
Scheduling and Mapping of Conditional Task Graphs for the Synthesis of Low
Power Embedded Systems

Dong Wu and Bashir M. Al-Hashimi

Dept. of Electronics and Computer Science
University of Southampton

Southampton, SO17 1BJ, UK
{dw00r, bmah}@ecs.soton.ac.uk

Petru Eles
Dept. of Computer and Information Science

Linköpings University
S-58183 Linköping, Sweden

petel@ida.liu.se

Abstract
This paper describes a new Dynamic Voltage Scaling

(DVS) technique for embedded systems expressed as
Conditional Task Graphs (CTGs). The idea is to identify
and exploit the available worst case slack time, taking into
account the conditional behaviour of CTGs. Also we
examine the effect of combining a genetic algorithm based
mapping with the DVS technique for CTGs and show that
further energy reduction can be obtained. The techniques
have been tested on a number of CTGs including a real-
life example. The results show that the DVS technique can
be applied to CTGs with energy saving up to 24%.
Furthermore it is shown that savings of up to 51% are
achieved by considering DVS during the mapping.

1 Introduction and related work

Energy efficiency is becoming an essential issue in
embedded system synthesis, for reasons like the increasing
demand for portable devices or the heat dissipation caused by
excessive power consumption which may lead to reduced
reliability. One possible and effective technique for decreasing
power consumption of embedded systems is dynamic voltage
scaling (DVS), which dynamically scales the supply voltage and
operational frequency of system components during run-time in
accordance with the temporal performance requirements of the
application [3]. DVS exploits the slack time, i.e. the intervals
when a PE is idle, to reduce power consumption.

Several approaches have demonstrated the efficiency of task
scheduling with DVS techniques in reducing the power
consumption of embedded applications [2, 4-7]. The efficiency
of such techniques can be further increased if the potential of
voltage scaling is considered not only during the scheduling step,
but also for optimisation of the task mapping[8]. In [9], a
mobility based list scheduling was modified towards DVS
utilization. They optimise a static schedule towards the
incorporation of aperiodic tasks. The static schedule provides
guidelines to the online scheduler. In [10], a DVS optimized
schedule was derived using a constructive list scheduling
technique with a dynamic re-calculation of task priorities based
on average energy dissipation. In [8], a two-step iterative
synthesis approach guided by a generalised DVS algorithm was
presented. Their approach optimizes both the mapping and
schedule towards energy efficiency by abetting the exploitation
of DVS.

All the approaches mentioned above have considered either
systems consisting of independent tasks or purely data
dominated applications specified as dataflow models. However,
embedded system functionality often contains both data and
control statements. This aspect has been recognised by the
research community and several system level representations
have been proposed to capture both the data and control flow at
task level [11, 12]. In [1, 11] such an abstract system
representation, called Conditional Task Graph (CTG), has been
defined and a scheduling algorithm has been proposed so that the
worst case delay is minimized. In [13], a technique performing

mapping and scheduling simultaneously to take advantage of the
resource sharing among mutual exclusive tasks was proposed.

Using system representations which capture both data and
control flow allows for a more accurate modelling of a large
class of embedded systems. This will lead to more exact
performance estimations, schedule generations and, in general,
more efficient system implementations. Based on such
considerations papers like [1, 11, 13, 14] have addressed
scheduling and mapping of embedded systems expressed with
CTGs or similar representations. However, such an accurate
system representation also offers the potential of efficient
implementations in terms of energy consumption. Nevertheless,
no work has still addressed the problem of energy minimisation
during synthesis of system specifications which capture both
dataflow and the flow of control.

The main aim of this paper is to investigate the application
of DVS techniques to data/control dominated embedded systems.
The following are two main contributions of this work:

1. A novel DVS technique for CTGs is proposed which is
capable of exploiting the slack time taking into account the
conditional behaviour of the system.

2. A genetic algorithm (GA) based mapping technique is
introduced to optimize the system implementation to efficiently
exploit the proposed DVS technique, hence, leading to further
energy savings.

2 Preliminaries
2.1 CTG and architectural model

We consider that an application is specified as a directed,
acyclic graph G(V, ES, EC) called conditional task graph (CTG)
[1]. Figure 1(a) shows an example CTG. Each node, ni ∈ V
represents a task, an atomic unit to be executed without being
preempted. There are two nodes, called source and sink, which
represent the first and last node respectively, so that all other
nodes in the graph are successors of the source and predecessors
of the sink. ES and EC are the sets of simple and conditional
edges respectively. ES ∩ EC = φ and ES ∪ EC = E, where E is
the set of all edges. An edge eij ∈ E from ni to nj indicates that
the output of ni is the input of nj. An edge eij ∈ EC is a
conditional edge (represented with thick lines in Figure 1) and it
has an associated condition value. Transmission on such an edge
takes place only if the associated condition value is met. A node
with conditional edges at its output is called a disjunction node.
Executing a disjunction node produces a condition value. For
example in Figure 1(a), executing n1 produces condition value A
or A . Alternative paths starting from a disjunction node meet in
a conjunction node. A conjunction node can be activated after
input from one of the alternative paths has arrived. Depending on
the condition values, there exist different tracks through a CTG
that may be followed at a certain execution. The CTG of Figure
1(a) has three possible tracks, which are shown in Figures 1(b)-
(d) respectively.

If we consider the activation time of the source task as a
reference, the finish time of the sink task is the delay of the
system at a certain execution. This delay has to be, in the worst

1530-1591/03 $17.00 2003 IEEE

1530-1591/03 $17.00 2003 IEEE

case, smaller that a certain imposed deadline. Release times of
some tasks as well as multiple deadlines can be easily modelled
by inserting dummy nodes between certain tasks and the source
or the sink node respectively. These dummy nodes represent
tasks with certain execution time but which are not allocated to
any processing element. The above execution semantics is that
of a so called single rate system. It assumes that a node is
executed at most once for each activation of the system. If tasks
with different periods have to be handled, this can be solved by
generating several instances of the tasks and building a CTG
which corresponds to a set of tasks as they occur within a time
period that is equal to the least common multiple of the periods
of the involved processes. For further details concerning the
CTG representation the reader is referred to [1].

The architecture considered in this work consists of multiple
and heterogeneous PEs. DVS-enabled PEs can run at voltages
between the threshold voltage and maximum voltage. We
consider continuous voltages here, but these can be easily
adapted to the case with discrete voltages[8]. An assumption is
made that the tasks are of sufficiently coarse granularity and that
the PEs can continue operation during the voltage scaling, which
allows to neglect the scaling overhead in terms of power and
time. Furthermore, the PEs might employ power management
techniques, i.e. they might shut down themselves when they are
idle. An infrastructure of communication links (CLs) connects
these PEs through communication interfaces, which are able to
adapt to the different operational frequencies caused by DVS.

The schedule table produced by [1] captures all the details
related not only to task activation but also to communication
scheduling. In [8, 17] we have also shown how communication
aspects have to be considered for scheduling and mapping with
DVS. In order to concentrate on the specific aspects of
importance for this paper and considering the space limitation, in
this presentation we will make a simplifying assumption that
communications take 0 time and consume 0 energy. However,
all the algorithms and the conclusions of this paper are equally
valid if communications are taken into consideration.

Each task in a CTG might have multiple implementation
alternatives, therefore, it can be potentially mapped to several
PEs able to execute this task. For each possible task mapping
certain implementation properties, e.g. execution time and power
dissipation, are given in a technology library. These values are
either based on previous design experience or on estimation
techniques.

(a) CTG

A

_
A

B
_
B

n1

n2

n3

n4 n5

n6

n7

��������������
��������������
��������������
��������������
��������������

�����������
�����������
�����������

A

n1

n2

n7

����������������
����������������
����������������
����������������
����������������

�����������
�����������

��������
��������
��������

_
A

B

n1

n3

n4

n6

n7

������������������
������������������
������������������
������������������
������������������

���������
���������

_
A

_
B

n1

n3

n5

n6

n7

(b) track 1 (c) track 2 (d) track 3

mapping &
execution
time (ms)
n1: PE1 10
n2: PE2 5
n3: PE2 4
n4: PE1 2
n5: PE1 6
n6: PE2 1
n7: PE1 5

column true

column A _
column A^B

 _
column A

column true

 _ _
column A^B

Figure 1. Conditional task graph and its tracks
2.2 Schedule Table

For a given execution of a CTG, a subset of the tasks is
activated corresponding to the actual track, which depends on
the values of certain conditions. In [1] a scheduling algorithm is
proposed for mapped conditional task graphs so that the worst
case delay is as small as possible. The output of the algorithm is
a schedule table which contains activation times for each task,
corresponding to different values of the conditions. Table 1 is an
example schedule table for the CTG of Figure 1(a), assuming
task mappings and task execution times as shown in the figure.
The table has one row for each task, which contains start and end
time for that task corresponding to different condition values.

Each column in the table is headed by a logical expression
constructed as a conjunction of condition values. The schedule
table represents the schedules of all possible tracks
corresponding to different condition values. As shown in Figure
1, there are 3 possible tracks. The schedule of track 1 is
represented in columns true and A. The schedule of track 2 is
captured in columns true, A , and BA ^ . The schedule of track
3 is given in columns true, A , and BA ^ .

The schedule table captures a quasistatic schedule of the
system specified by the CTG considering the given task mapping.
This means that all decisions that could be taken off line have
been made by the scheduling algorithm and are written into the
schedule table. Based on this information, the real-time kernels
running on each processing element will take the actual
decisions on activation of tasks and transmission of messages,
based on the current values of conditions.

cond values true A A BA ^ BA ^
n1 0, 10
n2 10, 15
n3 10, 14
n4 14, 16
n5 14, 20
n6 16, 17 20, 21
n7 15, 20 17, 22 21, 26

Table 1. Schedule table
The problem formulation can be stated as follows:

considering a system specified as a CTG, find a mapping, a
schedule table and the voltage scaling such that the deadline is
satisfied and the energy consumption is minimized. The
execution of a CTG can proceed along different tracks
depending on the actual condition values. Our objective is to
minimize the total energy consumption assuming that every
track is executed with equal probability.

3 Scheduling and Mapping techniques with
DVS for CTGs

The relation between energy dissipation E(Vdd), execution
time d(Vdd) and supply voltage Vdd are expressed by [8]:

)E(V
V

ddV
)ddE(V max2

max

2
⋅= (1)

)max(
2)(max

2)max(
)(Vd

tVddV
ddV

V
tVV

ddVd ⋅
−

⋅
−

= (2)

where Vmax is the maximum supply voltage, E(Vmax) and d(Vmax)
is the energy dissipation and execution time at Vmax, Vt is the
threshold voltage. Equations (1) and (2) will be used in the DVS
technique in the following sections. The application of DVS
techniques for off-line task scheduling is based on the
assumption that a certain slack time is available and this slack is
also predictable, at least to a certain extent, at design time. In the
case of system specifications which also capture the flow of
control, as is the case with CTGs, constructing a quasistatic
schedule with voltage scaling is even more difficult than for pure
data flow systems, due to the additional problems related to the
prediction of slacks. The values of the conditions are
unpredictable, so the decision on how much slack time can be
distributed to a task is taken without knowing which values the
downstream conditions will later get, i.e., the execution path is
determined incrementally during runtime. On the other side, at a
certain moment during execution, when the values of some
conditions are already known (upstream conditions), they have
to be used in order to take the best possible decisions.

3.1 DVS technique for CTGs
To illustrate the problems connected to the generation of a

n1

n2

Deadline

30

V(v)

t(ms)

3.3

0

PE1

PE2

Energy = 100 uJ

n7

10 20

0 10 15

30
t(ms)

PE1

PE2

n1

n3

Deadline

30

V(v)

t(ms)

3.3

0

Energy = 110 uJ

n4

10

3.3

16

0 10 14

30

n6

14

n7

17

16 17

t(ms)
n1

n3

Deadline

30

V(v)

t(ms)

3.3

0

PE1

PE2

Energy = 130 uJ

n7

10 20

0 10 14

14 21

20 21

n5

n6

3.3
30

t(ms)

(a) track 1 (b) track 2 (c) track 3

3.3

slack time

22

slack time

26

slack
time

15

Figure 2. Schedule of the CTG of Figure 1(a)

n1

n2

Deadline

30

V(v)

t(ms)

2.62

0

PE1

PE2

Energy = 62.9 uJ

n7

15

0 15 22.5

30
t(ms)

PE1

PE2

n1

n3

Deadline

30

V(v)

t(ms)

2.76

0

Energy = 76.8 uJ

n4

2.76
19.1

0 13.6 19.1

30

n6

13.6

n7

21.8

21.8 23.2

t(ms)
n1

n3

Deadline

30

V(v)

t(ms)

3.03

0

PE1

PE2

Energy = 109.6 uJ

n7

11.5 16.2

0 11.5 16.2

23.1

23.1 24.2

n5

n6

3.03
30

t(ms)

(a) track 1 (b) track 2 (c) track 3

2.62
23.2 24.222.5

Figure 3. Schedule scaled for energy minimisation

n1

n3

Deadline

30

V(v)

t(ms)

3.3

0

PE1

PE2

n7

15 25

0 15 19

19 26

25 26

n5

n6

3.3
31

2.62

Figure 4. Improper scaling

quasistatic schedule with voltage scaling for CTGs, we consider
the CTG of Figure 1(a). Let us assume that the deadline of the
system is 30ms. Figures 2(a)-(c) show the schedules of the three
possible tracks through the CTG, as given in Table 1. The
schedules are produced using the algorithm reported in [1],
where the aim is to produce a schedule such that the worst case
delay is as small as possible. As can be seen from Figure 2, the
amount of slack time varies with the tracks, ranging from 4ms in
the case of track 3 to 10ms in the case of track 1, since the
deadline of 30ms is not to be exceeded. Figures 2(a)-(c) also
show the energy dissipation of each track, assuming a supply
voltage of 3.3V. In order to make use of DVS techniques for
energy minimisation, a well known technique [4, 10] is to scale
the schedules such that they, as much as possible, fit the imposed
deadlines. The scaling factor is the ratio between the deadline
and the total length of the schedule. For example, the scaling
factor for track 1 is calculated by 30/20=1.5. The schedules
obtained after scaling each track, considered isolated from the
others, is given in Figures 3(a)-(c). It can be observed that, in
order to produce minimal energy dissipation, the execution time
of task n1 varies from one track to the other. In the case of track
1, n1 runs from 0 to 15, in the case of track 2 the same task runs
from 0 to 13.6, and, in the case of track 3, n1 runs from 0 to 11.5.
During execution, however, the condition values of the CTG are
not known in advance. If the supply voltage and, implicitly, the
execution time of n1 is decided upon improperly, the time
constraints may be conflicted, which cannot be tolerated in
systems with hard-real time properties. For example, as shown in
Figure 4, if n1 is decided to run from 0 to 15, and the condition
values come out to be BA ^ later, the deadline will be missed
even if the remaining tasks are run using maximum supply
voltage. Thus, in order to exploit slack time as much as possible
and, at the same time, meet time constraints, the worst case slack
time (the maximum slack time that can be distributed to a task
without later conflicting time constraints during upcoming
scheduling decisions) should be identified dynamically and used
to decide how much slack time a task can exploit. The main goal
of our DVS scheduling technique for CTGs is the identification
of a voltage schedule such that, under any possible set of
condition values, deadlines are satisfied and, at the same time,
high energy savings are achieved.

3.2 Energy-Efficient Scheduling

In this paper we propose a DVS technique for CTG. The
basic idea is to identify the available worst case slack time taking
into account the conditional behaviour of CTGs. This is achieved
by dynamically identifying the worst case track, calculating the
scaling factor (i.e. the ratio between the deadline and the total
length of the schedule) and modifiing the schedule table every
time after a disjunction node (a node producing a condition value)
has been scheduled. The input of our DVS technique is a
schedule table generated by the scheduling methodology
presented in [1] whose aim is to make the worst case delay as
small as possible. What we produce is a slack time exploited
schedule table indicating voltage levels and activation times such
that deadlines are satisfied and at the same time energy
dissipation is reduced.

Our strategy is based on the idea to exploit the information
concerning condition values, available at a certain time, in order
to apply the largest possible scaling factor while still guarantee
the deadline. The point in time when additional information
concerning the future evolution of the system becomes available
is the moment when a disjunction node ends. Therefore, at the
beginning of the scheduling process, a more conservative scaling
factor is applied. Once a disjunction node has been scheduled
and, as a result, more available slack time can be identified, a
higher scaling factor should be applied. Thus the schedule of a
CTG is divided into several scaling regions by the end times of
the disjunction nodes. Each scaling region is then scaled with a
certain, suitable scaling factor. Examining Table 1, it can be
found that the schedules of the tasks in each column correspond
to such a scaling region. However, a column of the initial
schedule table has not necessarily to directly correspond to a
scaling region. This will be the case whenever, according to the
generated schedule, a task is running in parallel with a
disjunction task and is finishing after that one. We illustrate such
a situation with the CTG in Figure 5(a). Figure 5(b) presents the
schedule of the track corresponding to condition value A
according to the schedule table in Table 2. Task n2 is running
over the finishing time of disjunction task n3. However, when
task n3 has finished, the information concerning the selected
tracks, in our case, the one corresponding to condition value A,
is available. Therefore, in order to make use of the available
slack, a larger scaling factor will be applied and, consequently,
the PE will be run at lower voltage, as shown in Figure 5(c). The
corresponding scaled schedule Table is shown in Table 3. It can
be observed that task n2 belongs to three different scaling regions,
corresponding to the situations before and after the end of
disjunction task n3.

The basic idea is to identify the scaling regions delimited by
the end times of disjunction tasks and to scale the schedules of
the tasks in each region after determining the slack time
available and the corresponding scaling factor. The drawback of
this scaling technique is that the tasks on the non-critical paths
do not take advantage of the available slack time. For example,
as shown in Figure 5(c), after scaling the tasks with
corresponding scaling factors, a slack time s3 is still available.
This has to be exploited for further energy saving. The approach
in [2] is used to exploit such slack times. This is achieved by: (1)
identifying the extendable tasks (in our case only n2); (2)
identifying the task, among those extendables, leading to the
highest energy saving if is extended with a certain quantum of
time; (3) extending the identified task with that quantum. The
three steps above are repeated until there are no slack left. Figure
5(d) is the result after exploit slack time s3.

Deadline

(a) CTG

_
A

n1

n2

n3
n4 n5n6n7

A

(c) Scaling the schedule of (b)

PE1

PE2
0

0

Deadline

t(ms)

V(v)

15

n1 n3 n4 n6 n7

n2

2 4 6 8 10

2 6
slack time s2

8

slack time s1

(b) Schedule when the condition value is A

PE1

PE2
0

0

Deadline

t(ms)

V(v)

15

2.5 5 8.3 11.6

2.5 8.3

n1 n3 n4 n6 n7

n2
11.6

scaling factor
for 1st region

= 1.25

scaling factor
for 2nd region

=1.67

PE1

PE2
0

0

t(ms)

V(v)

15

2.5 5 8.3 11.6

2.5 8.3

n1 n3 n4 n6 n7

n2
slack time s3

11.6

(d) Exploiting slack on non-critical path
Fig 5. a CTG example and its scaling

cond values true A A
n1 0, 2
n2 2, 6
n3 2, 4
n4 4, 6
n5 4, 8
n6 6, 8 8, 10
n7 8, 10 10, 12
Table 2. Original schedule table

cond values true A A
n1 0, 2.5
n2 2.5, 5 5, 8.3 5, 7.5
n3 2.5, 5
n4 5, 8.3
n5 5, 10
n6 8.3, 11.6 10, 12.5
n7 11.6, 15 12.5, 15
Table 3. Scaled schedule table

Our DVS technique is described in Figure 6. Step 01 pre-
processes the input schedule table, so that each column
corresponds to a scaling region. As discussed before, these
practically means that certain tasks have to be split and
distributed over several columns. Table 4 shows two lines of the
schedule table resulted after pre-processing Table 2. In this case
task n2 is the one that had to be split. Steps 02-10 apply DVS to
all the columns in SchTable, in a left-to-right sequence. For each
column col, step 04 firstly identifies all possible tracks that will
be followed after the condition values heading col are known;
then the track with the latest end time (the end time of the sink
node in the track) is identified, which is referred as the worst
case track trackworst. Step 05 calculates the worst case total slack
time slackworst which is obtained by subtracting the end time of
trackworst from the deadline Td. Step 06 calculates the slack time
distributable to col, slackcol, by distributing slackworst to the
columns along the trackworst in proportion to the columns'
duration (i.e. the difference between the latest end time and the
earliest start time of the tasks in the column). Step 07 scales col
with the scaling_factor given by:

colduration
colslackcolduration

factorscaling
+

=_ (3)

where durationcol is the duration of col. Step 08 exploits the
slack times on non-critical path using the DVS technique in [2].
Due to the scaling of col, Step 09 has to update the contents in
the columns that are successive to col along all the possible
tracks.
DVS technique for CTGs
Input: a schedule table generated by [1] – SchTable
 deadline - Td
Output: a slack time exploited schedule table indicating voltage
levels and activation times - ScaledSchTable
01 pre-process SchTable
02 for (each column col in SchTable, from left to right)
03 {
04 identify the worst case track - trackworst
05 calculate the worst case total slack time - slackworst
06 calculate the slack time distributable to col - slackcol
07 scale col with scaling_ factor given by Equation (3)
08 apply DVS technique in [2] to col
09 update SchTable
10 }

Figure 6. DVS technique for CTGs
cond values true A A

n1 0, 2
n2 2, 4 4, 6 4, 6

Table 4. Pre-processed schedule table
To illustrate the proposed DVS technique for CTGs, we

apply it to the schedule table for the CTG of Figure 1(a), Table 1.
In this case, because the columns already correspond to the
scaling regions, we can simply skip step 01. Then we begin to
process column true. Step 04: taking into account that no
condition value is yet known, there are 3 possible tracks: track1,
track 2, and track 3 (see Figure 1). Track 3 is the worst case
track, where the sink node n7 ends at 26, compared to 20 in track
1 and 22 in track 2. Step 05: since the worst case track finishes at
26 and the deadline is 30, the worst case total slack time is 4 ms.
Step 06: 1.5 ms slack time is distributed to column true which is
given by (4*(10/26)), where 10 is the column's duration and 26
is the time needed to finish the worst case track. Step 07: the task
in column true, n1, is scaled with the scaling factor 1.15, which
is given by ((10+1.5)/10) using Equation (3). Step 08: since there
is no non-critical path in column true, this step can be skipped.
Step 09: column true is a part of track 1, track 2, and track3. In
track 1, column A is successive to column true; in track 2,
columns A and BA ^ are successive to column true; in track 3
columns A and BA ^ are successive to column true.
Therefore the schedules of columns A, A , BA ^ , and BA ^
are updated due to the scaling of column true. Table 5 is
produced after the end of Step 09. Starting with Table 5,
repeating steps 04-09 to columns A , A , BA ^ , and BA ^
separately, the final schedule table is obtained as in Table 6.

Using Table 6, Figures 7(a)-(c) show the actual schedules of
the three possible tracks of the CTG of Figure 1(a), which meet
the deadline and at the same time produce minimal energy
dissipation. By comparing Figure 3 and Figure 7, it can be
observed that the actual schedule is the same as the schedule of
Figure 3 only in the case of track 3, which is the worst case track.
It is important to note that the schedules of the other tracks in
Figure 3 are impracticable! This is because the schedules in
Figure 3 are produced upon the assumption that the condition
values are known before executing the disjunction nodes, which
is not true during the runtime of the application. In reality, the
condition values are not known until all the disjunction nodes
have finished their execution. Hence, it is not possible for an

n1

n2

Deadline

30

V(v)

t(ms)

3.03

0

PE1

PE2

Energy = 67.6 uJ

n7
11.5

2.35
20.75

2.35

0 11.5 20.75

30
t(ms)

PE1

PE2

n1

n3

Deadline

30

V(v)

t(ms)

3.03

0

Energy = 80.7 uJ

n4
11.5

3.03
19.6

2.43

0 11.5 16.2

30

n6

16.2

2.43

2.43

n7
21.3

19.6 21.3

t(ms)
n1

n3

Deadline

30

V(v)

t(ms)

3.03

0

PE1

PE2

Energy = 109.6 uJ

n7
11.5 23.1

0 11.5 16.2

16.2 24.2

23.1 24.2

n5

n6

3.03
30

t(ms)

(a) track 1 (b) track 2 (c) track 3
Figure 7. Actual schedule modified with DVS

 true A A BA ^ BA ^
n1 0, 11.5
n2 11.5, 16.5
n3 11.5, 15.5
n4 15.5, 17.5
n5 15.5, 21.5
n6 17.5, 18.5 21.5, 22.5
n7 16.5, 21.5 18.5, 23.5 22.5, 27.5

Table 5. Result after processing column true

 true A A BA ^ BA ^
n1 0, 11.5
n2 11.5,20.75
n3 11.5, 16.2
n4 16.2, 19.6
n5 16.2, 23.1
n6 19.6, 21.3 23.1, 24.2
n7 20.75, 30 21.3, 30 24.2, 30

Table 6. Final schedule table
online voltage scheduler to immediately use this information to
achieve feasible and energy-efficient settings.

3.3 Energy-Efficient Mapping

In Sections 3.1 and 3.2 the DVS technique has been applied
to an existing mapped and scheduled CTG. In this section, we
introduce a mapping approach specifically designed for better
utilization of DVS for CTG. Combining the mapping with the
DVS technique for CTG can reduce system energy dissipation
further. The flow of a mapping optimisation is shown in Figure
8(a). It is based on a genetic algorithm (GA) [15]. In each
generation, a new population evolves from the current
population by mating the fittest individuals and mutating. In our
case, each individual is represented by a mapping string and
represents a candidate mapping. Figure 8(b) shows a possible
mapping string for the CTG of Figure 1(a), which means n1 is
mapped to PE1, n2 is mapped to PE2, and so on. The algorithm
constructs and evaluates many different mapping strings during
an iterative optimisation process. The optimisation is guided by a
fitness function. In our case, the fitness function is:

2
),max(

)(

⋅

∑=

dT
eTdT

i
inEFitness (4)

where E(ni) is the energy dissipation of task ni, Td is the deadline
of the CTG, Te is the real execution time of the CTG. The first
part of the fitness function is the total energy dissipation of all
tasks, which has to be minimised. The second part of the
function introduces a penalty factor due to deadline violations. If
the length of the schedule is smaller than the deadline, the value
of the second part is 1, hence, no penalty is applied. In the
opposite case, the squaring introduces a higher penalty to the
fitness. Thus, the optimisation process is driven towards
solutions with reduced energy consumption, while, at the same
time, the deadline is satisfied.

As can be observed in Figure 8(a), firstly, an initial
population of mapping strings is created randomly
(Initialization). Then for each individual in the population, a
mapping is generated according to the mapping string (Perform

Mapping). Next, a schedule table is produced for the mapped
CTG using the scheduling algorithm in [1] (Perform Scheduling).
After this, the schedule table is passed to the proposed DVS
technique for CTG (see Section 3.2) to generate a low energy
schedule (Perform DVS). According to the results of DVS, the
fitness for the mapping string is calculated using Equation (4)
(Evaluation). If no improved individual has been produced for a
certain number of generations, the synthesis is stopped and the
best implementation is reported. Otherwise, the synthesis
continues with Generation Evolvement. This step implies the
selection of high ranked individuals and the application of
mating and mutation operators.

The aim of this iterative process is to finally produce an
implementation that has low energy dissipation, and at the same
time meets the deadline.

(a) energy-efficient mapping (b) mapping string

1
2
2
1

2
1

n1

n2
n3

n4

n6

n7

1n5

Initialization Perform
Mapping

Perform
Scheduling

Perform
DVS

EvaluationRanking

Generation
Evolvement

Termination
No

Architecture + Specification

Implementation
Yes

Figure 8. Energy-efficient mapping

4 Experimental Results
The proposed DVS and mapping technique has been tested

on a number of CTG examples to demonstrate their capability to
produce high quality solutions in terms of low energy dissipation.
The experiments were carried out on a Pentium III 866/256MB
PC running CYGWIN. The examples consist of two sets: (1) A
real-life example taken from [16]. It is a vehicle cruise controller
modelled as a CTG, which consists of 32 tasks, 35 edges, and 2
conditions. The system specification has been mapped into an
architecture consisting of 5 PEs connected through a
communication bus. The initial PEs, considered in [16], are not
DVS-enabled. We extended the same PEs with DVS capabilities,
such that Vt=0.8v and Vmax=3.3v. (2) We have generated 15
random mapped CTG examples (ctg1 – ctg15) using the tool
provided by [1], with various complexities in terms of the
number of nodes, edges, conditions, and considering DVS-
enabled PEs with Vt=0.8v and Vmax=3.3v.

Firstly, to test the effectiveness of the proposed DVS
technique for CTG, we use the algorithm presented in [1] to
generate a schedule for each example and then apply the
proposed DVS technique (see Section 3.2) to it. Table 7 gives
the experimental results for the real-life example with different
deadlines. It can be seen that the proposed DVS technique
reduces the energy dissipation, and the reduction becomes higher
as the deadline increases, e.g. the energy dissipation is 355.15
with a deadline of 100% of the length of the schedule produced
by [1]. The energy dissipation is reduced further to 288.87 with a
120% deadline. Table 8 shows the results for the randomly
generated examples with a deadline equivalent to 110% of the
minimal one produced by [1]. For this experiment, the task
mapping has not been optimized, but we considered an implicit

mapping generated randomly together with the task graph. It can
be seen that, for all the examples, the proposed DVS technique
reduces the energy dissipation effectively. For example, the
energy dissipation of ctg1 before DVS is 525.00, and it is
reduced to 391.29 after DVS; similarly, ctg10 consumes 1803.75
energy before DVS, and it is reduced to1540.26 after DVS.

We have performed another set of experiments in order to
demonstrate the quality of our mapping approach. The results are
shown in Table 9. Column 2 of the table shows the energy
reduction when our DVS technique is applied to the mapping
and scheduling solution proposed in [13]. In column 3, we show
the results obtained when the same DVS technique is applied
together with the mapping and scheduling technique proposed in
this paper. It can be observed that, using the GA based mapping
specifically developed for DVS, the energy dissipation is
reduced further, e.g. in the case of ctg12, the achieved reductions
is 44.84%, that is 24.51% higher than the approach of [13].
Table 9 also provides some information about the CPU time of
the proposed DVS and mapping technique. Due to the iterative
optimization feature, the higher energy reduction achieved by
our approach is at the cost of increased CPU time.

Energy dissipation after DVS Energy
dissipation
before DVS

100%
deadline

105%
deadline

110%
deadline

120%
deadline

440.00 355.15 335.61 318.28 288.87
Table 7. Results for the real-life example

Energy dissipation Example node/edge/condi-
tion/PE number before DVS after DVS

ctg1 13/16/2/2 525.00 391.29
ctg2 13/16/2/3 547.50 440.53
ctg3 13/16/3/2 625.00 548.12
ctg4 25/30/2/2 1475.00 1245.30
ctg5 25/30/2/4 1137.50 929.77
ctg6 25/30/3/2 1242.50 1131.11
ctg7 25/30/3/3 1413.75 1141.34
ctg8 25/29/4/2 1187.50 983.80
ctg9 35/41/2/2 1412.50 1122.18

ctg10 37/45/2/3 1803.75 1540.26
ctg11 35/41/2/5 1481.25 1191.05
ctg12 38/48/2/2 2072.50 1863.27
ctg13 42/52/2/4 2302.50 1921.13
ctg14 48/60/3/3 1845.00 1385.54
ctg15 59/71/3/3 3648.75 2998.32

Table 8. Results for the random examples

Energy reduction (%) CPU time (s)
Exam-

ples
[13]+

proposed
DVS

[1]+propose
d mapping &

DVS

[13]+
proposed

DVS

[1]+propose
d mapping &

DVS
ctg1 23.86 38.65 0.80 10.74
ctg2 22.55 42.73 0.88 35.00
ctg3 18.06 33.56 0.72 9.82
ctg4 14.07 27.21 0.86 65.08
ctg5 18.18 31.23 0.77 143.23
ctg6 15.48 31.35 0.91 85.62
ctg7 17.27 27.69 0.93 256.40
ctg8 12.92 22.62 0.79 39.22
ctg9 21.10 30.49 0.75 14.82

ctg10 19.72 28.41 0.75 26.91
ctg11 22.32 30.68 0.76 39.15
ctg12 20.23 44.84 1.22 342.06
ctg13 19.07 50.99 0.81 1777.65
ctg14 22.21 33.22 1.30 116.34
ctg15 18.04 28.85 0.99 3639.51

Table 9. Results of the DVS the mapping techniques

5 Conclusions
We have presented, for the first time, a novel DVS technique

and an energy-efficient mapping technique for data/control
dominated embedded systems expressed as conditional task
graphs. The DVS technique exploits the slack time taking into
account the conditional behaviour of a CTG. The GA based
mapping produces a solution optimized for the utilization of
DVS. Combining the proposed mapping and the DVS technique
for CTG with the scheduling proposed in [1], it is possible to
improve the power efficiency of the data/control dominated
embedded systems and, at the same time, to meet the imposed
deadline. Experimental results show that the proposed DVS
technique significantly reduces the system energy dissipation,
compared to the approaches which neglect the availability of
DVS, and that this optimisation can be achieved in a reasonable
amount of time. Current work undertaken by the authors
examines the influences of communications on the synthesis of
low power embedded systems expressed as CTGs.
References:
[1] P. Eles, A. Doboli, P. Pop and Z. Peng, "Scheduling with bus access
optimization for distributed embedded systems," IEEE Trans. on VLSI,
vol.8, no.5, pp.472-91, Oct. 2000.
[2] M. T. Schmitz and B. M. Al-Hashimi, "Considering power variations
of DVS processing elements for energy minimisation in distributed
systems," in Proc. ISSS'01, pp.250-255, Montreal, Canada, 2001.
[3] T. D. Burd, T. A. Pering, A. J. Stratakos and R. W. Brodersen, "A
dynamic voltage scaled microprocessor system," IEEE Journal of Solid
State Circuits, vol.35, no.11, pp.1571-80, Nov. 2000.
[4] T. Ishihara and H. Yasuura, "Voltage scheduling problem for
dynamically variable voltage processors," in Proc. ISLPED'98, pp.197-
202, Monterey, CA, USA, 1998.
[5] G. Quan and X. Hu, "Energy efficient fixed-priority scheduling for
real-time systems on variable voltage processors," in Proc. DAC'01,
pp.828-833, Las Vegas, NV, USA, 2001.
[6] I. Hong, D. Kirovski, G. Qu, M. Potkonjak and M. B. Srivastava,
"Power optimization of variable-voltage core-based systems," IEEE
Trans. on CAD, vol.18, no.12, pp.1702-14, Dec. 1999.
[7] Y. Zhang, X. Hu and D. Z. Chen, "Task scheduling and voltage
selection for energy minimization," in Proc. DAC'02, pp.183-8, New
Orleans, Louisiana, USA, 2002.
[8] M. T. Schmitz, B. M. Al-Hashimi and Petru Eles, "Energy-efficient
mapping and scheduling for DVS enabled distributed embedded
systems," in Proc. DATE'02, pp.514-21, Paris, France, 2002.
[9] J. Luo and N. K. Jha, "Power-conscious joint scheduling of periodic
task graphs and aperiodic tasks in distributed real-time embedded
systems," in Proc. ICCAD'00, pp.357-364, San Jose, CA, USA, 2000.
[10] F. Gruian and K. Kuchcinski, "LEneS: task scheduling for low-
energy systems using variable supply voltage processors," in Proc. ASP-
DAC'01, pp.449-55, Yokohama, Japan, 2001.
[11] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli and P. Pop, "Scheduling
of conditional process graphs for the synthesis of embedded systems," in
Proc. DATE'98, pp.132-38, Paris, France, 1998.
[12] K. Strehl, L. Thiele, D. Ziegenbein, R. Ernst and J. Teich,
"Scheduling hardware/software systems using symbolic techniques," in
Proc. CODES'99, pp.173-177, Rome, Italy, 1999.
[13] Y. Xie and W. Wolf, "Allocation and scheduling of conditional task
graph in hardware/software co-synthesis," in Proc. DATE'01, pp.620-
625, Munich, Germany, 2001.
[14] S. Chakraborty, T. Erlebach, S. Kunzli and L. Thiele,
"Schedulability of event-driven code blocks in real-time embedded
systems," in Proc. DAC'02, pp.616-21, New Orleans, USA, 2002.
[15] R. P. Dick and N. K. Jha, "MOGAC: a multiobjective genetic
algorithm for hardware-software cosynthesis of distributed embedded
systems," IEEE Trans. on CAD, vol.17, no.10, pp.920-35, Oct. 1998.
[16] P. Pop, "Scheduling and communication synthesis for distributed
real-time systems," Licentiate thesis, Linköpings University, Sweden,
2000.
[17] M. T. Schmitz, B. M. Al-Hashimi and Petru Eles, "Synthesizing
energy-efficient embedded systems with LOPOCOS," Design
Automation for Embedded Systems, vol. 6, pp.401-24, 2002.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

