
quires additional attention. Shifting out only a fragment of the scan
chain each time may lead to the existence of hidden faults, faults
that only produce an effect in the part remaining in the scan chain
and thus not immediately observable. Yet observability of a fault
does not hinge solely on direct observation of the fault effect dif-
ferentiating scan cell. If the fault effect differentiating scan cell is
not shifted out, then the fault will cause at least the subsequent test
vector to differ from the intended one, thus making it all the more
likely that the mutated test stimulus will cause the fault to be subse-
quently caught. We show the effect of such hidden faults in the next
�
In the example given, the test vectors have been artificially or-

dered for ease of illustration to induce the relationship described.
Typically, no order among vectors needs to be imposed in a scan
chain based design in any case.

scan in 110 00 10 01
fault cycle 1 cycle 2 cycle 3 cycle 4
list TV RP TV RP TV RP TV RP
correct 110 111 001 010 100 000 010 010
F/0 110 011 000 000
F/1 110 111 001 110 101 110
D-F/1 110 111 001 110 101 110
E-F/1 110 111 001 010 100 000 010 010
D/0 110 010
D/1 110 111 001 111
B-D/1 110 111 001 010 100 001
A/1 110 111 001 010 100 000 010 111
B/0 110 000
B/1 110 111 001 010 100 111
E/0 110 001
B-E/0 110 001
C/0 110 111 001 000
E/1 110 111 001 010 100 010
E-b/0 110 101
E-b/1 110 111 001 010 100 010
D-c/0 110 110
D-c/1 110 111 001 010 100 001

TV: Test Vector; RP: Response
Table 1: Fault Behavior Table

paragraph. Table 1 shows the detailed situation of each fault being
caught for the example being discussed. Each row keeps track of
every fault’s behavior through the four testing cycles. The behavior
of the fault-free circuit is shown in the uppermost row. For each test
cycle, the test vector and the corresponding response are given. An
italic bold number indicates a behavior differing from the fault-free
circuit. The behavior of a fault that has been observed is no longer
tracked in the circuit, indicated by a blank in the remaining part of
the row in the table.

With the first test vector 110, seven faults (F/0, D/0, B/0, E/0,
B-E/0, E-b/0, D-c/0) generate results differring from the fault-free
result. Among these seven faults, six (D/0, B/0, E/0, B-E/0, E-b/0,
D-c/0), display responses differring from the fault free result in the
last two bits, resulting in their being caught as they are shifted out.
The fault F/0, however, generates the result 011, which differs from
the correct result 111 only in the bit remaining in the scan chain.
Thus, unlike the other six faults, fault F/0 will not be immediately
observable and will instead become a hidden fault. Nevertheless,
the unobservable fault effect differentiating response bits induce in
turn a differentiation on the subsequent test vector to be applied.
This can be illustrated by noticing that the second test vector 000,
applied to the circuit with the fault F/0, will generate the response
000 in the second test cycle. The expected test vector 001, ap-
plied to the fault free circuit, will generate the response 010 in-
stead. These two results differ in the second bit, thus ensuring the
observability of the fault effect.

Similarly, in the second test cycle, four more faults generate re-
sults differring from the correct one. Among these four faults, F/1
and D-F/1 become hidden faults as their test response in the last
two bits, 01, is identical to that of the correct circuit. However,
these two faults result in a mutated third test vector 101. The result
of 101 in the third test cycle under either of these two faults is 110,
which differs from the fault free result 000 in the second bit. Thus
these two hidden faults get caught in the third cycle.

We can see from Table 1 that after four test cycles all the faults
except the redundant E-F/1 have been caught, thus ensuring perfect
attainable fault coverage. The total test time with this new approach

is
�����������	�	

shift cycles. The memory requirement is
���

������������� 	�!
bits. Compared to the 15 shift cycles and 25

bits memory requirement of the original approach, the new scheme
reduces test time by 27% and test memory requirement by 32% in
this simple example. There is no additional hardware overhead nor
any loss of fault coverage.

4. DEFINITIONS
To generate test vectors with this new approach, we need to keep

track of the behavior of faults, such as which faults have been
caught, which faults constitute the current hidden fault set, when
a hidden fault will become observable, and so on. We classify the
set of all faults into three distinct sets according to their behavior in
response to the test stimuli. Each fault at any time belongs to one
and only one of the three sets.
"$#

: the caught fault set, which contains all the faults that have
already been captured."�%

: the hidden fault set, which contains all the current hidden
faults. The current response for a hidden fault differs from
that expected for a fault free circuit, but any such differentia-
tion is contained strictly within the bits remaining within the
scan chain and not shifted out. It is necessary for each fault
in this set to capture the faulty response so as to trace the
corresponding subsequent test vector actually being applied."�&

: the uncaught fault set, which contains all the faults that have
not been differentiated by any test vectors applied up to that
point.

For a fault free circuit ' #)(+*,*+-.#0/ , we denote its response under a test
vector 1 as 2 #)(+*,*,-)#0/ � ' #.(3*,*,-)#)/,4 1�5 . The response of a faulty
circuit with the fault 6 under the test vector 1 is denoted as 2�7 �
' 7 4 1�5 . For an existing hidden fault,

" -
, we denote the subsequent

test vector affected by
"�-

to be 198;: . Also, the circuit with fault
"�-

is denoted as ' 8 : . Thus the response of the next test vector under
the effect of hidden fault

" -
is denoted as 2 8;: � ' 8;: 4 1 8;: 5 .

5. ALGORITHMIC FRAMEWORK
We present in this section an algorithm for generating a sequence

of test vectors for the proposed approach. The flowchart of the
algorithm is shown in Figure 2.

At the beginning of test vector generation, the hidden fault set
"�%

and the caught fault set
"�#

are empty, while the uncaught fault set"�&
contains all the irredundant faults in the circuit. The algorithm

iterates until all the faults are caught, that is,
" &

and
" %

become
both null and

" #
equals the whole fault set. In each iteration a new

test vector is generated that incorporates the remaining response of
the last cycle in the scan chain.

In each iteration, when a new test vector 1 #.(+*+*,-)#)/ is generated,
the effect of 1 #.(3*,*,-)#)/ on the fault sets is analysed. All the faults
that 1 #.(3*,*,-)#)/ can differentiate from the correct circuit should be put
into
"�#

or
"�%

according to the location of the differentiating part.
Also, instead of 1 #.(3*,*,-)#)/ , every existing hidden fault

"
will have its

own 198 and will generate a possibly distinct response 2�8 under the
stimulus of the mutated test vector. Some of the hidden faults will
be driven to become observable, while others may generate exactly
the same response as the correct circuit, thus becoming uncaught
faults.

For every fault from the set
" &

that the new test vector 1 #.(+*+*,-)#)/ is
able to differentiate, if there is any differentiating part that resides
in the shifted out part, the fault should be regarded as a caught fault
and put into

" #
. Otherwise, it becomes a hidden fault, and is put

into
" %

.

RcorrectR f ?=

f hf inFor every fault

f u

TV differentiatesfuf in
For every fault

fR = Cf (TV)
Ccorrect (TV)R correct =

fPut Into fh

RcorrectRf
in the shifting-out part

differs from

Put f Into f cN

Y

?

f u

RcorrectRf

fu
f c , f h

Finished

f uany fault left in ?

N

? f Into f cPut
N
f Into fhPut

f fR = C TVf
= correctcorrectR C (TV)correct

)(

Y

?
new faults from

a new test vector to catch TV
part of the scan chain, can we generate

constraint from the remaining
based on the

N

Y

Generate the first test vector TV

N

Y

Put Intof

Y
in the shifting-out part

differs from

Initialize
to full fault set

to empty sets

test vectors for the remaining faults
use full scan scheme to generate

Figure 2: Algorithm flowchart

Secondly, every fault
"

in the hidden fault set
"<%

is to be anal-
ysed and should be placed into a proper set. With the fault

"
in

the circuit, the new test vector 1 8 will generate the response 2 8 ,
which is compared to the correct response 2 #)(+*,*,-)#0/ . According to
the difference between 2 #)(+*,*,-)#0/ and 2 8 , fault

"
will possibly get

caught, remain hidden, or become an uncaught fault again. The
three situations are discussed below:

- 2 8 differs from 2 #)(+*,*,-)#0/ in the part being shifted out, mak-
ing
"

observable and resulting in
"

being placed in
"�#

.

- 2 8 differs from 2 #)(+*,*+-.#0/ only in the part that remains in the
scan chain. In this case,

"
continues to be a hidden fault and

is remanded to the set
" %

. Its faulty response is updated.

- 2�8 is exactly the same as 2 #)(+*,*+-.#0/ , resulting in the loss of
observability of fault

"
and its being placed back into the set"�&

.

While faults can circulate between
"�&

and
"�%

,
" #

will consis-
tently increase in size. The size of

"<%
fluctuates typically across

test vector application iterations, but tends to decrease overall as
more test vectors are applied. If no test vector can be generated
to catch any new fault from

" &
, a traditional fully shifting scheme

can be used to complete test vector generation for all the remaining
faults in

" &
.

6. IMPLEMENTATION CONSIDERATIONS
The proposed scheme reduces test time and memory by effi-

ciently stitching test vectors to obtain a considerable portion of
overlapping in the scan chain, thus shortening the number of bits

shifted in and out each test cycle. The implementation of this idea,
however, demands increased attention on fine-tuning a number of
factors. Since the test vector generation is based on the specified
bit constraint imposed by the previous response, together with the
limited shifting-out bits, controllability and observability need to
be exploited for a better result.

6.1 Size and Type of Shift
Perhaps a highly important issue to consider in applying this

technique is the number of bits to be shifted every cycle. Fixing
the shifted bits to a small number each cycle lowers the test time
and memory, while a higher number may increase controllability
and observability, thus generating test vectors that can catch more
faults, yet at the cost of increased test application time per vector.

An alternative strategy is to change the number of shifted bits. At
the beginning stage of the test vector generation algorithm, easy-to-
test faults dominate. The number of bits shifted out can be set to a
very small fraction of the scan chain, thus obtaining maximum de-
crease in testing time in terms of shifting cycles. When no test vec-
tor can be generated to catch any new faults due to the constraints
implied by the large fixed part of the scan chain, the shifting bits
can be increased to obtain more controllability and observability.

A benefit conferred by the variable shift strategy is a reduction
in the amount of restrictions imposed by particular patterns of the
fixed part. A circuit may tend to produce a certain value on a par-
ticular output bit most of the time. When shifting a constant num-
ber of bits each cycle, these relatively fixed patterns will be always
fixed in the same bit location in the remaining part of the scan chain,
thus leading to fewer possibilities of generating test vectors with in-
creased variability. Allowing the number of bits shifted each cycle
to change adds increased diversity on the patterns in the remaining
part, thus increasing the variety of test vectors to be generated for
catching more faults.

6.2 Hidden Fault Observability
The limitation on observability imposed by shifting out a part

of the scan chain is embodied in the existence of hidden faults.
In order to improve the observability, as many as possible hidden
faults should be driven to the caught fault set

" #
. Or, even if the fault

effect is not observable through the shifted out part, its effect should
be preserved to later cycles, thus improving the chances of its being
caught through the stimuli later on. Since the differentiating part of
a hidden fault

"
remains within the scan chain and will constitute

a distinct next test vector 1 8 , when the response of 1 8 is written
back into the scan chain, the differentiating part existing in 1=8 will
be overwritten by the response 2 8 � ' 8 4 1 8 5 . Thus whether the
effect of the hidden fault

"
is preserved depends on whether 2�8 is

different from 2 #)(+*,*,-)#0/ .
A circuit may not be sensitive on the bits that 1 8 differs from
1 #)(+*,*,-)#0/ . Furthermore, if

"
itself is not able to be differentiated

by the stimulus of 1 #)(+*,*,-)#0/ or 1 8 , then most likely the hidden
fault
"

will generate exactly the same result as the fault-free circuit
and become an uncaught fault, because of the same two responses
2�8 � '>8 4 198?5 and 2 #.(+*+*,-)#)/ � ' #.(3*,*,-)#)/ 4 1 #.(3*,*,-)#)/ 5 .

A way to keep the differentiating part of hidden faults from being
eliminated in this manner is to XOR the response with the existing
test vector in the scan chain. We denote this strategy as Vertical
XOR (VXOR) and illustrate an example of the vertical XOR versus
the non-XOR implementation in Figure 3.

With the vertical XOR scheme, a hidden fault
"

will be elimi-
nated if and only if the condition 2�8$@ &�A /9B 198C@ &�A / � 2 #.(+*+*,-)#)/ B
1 #)(+*,*,-)#0/ holds. This situation happens when the fault differentiat-
ing part of 2�8 and 2 #.(+*+*,-)#)/ is exactly in the same bit position as

3/8 info 5/8 info 7/8 info variable shift
circ aTV shift TV ex m t shift TV ex m t shift TV ex m t TV m t
s444 32 5/21 14 23 0.88 0.82 11/21 29 3 0.64 0.57 18/21 32 0 0.88 0.86 54 0.73 0.53
s526 61 5/21 14 23 0.88 0.82 11/21 58 5 0.66 0.58 18/21 59 0 0.85 0.83 99 0.72 0.53
s641 58 / / / / / 1/19 34 25 0.80 0.46 13/19 39 2 0.62 0.49 56 0.68 0.24
s953 88 / / / / / 11/29 88 0 0.63 0.38 23/29 88 0 0.88 0.79 96 0.52 0.14
s1196 137 / / / / / 6/18 138 0 0.63 0.34 14/18 139 0 0.89 0.79 135 0.49 0.10
s1423 68 21/74 36 38 0.76 0.71 42/74 44 28 0.82 0.78 63/74 56 1 0.73 0.72 131 0.63 0.43
s5378 255 45/179 62 211 0.92 0.89 99/179 118 137 0.83 0.79 152/179 225 0 0.77 0.75 274 0.57 0.45
s9234 380 60/228 48 348 0.96 0.95 127/228 182 212 0.84 0.82 194/228 266 3 0.61 0.60 478 0.68 0.63
Ave 135 35 129 0.88 0.84 86 51 0.73 0.59 113 1 0.78 0.73 165 0.63 0.38

Table 2: Varying the Size and Type of Shifting

the differentiating part of 1 8 and 1 #)(+*,*+-.#0/ . The cost of additional
hardware with the vertical XOR scheme scales with the length of
the scan chain in the circuit, as it necessitates the insertion of an
XOR gate for each scan cell.

The vertical XOR scheme tries to increase observability by pre-
serving the hidden fault effect within the scan chain for later cycles.
We denote an alternate strategy that aims at increasing observability
as Horizontal XOR. The strategy attempts to increase the number
of hidden faults observable at each cycle but requires only a small
fixed number of XOR gates. Instead of shifting out the data in the
last scan cell each cycle, the horizontal XOR scheme XORs several
scan cells for shifting out.

Figure 4 shows an example of the horizontal XOR scheme. In
this example, three scan cells are XORed for shifting out. Therefore
shifting out one third of a scan chain will make most of the hidden
faults observable. By shifting out the XOR result of multiple scan
cells, this scheme effectively improves the observability of hidden
faults.

6.3 Selection of test vectors
In the algorithm described above, we generate a test vector each

cycle to catch new faults from
"�&

under the constraint of having a
part of the scan chain fixed to a certain value. Various schemes can
be applied in regards to the selection of a proper test vector.

A greedy way of choosing a test vector is to pick up the one
that catches most faults from

" *
. Experimental data shows that

significant improvements can be thus achieved in most circuits.
An alternative strategy of choosing a test vector is to give in-

creased priority to hard-to-test faults. For the hard-to-test faults,
fewer possible test vectors can be generated to catch them. With
the additional constraint of a number of bits being fixed, the pos-
sibility of generating a test vector for them is even lower. Thus,
in trying to generate a test vector to catch faults from

"�&
, those

hard-to-test faults should be considered at a higher priority. The
generation of test vectors is done through the priority-ordered fault
list, and the opportunities for catching hard-to-test faults are thus
improved.

A way to combine these two schemes consists of assigning a
weight for every fault according to its test difficulty. The weight of

R1T1 R2T2

scan in

Without VXOR:

R3T3

scan out

Circuit Under Test

R1, R2, R3
are written back into the scan cells

R1

T1

scan in

With VXOR:
(R1 xor T1), (R2 xor T2), (R3 xor T3)
are written back into the scan cells

Circuit Under Test

T3

scan out

R2 R3

T2

Figure 3: Vertical XOR example

a test vector is defined as the sum of all the weights of the faults
it can catch from

"�&
. At every iteration, the test vector with the

highest weight that fits the constraint can be then selected.

7. EXPERIMENTAL RESULTS
Our implementation on ISCAS89 benchmark circuits uses Perl

script language for the flow of algorithm. ATALANTA [7] is used
as a test vector generation tool and HOPE [8] is used for fault sim-
ulation.

Table 2 shows the comparison of various shifting size and shift-
ing types. Throughout the tables of experimental results, t denotes
the test time ratio in terms of shifting cycle of our approach to the
full shifting scheme, while m denotes the test memory requirement
ratio. In Table 2, aTV denotes the number of test vectors needed
for the traditional full shifting approach that ATALANTA gener-
ates. TV denotes the test vector number needed to apply for our
approach. The column named ex shows the number of extra full
shifting test vectors needed to cover the remaining faults. The shift
column shows the number of bits being shifted every cycle versus
the length of the scan chain. For fixed size shifting, we consider
three sizes of shifting in terms of the data ratio needed for each cy-
cle. As fundamentally all compression techniques rely in represent-
ing a longer sequence in terms of a shorter one, a fair comparison
necessitates keeping the bit compression ratio constant. The info
column provides a comparison at three possible points, namely 3/8,
5/8 and 7/8. As specified bits are not limited to scan chain bits only,
the consideration of input bits in this computation results in certain
of these ratios to be unattainable, particularly in the case of bench-
marks with scan chain lengths relatively shorter in comparison to
the number of input bits; we denote the resultant inapplicability
with a ’/’ in Table 2.

The results from the experimental data are consistent with our
analysis. With fewer number of bits shifted, controllability is lim-
ited, resulting in the necessity to employ an increased number of
extra test vectors; with a large number of bits shifted, the reduction
in test time and memory goes down. Thus in general 5/8 info gives
better results among the fixed size shifting schemes while varying
the shifting size produces significantly better results due to its flex-
ibility.

Table 3 shows a comparison of the various schemes on improv-
ing hidden fault observability. The column NXOR denotes the

a b c d e f

scan out

scan in

Horizontal XOR:

 (b xor d xor f), (a xor c xor e)Data scanned out:

Figure 4: Horizontal XOR example

NXOR VXOR HXOR
circ m t m t m t
s444 0.88 0.65 0.68 0.47 0.89 0.65
s526 0.74 0.57 0.77 0.62 0.66 0.49
s641 0.89 0.33 0.73 0.23 0.86 0.32
s953 0.59 0.25 0.59 0.25 0.52 0.13

s1196 0.59 0.22 0.49 0.10 0.55 0.17
s1423 0.72 0.53 0.75 0.52 0.68 0.48
s5378 0.76 0.57 0.60 0.49 0.65 0.51
s9234 0.75 0.68 0.67 0.63 0.71 0.65
Ave 0.74 0.48 0.66 0.41 0.69 0.43

Table 3: Hidden Fault Observability

plain implementation without any XOR schemes. VXOR denotes
the vertical XOR scheme used and HXOR denotes the horizontal
XOR scheme used. The table indicates that improved results in
general are produced with XOR implementations.

Table 4 shows a comparison between various methods of select-
ing test vectors. The column Random denotes selecting test vec-
tors by going through a randomly ordered fault list. The column
Hardness denotes selecting test vectors by going through ordered
fault list by hardness to test. The column Most-faults denotes se-
lecting test vectors that catches most faults each cycle. The results
show that the greedy approach of Most-faults usually gives the best
result.

While the previous results provide a comparison basis in terms
of implementation considerations, it is important as well to pro-
vide an assessment of the benefits of the overall scheme in terms of
test application time and tester memory reductions. We provide an
experimental assessment by utilizing the two previously outlined
superior schemes, namely, the variable number of shifted bits and
the greedy approach of Most-faults, together with the non-XOR
approach so as to eliminate any hardware overhead in the compari-
son basis and apply our technique on some of the largest ISCAS89
benchmarks. The results both in tester memory reduction, m, and
test application time reduction, t, show that appreciable improve-
ments can be attained, ranging between 24% to 80% in m and 32%
to 93% in t. Since testing time is calculated in terms of shifting
cycles while memory requirement includes I/O data for each cycle
as well, the reduction in test time exceeds that of memory in most
experimental results as expected. The implementation on circuit
s35932 shows a drastic reduction both in terms of test time and test
memory as most faults of s35932 are easy-to-test faults, thus result-
ing in large reductions by only shifting a small fraction of the scan
chain.

Random Hardness Most-faults
circ m t m t m t
s444 0.81 0.54 0.77 0.50 0.73 0.53
s526 0.86 0.62 0.81 0.58 0.71 0.52
s641 0.88 0.26 0.84 0.24 0.72 0.20
s953 0.70 0.24 0.57 0.17 0.52 0.14

s1196 0.66 0.15 0.53 0.09 0.48 0.09
s1423 0.75 0.50 0.79 0.55 0.68 0.46
s5378 0.73 0.55 0.63 0.48 0.57 0.45
s9234 1.02 0.94 0.98 0.91 0.68 0.63
Ave 0.80 0.48 0.74 0.44 0.64 0.38

Table 4: Selection of Test Vectors

circ I/O scan# m t
s5378 35/49 179 0.76 0.57
s9234 19/22 228 0.75 0.68

s13207 31/121 669 0.74 0.65
s15850 14/87 597 0.60 0.51
s35932 35/320 1728 0.20 0.07
s38417 28/106 1636 0.60 0.57
s38584 12/278 1452 0.63 0.55

Ave 0.61 0.51

Table 5: Experimental Results for Large Circuits

8. CONCLUSION
We present in this paper a new compression scheme of scan chain

based testing, which reduces both test time and memory require-
ment at no loss of fault coverage. The hardware overhead for this
approach is none or negligible. Furthermore, no requirement for
the modification of the circuit under test is necessary. Seen from
the vantage point of an ATE, the proposed scheme is identical to
regular scan based application. The proposed approach exploits the
lack of order characteristic of test vectors in a scan chain approach
in ATPG and the fact that a large number of unspecified bits ex-
ists in test vector generation. Through a well-designed test vector
generation algorithm, test vectors can be stitched so as to obtain
a large amount of overlapping between a prior response and the
subsequent test vector, resulting in high compression ratios. The
challenge of observability is solved by an analysis on the behavior
of hidden faults. With this approach, no additional hardware, such
as a MISR, is needed on the output side; thus the aliasing of faults
and the possible loss of information for fault diagnosis is prevented.

For a commercial implementation of the proposed idea, it is im-
portant to consider a number of implementation issues. A number
of such considerations are discussed in the paper also. Experimen-
tal data shows results consistent with the analysis as well as signif-
icant improvements on test time and test memory requirements.

9. REFERENCES

[1] A. Jas, B. Pouya and N. A. Touba, “Virtual Scan Chains: A
Means for Reducing Scan Length in Cores”, in ITC, pp. 73–
78, 2000.

[2] A. Jas, K. Mohanram and N. A. Touba, “An Embedded Core
DFT Scheme to Obtain Highly Compressed Test Sets”, in ATS,
pp. 275–280, 1999.

[3] I. Hamzaoglu and J. Patel, “Reducing Test Application Time
for Full Scan Embedded Cores”, in FTCS, pp. 260–267, 1999.

[4] I. Bayraktaroglu and A. Orailoglu, “Test Volume and Appli-
cation Time Reduction Through Scan Chain Concealment”, in
DAC, pp. 151–155, 2001.

[5] S. Reda and A. Orailoglu, “Reducing Test Application Time
Through Test Data Mutation Encoding”, in DATE, pp. 387–
393, 2002.

[6] C. Su and K. Hwang, “A Serial Scan Test Vector Compression
Methodology”, in ITC, pp. 981–988, 1993.

[7] H. K. Lee and D. S. Ha, “On the Generation of Test Patterns
for combinational Circuits”, Technical report 12-93, Dep’t of
Electrical Eng., Virginia Polytechnic Institute and State Uni-
versity, 1993.

[8] H. K. Lee and D. S. Ha, “HOPE: An Efficient Parallel Fault
Simulator for Synchronous Sequential Circuits”, in DAC, pp.
336–340, 1992.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

