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Abstract 
 Smart cards are vulnerable to both invasive and non-invasive 
attacks. Specifically, non-invasive attacks using power and timing 
measurements to extract the cryptographic key has drawn a lot of 
negative publicity for smart card usage. The power measurement 
techniques rely on the data-dependent energy behavior of the 
underlying system. Further, power analysis can be used to identify 
the specific portions of the program being executed to induce timing 
glitches that may in turn help to bypass key checking. Thus, it is 
important to mask the energy consumption when executing the 
encryption algorithms.  

 In this work, we augment the instruction set architecture of a 
simple five-stage pipelined smart card processor with secure 
instructions to mask the energy differences due to key-related data-
dependent computations in DES encryption. The secure versions 
operate on the normal and complementary versions of the operands 
simultaneously to mask the energy variations due to value 
dependent operations. However, this incurs the penalty of increased 
overall energy consumption in the data-path components. 
Consequently, we employ secure versions of instructions only for 
critical operations; that is we use secure instructions selectively, as 
directed by an optimizing compiler. Using a cycle-accurate energy 
simulator, we demonstrate the effectiveness of this enhancement.  
Our approach achieves the energy masking of critical operations 
consuming 83% less energy as compared to existing approaches 
employing dual rail circuits. 

1. INTRODUCTION 
With increased usage of smart cards, the financial incentive for 

security attacks becomes attractive. For example, the smart card 
usage in North America surged by 37% in 2000, particularly in the 
financial segment where security is a prime issue. There are various 
classes of security attacks that can be broadly classified as: 
microprobing, software attacks, eavesdropping and fault generation 
[15]. Microprobing is an invasive technique that involves physical 
manipulation of the smart card circuit after opening the package. 
Software attacks focus on protocol or algorithm weaknesses, while 
eavesdropping techniques hack the secret keys and information by 
monitoring the power consumption, electromagnetic radiation and 
execution time. The fault generation techniques induce an 
intentional malfunction of the circuit by using techniques such as 
varying the supply voltage, inducing clock glitches, exposing the 
circuit to ionizing radiation, etc. Our focus in this work is on 
addressing the information leak due to eavesdropping power profile.  
     
*  This material is based on work supported in part by the Office of Naval 
Research under Award No. N00014-01-1-0859, MARCO 98-DF-600 GSRC 
Award, NSF Awards No. 0093082, 0093085, 0082064, 0103583. Any 
opinions, findings, and conclusions or recommendations expressed in this 
presentation are those of the authors and do not necessarily reflect the views 
of the Office of Naval Research. 

 
 Power analysis attack is based on analyzing the power 

consumption of an operation. The main rationale behind this kind of 
an attack is that the power consumption of an operation depends on 
the inputs (in the case of cryptography, the inputs are plaintext and 
secret key). The differences in values of the operands being 
operated on result in different switching activities in the memory, 
buses, datapath units (adders, multipliers, logical units) and pipeline 
registers of the smart card processor. Among these components, the 
processor datapath and buses exhibit more data-dependent energy 
variation as compared to memory components [16]. 

There are different degrees of sophistication involved in such 
power analysis based attacks. Simple Power Analysis (SPA) [7] 
uses only a single power consumption trace for an operation. From 
this power trace, an attacker can identify the operations being 
performed (such as whether a branch at point p is taken or not or 
whether an exponentiation operation is performed). Using this 
power information and by knowing the underlying algorithm being 
implemented, such information can reveal the secret key.  For 
example, when a branch is taken based on a particular bit of a secret 
key being zero, the attacker can identify this bit by monitoring the 
power consumption difference between a taken and not taken 
branch. Protecting against this type of simple attack can be achieved 
fairly easily by restructuring the code. For example, a restructured 
algorithm is provided in [3] to eliminate branch conditions that were 
initially revealing the secret key information. Also, techniques that 
randomly introduce noise into the power measurement can mislead 
simple power analysis. An example of such technique involves 
adding dummy modules and activating them at random time 
intervals. These modules will consume additional power skewing 
the original power profile. However, such techniques only provide 
protection from straightforward hacking techniques. Higher-order 
power analysis techniques can be used to circumvent these 
protection mechanisms.  

Differential power analysis (DPA) is currently the most 
popular higher-order power analysis. This scheme utilizes power 
profiles gathered from several runs and relies on the data-dependent 
power consumption variation to break the key [7]. In [5], Goubin et 
al. show how the secret key is guessed by using 1000 sample inputs 
and their corresponding 1000 power consumption traces. Then, a 
mean of all these power consumption traces represented as M is 
obtained. Next, the hacker guesses a particular key and based on the 
input determines a theoretical value for one of the intermediate bits 
(b) generated by the program. Then, the outcome of this bit is used 
to separate the 1000 inputs into two groups (G1 and G2) based on 
whether b=0 or b=1. If the mean of the power profiles in Group G1 
is significantly different from that of M, this indicates that the guess 
was correct. This difference is a manifestation of the consequent 
downstream computational power differences that used the bit b. As 
evident from the above discussion, random noises in power 
measurements can be filtered through the averaging process using a 
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large number of samples. However, the use of random noises can 
increase the number of samples to an infeasible number to be of 
practical concern.  

In this work, we propose to counter DPA by modifying the 
underlying circuit to make its power consumption independent of 
the operand data using dual rail logic.  However, the naïve use of 
such logic to mask the data dependent energy behavior to protect 
the secret keys has a significant energy penalty.  Our goal is to limit 
the use of the additional components required for energy masking 
for selective operations.  The key to identify the operations that 
require energy masking is an optimizing compiler. This compiler 
allows users to annotate certain critical variables. Whenever these 
critical variables or values derived from them are operated on, it is 
important to mask any data dependent energy behavior. This is 
because the energy profile can be used to reveal sensitive data (e.g., 
key values in encryption algorithms) without any energy masking.  
The compiler uses the secure instructions for all operations that 
directly operate on the annotated variables. Further, it uses a 
technique called forward slicing to identify other critical operations 
that depend on the annotated ones. Forward slicing is required to 
prevent indirect information leak from operations that do not 
operate on the sensitive variables directly.  

We evaluate the proposed scheme focusing on the DES 
algorithm using a detailed cycle-accurate power analysis with the 
help of an energy estimation framework. Note that our approach is 
general and can be extended to other algorithms that need protection 
against current measurements based breaks. We measure the energy 
consumed in every cycle in picoJoules throughout the paper. The 
use of the simulator provides a far greater control of the granularity 
of information than would be practically possible for a hacker using 
physical power measurement tools. Thus, our approach is 
conservative and factors in possible improvements in measurement 
fidelity. Our experiments show that the proposed approach based on 
selective use of secure instructions achieves the energy masking of 
critical operations consuming 83% less energy as compared to 
existing approaches that apply masking to all operations due to the 
lack of any compiler analysis. 

The remainder of this paper is organized as follows. In Section 
2, we discuss related work. In Section 3, we revise the DES 
algorithm. In Section 4, we present our masking method. This 
section gives explanation about our secure instruction and our 
modified architecture. Finally, conclusions and a brief outline of 
future work are given in Section 5.  

2.   RELATED WORK 
 Various researchers have investigated the potential for both 
invasive and non-invasive attacks against smart cards. An overview 
of these techniques is presented in [4, 15]. In particular, the retrieval 
of secret information from a smart card through its leakage called 
side-channel analysis poses an important class of attack. Analyzing 
the power profile of an encryption process is one of the popular 
side-channel attacks. Kocher et al. [7] provide a detailed description 
of the simple power analysis (SPA) and differential power analysis 
(DPA) techniques. The difference between these two attacks is that 
DPA is more sophisticated and involves statistical analysis using a 
larger sample set. 
 There have been prior attempts to address the SPA and DPA 
attacks [2,3,5,6,7,12]. These counter measures can be classified into 
three types as performed in [5]. First, random timing shifts and 
noises can be added such that computed means for power 
consumption do not correspond to the same instruction. However, 
the difficulty in the protection process is to ensure such random 
techniques are not vulnerable to statistical treatment using large 
samples. While complete protection is difficult to achieve using 
such a counter measure, it could make it infeasible for an attacker to 
break the key. The second counter measure technique is to modify 

the underlying software implementation or algorithm [3, 4, 5]. For 
instance, the use of non-linear transformations of S-box operations 
is proposed in [5] to avoid some DPA attacks. However, it is 
observed in [4] that software counter measures may be difficult to 
design.  

The third form of countermeasure involves replacing some of 
the critical instructions such that their energy consumption behavior 
does not leak any information. Our approach falls into this category. 
Dual-rail logic has been identified as one of the most promising 
ways to provide protection to SPA and DPA [4]. The use of dual-
rail encoding and self-timed circuits is also proposed in [12]. The 
use of self-timed circuits can alleviate problems arising from clock 
glitches induced in synchronous circuits while the dual-rail logic 
masks the power consumption differences due to bit variations. Our 
contribution is the actual modification of an embedded processor to 
implement this technique and the addition of secure instructions to 
its instruction set. However, the use of dual-rail logic can increase 
overall power consumption by almost two times as observed in our 
experiments. In fact, power is an important constraint for smart card 
markets such as the GSM industry and specific constraints on 
maximum power are imposed by the GSM specification for 
different supply voltages [4].  

3.   DATA ENCRTYPTION STANDARD 
Data Encryption Standard (DES) is one of many symmetric 

cryptography algorithms that are widely used. DES [1] uses 64 
binary bits for the key, of which 56 bits are used in the algorithm 
while the other 8 bits are used for error detection. Similar to other 
cryptography algorithms, the security of the data depends on the 
security provided by the key used to encrypt or decrypt the data. 
Although the DES algorithm is public, one will not be able to 
decrypt the cipher unless they know the secret key used to encrypt 
that cipher. 

       

        Figure 1. S-Box Operations (f(R,K)) [1] 
The plaintext is permuted first before it goes to the encryption 

process. The core of the DES encryption process consists of 16 
identical rounds, each of which has its own sub secret key, called 
Kn (n=1,2, ..16). Each Kn is 48 bits produced from the original 
secret key using key-permutation and shift operations. Each round 
consists of 8 S-Box operations which use the 48-bit input derived 
from the permutated input and sub secret key Kn (see Figure 1). 
Each S-box operation takes 6 bits from the 48-bit input that is 
divided into 8 blocks. These 6-bits are used to index a table. This 
table look up operation consequently generates 4 bits (for each S-
Box). These 32 output bits (4 x 8 S-Boxes) are then used as an input 
combination for the next round. 

The complete encryption process of DES is shown in Figure 2 
(left side). Here, (+) denotes bit-by-bit addition modulo 2. From this 
algorithm, we can identify the operations that can reveal the secret 
key. These operations are key permutation, left-side and right-side 
assignment operations and key generation. Next, we need to 



identify the underlying instructions used to implement operations 
and consider their secure versions. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
         (a) Or iginal DES operations      (b)   Modified DES operations 

         
 
Figure 2. Modified DES Algor ithm 

 

4.  ENERGY MASKING FOR DES 

4.1 Overview 
  Our energy masking approach is based on eliminating the input 
dependencies of an operation. Our approach is focused on four 
types of operations that are critical in the DES encryption: 
assignment operation, bit-by-bit addition modulo two (XOR) 
operation, shift operation and indexing operation. In our approach, 
we do not mask all the operations, but only the operations that use 
the secret key and those operations that use the data generated from 
prior secure operations.  The compiler analyzes the code and 
identifies how these variables are used within the code. Then, for 
the operators that work on these variables, the compiler employs 
secure versions of the corresponding instructions. It should be 
emphasized that it is not sufficient to protect only the sensitive 
variables annotated by the programmer. This is because the 
variables whose values are determined based on the values of the 
protected variables can also be exploited to leak information. 
Consequently, such variables also need to be protected. We achieve 
this using a technique called forward slicing [11]. In forward 
slicing, given a set of variables and/or instructions (called seeds), 
the compiler determines all the variables/instructions whose values 
depend on the seeds. The complexity of this process is bounded by 
the number of edges of the control flow graph of the code being 
analyzed. After all the variables whose values are affected by the 
seeds are determined, the compiler uses secure instructions to 
protect them. 

 Figure 2 shows how we modified the DES operations. Figure 
2(a) shows the original DES operations. The first step is initial 
permutation of the plaintext. This operation does not use any secret 
key and hence does not require being secure. 

 The next operation is the key permutation. This operation 
obviously needs to be secure. Figure 2(b) shows how we modify 
this operation. In this figure, the symbol “=”  corresponds to the 
original assignment (i.e., insecure assignment), and the symbol “�”  
indicates that the assignment is secure.  

 The next step contains the operations within each round. Since 
some of these operations require the secret key, and the operations 
are repeated in every round using the data generated from the 
previous round, we need to secure all operations inside this block. 
Note that the modified left side operation uses a secure assignment 

operation, although it does not operate on the secret key directly. 
This is because it uses the data generated from the previous round 
(for �2nd round) that uses the secret key. In the right side operation, 
all the instructions need to be secure. Each round uses four types of 
secure operations: they are secure assignment, secure shift, secure 
bit-by-bit addition modulo two and secure indexing. Note that the S 
symbol in the figure represents the S-Box operation.  

 The last operation is the output inverse permutation. This 
operation does not need any secure instruction although it uses data 
generated from secure instructions as it reveals only the information 
already available from the output cipher. The following section 
explains how our secure instructions are implemented. 

4.2 Implementation of Secure Instructions 
 Our target 32-bit embedded processor has five-pipeline stages 
(fetch, decode, execute, memory access and write back) and 
implements the integer instructions from the Simplescalar 
instruction set architecture [16]. Its ISA is representative of current 
embedded 32-bit RISC cores used in smart cards such as the 
ARM7-TDMI RISC core. We augment our target instruction set 
architecture with secure versions of select instructions. To support 
these secure operations, the hardware should be modified as 
explained below. 

 

 

 

 

 

 

 

 

 

Figure 3. Secure Load Architecture (dotted por tion is the augmented 
par t) 

 First, we provide an overview of the underlying reasons for the 
differences in the power consumption because of data dependencies 
when executing these instructions. An assignment operation 
typically involves loading a variable and storing it into another 
variable. We will consider the parts of the load operation that are of 
interest. All stages of our pipeline (see Figure 3) till the memory 
access stage are independent of the loaded data (note that revealing 
the address of data is not considered as a problem). The memory 
access itself is not sensitive to the data being read due to the 
differential nature of the memory reads. However, the output data 
bus switching depends on the data being transmitted. For example, 
let us consider the different scenarios for the 1st bit (d0) of the 32-
bit data read from the cache. If the values of d0 in two successive 
cycles are 0 and 1, it consumes more power than the case when the 
values are 0 and 0 in these two cycles. Specifically, for an internal 
wire of 1pF and a supply voltage of 2.5V, the first case consumes 
6.25pJ more energy than the second case. The output from the 
memory access stage is fed to the pipeline register before being 
forwarded for storing the data in the register file. Thus, based on 
whether a bit value of one or zero is stored in the pipeline register 
bits, a different amount of energy is consumed. Finally, the energy 
consumed in writing to a register is independent of the data as the 
register file can be considered as another memory array.     

The secure version of the load operation will need to mask all 
these energy differences due to bit dependences. This is achieved by 

Data Initial Permutation 
 (L0,R0) = PermuteIP(Data) 
Key Permutation 
 (C0,D0) = PermuteK1(Key) 
= denotes insecure assignment 

Data Initial Permutation 
 (L0,R0) = PermuteIP(Data) 
Key Permutation 
 (C0,D0) � PermuteK1(Key) 
� denotes secure assignment 

           M th Rounds 
Left Side Operation 
Lm = Rm-1 
M th Key Generation 
Cm = Rotate(Cm-1,n) 
Dm = Rotate(Dm-1,n) 
Km =PermuteK2(Cm,Dm)   
Right Side Operation 
E(R )= PermuteE(Rm-1) 
f(Rm-1,K) = S(E(R)(+) Km) 
Rm = Lm-1 (+) f(Rm-1,K) 

          M th Rounds 
Left Side Operation 
Lm � Rm-1 
M th Key Generation 
Cm � Rotate(Cm-1, n) 
Dm � Rotate(Dm-1,n) 
Km � PermuteK2(Cm,Dm)  
Right Side Operation 
E(R)� PermuteE(Rm-1) 
f(Rm-1,K) � S(E(R) <+> Km) 
Rm � Lm-1 <+> f(Rm-1,K) 

Output Inverse Permutation 
Output=PermuteIP-1(R16,L16) 

Output Inverse Permutation 
Output=PermuteIP-1(R16,L16) 

Reg 
File 

ALU 

M
em

or
y 

Offset 
Fetch 

Address 
Calculation 

base 

offset mem 

memdata 

!memdata 
Memory 
Fetch 

Load 
into Reg 

Dummy 
Capacitance 
Load 

IF ID         EXE                      MEM  WB
  



the following modifications to the architecture. The buses carrying 
the data from a secure load are provided in both their normal and 
complementary forms. Thus, instead of a 32-bit bus, we use a 64-bit 
bus. Thus, the number of 1s and 0s transmitted in the bus will both 
be 32. However, this is not sufficient for masking the energy 
differences that depend on the number of transitions across the bus. 
But this modification along with a pre-charged bus can mask this 
difference. All the 64 bus lines are pre-charged to a value of one in 
the first phase of the clock. In the next evaluating phase, the bus 
settles to its actual value. Exactly, 32 of the bus lines will discharge 
to a value of zero. In subsequent cycles, energy is consumed only in 
pre-charging 32 lines independent of the input activity. The next 
modification involves propagating the normal and complementary 
values until the write back stage. The complementary values are 
terminated using a dummy capacitive load. The required 
enhancements to the underlying processor architecture are 
illustrated in Figure 3. Similarly, a secure version of the store 
operation involves passing along both the normal and 
complementary forms of the data read from the register file in the 
decode stage to the memory access stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Figure 4. Code level representation of the left side operation 

            A secure assignment uses a combination of both the secure 
load and the secure store to mask the energy behavior of the 
sensitive data. Figure 4 shows a specific elaboration of the use of 
the secure assignment in assembly code for the assignment 
performed during the “ left side operation” . The high-level 
assignment statement leads to a sequence of assembly instructions. 
The critical operations (the load and store instructions highlighted) 
whose energy behavior needs to be made data independent are then 
converted to secure versions in our implementation by the 
optimizing compiler. 

 The secure 32-bit XOR instruction is implemented using 
complementary pre-charged circuit (see Figure 5) that will ensure 
that for every XOR bit that discharges in the required circuit, the 
complementary circuit will not discharge and vice-versa. In the first 
clock phase (when v =0), all (64 = 32 original + 32 complementary) 

the output nodes of the XOR circuit are pre-charged to one. In the 
next phase (when v=1), half of them will discharge and the other 
half of them will remain at one. In subsequent cycles that use the 
XOR, the energy is consumed only for charging 32 output nodes 
immaterial of the data activity. 

 During the S-Box operation, a 6-bit value is used to index a 
table. This operation is performed by a load operation with the 6-bit 
value serving as the offset in our underlying architecture. Note that 
our current secure load operation does not mask the energy 
difference due to differences in the offset. As these 6-bits are 
derived from the key, it is also important to hide the value of this 
offset. When the 6-bit value is added as an offset to the base address 
of the table, the addition operation will consume an energy based on 
the 6-bit value. In order to avoid this, we align the base address of 
the table such that the 6-bit value serves as the least significant bits 
of the lookup and the most significant bits are determined at 
compile time. Further, the inverted value of this 6-bit index is 
propagated to mask the energy consumption. Thus, the load 
operations used for indexing are replaced by the secure indexing 
that generates the memory address using our secure version. 

      
 
Figure 5. XOR circuit and its complement. v is the clock. A and B are 
the inputs to the XOR function 
 
 In order to utilize these augmented architectural features, the 
compiler tags selected operations as secure. Secure instructions can 
be implemented using either the unassigned opcodes (bits in the 
instruction identifying the operation) in the processor architecture or 
by augmenting the original opcodes with an additional secure bit 
per operand. In our implementation, we resort to the second option 
to minimize the impact on the decoding logic. Whenever a secure 
version of the instruction is identified both the normal and 
complementary versions of the appropriate segments of the 
processor become active. For example, for the secure XOR 
operations, the data values (both source data and result data) are 
present in normal and complementary forms in the internal data 
buses. Further, the required and complementary versions of the 
circuit operate together. Since the additional parts consume extra 
power, the clock to the complementary versions is gated to reduce 
energy consumption. The details of the gating (note that the 
complementary version of the circuit is provided with a clock v 
gated with secure signal – secure v - for the evaluation phase) for 
the XOR unit implementation are shown in Figure 5. Thus, as 
opposed to energy consumption of 0.06pJ in the secure mode, the 
XOR unit consumes only 0.03pJ in the normal mode. Additional 
savings in energy also accrue during the execution of normal 
versions due to gating of the additional buses and the pipeline 
registers.    

4.3 Evaluation 
To evaluate the effectiveness of our approach, we have 

implemented the DES algorithm in software and captured the 
energy consumption in each cycle using a customized version of the 

……….  
/ /  Lef t  Si de Oper at i on 
f or  ( i =0;  i <32;  i ++)  
         newL[ i ]  = ol dR[ i ]  
……. .   

. . . . . . . . . . . . . . . . .  
$L12:  
  . . . . . . . . . . . . . . .   
$L15:  
  l w      $2, i  
  . . . . . . . . . . . . . . .  
  l a      $4, newL 
  addu    $3, $2, $4 
  move    $2, $3 
  l w      $3, i  
  move    $4, $3   
  s l l      $3, $4, 2    
  l a      $4, ol dR 
  addu    $3, $3, $4 
  move    $4, $3 
  l w      $3, 0( $4)  
  sw      $3, 0( $2)  
$L14:  
  l w      $3, i  
  addu    $2, $3, 1 
  move    $3, $2 
  sw      $3, i  
  j        $L12  
$L13:  
. . . . . . . . . . . . . . . . .  
(a) Or iginal Assembly Code 
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$L15:  
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  l a      $4, newL 
  addu    $3, $2, $4 
  move    $2, $3 
  l w      $3, i  
  move    $4, $3   
  s l l      $3, $4, 2    
  l a      $4, ol dR 
  addu    $3, $3, $4 
  move    $4, $3 
  sl w     $3, 0( $4)  
  ssw     $3, 0( $2)     
$L14:  
  l w      $3, i  
  addu    $2, $3, 1 
  move    $3, $2 
  sw      $3, i  
  j        $L12  
$L13:  
. . . . . . . . . . . . . . . . .  
(b) Modified Assembly Code 



publicly available SimplePower [16], a cycle-accurate energy 
simulator. We focus only on the processor and buses in this work, 
as memory power consumption is largely data-independent. The 
simulator uses validated transition-sensitive energy models for both 
the buses and functional units obtained through detailed circuit 
simulation and is within 9% of actual values [16]. It is able to 
accurately capture the differences in energy consumption due to 
data transitions. The flexibility of working with the simulator 
provides us the ability to monitor the energy consumed in every 
cycle (along with details of actual instructions executed) and also 
helps us in quickly identifying the benefits or (otherwise) in 
modifying the underlying processor architecture. Current 
measurement based approaches would be limited by the sampling 
speed of the measuring devices and would also be more difficult to 
correlate the operations and sources of energy consumption. The 
processor modeled for our simulation results is based on 0.25micron 
technology using 2.5V supply voltage. 
 

 
    Figure 6. Energy consumption trace of encryption (every 10 cycles) 
 
 First, we show the energy behavior of the original DES 
algorithm to demonstrate the type of information that it leaks. 
Figure 6 shows the energy profile of the original encryption process 
revealing clearly the 16 rounds of operation. This result reiterates 
that the energy profile can show what operations are being 
performed. Next, we present a (differential) energy consumption 
trace for two different secret keys to demonstrate that the energy 
consumption profiles can reveal more specific information.  
 Figure 7 illustrates the difference in energy consumption 
profiles generated for two different secret keys using the same 
plaintext. This example illustrates that it is possible to identify 
differences in even a single bit of the secret key. Similar 
observations on energy differences can also be made using 
differences in one of key-related variables generated internally.  

 
Figure 7. Difference between energy consumption profiles generated 
using two different secret keys (vary in bit 10), 1st round 

 Figures 8 and 9 show the difference between the two energy 
consumption traces generated using two different secret keys and 
the same plaintext before and after the energy masking. These 
traces are shown only for the first round of DES algorithm for 
clarity. The graphs clearly demonstrate that using secure 
instructions can mask the energy behavior of the key related 

operations. While the effectiveness of the algorithm is shown using 
differences between profiles generated from two different keys, the 
results hold good for other key choices as well. Specifically, the 
mean of the energy consumption traces which generate different 
internal (key related) bits will not exhibit any differences that can 
be exploited by DPA attacks. 

 

Figure 8. Difference between energy consumption profiles generated 
using two different keys before masking process 
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Figure 9. Difference between energy consumption profiles generated  
using two different keys after  masking process                  
 
 Figures 10 and 11 depict the difference between the energy 
consumption traces generated using two different plain texts but the 
same secret keys.  
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 Figure 10. Difference between energy consumption profiles generated 
using two different plaintexts before masking process 
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Figure 11. Difference between energy consumption generated  using two 
different plaintexts after  masking process  

 The first operation in the DES is plaintext permutation. Since 
this process is not operated in a secure mode, the differences in the 
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input values result in the difference in both the energy masked and 
original versions. The other operations in the first round are secure; 
as a result, there are energy consumption power differences. 
 However, the proposed solution is not without its drawbacks. 
The energy masking requires that the same amount of energy be 
consumed independent of the data. Thus, additional energy is 
consumed in the circuits added for the complementary portion of 
the circuit as shown in Figure 12. However, this additional energy is  
45 pJ per cycle (as compared to an average energy consumption of 
165 pJ per cycle in the original application). Note that we add 
excessive energy even in places where the differential profile in 
Figure 8 shows no difference. 
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Figure 12. Additional energy consumed due to the energy masking 
operation dur ing the 1st key permutation 

   This is because the same secure instruction is used for parts of 
the input that are the same for both the runs. Of course, in portions 
where the data was identical we have nothing to mask but we need 
to be conservative to account for all possible inputs in a statistical 
test using large samples.  It must also be observed that our approach 
of using selective secure instructions helps to reduce the energy cost 
as compared to a naïve implementation that balances energy 
consumption of all operations. For example, looking at code 
segment shown earlier in Figure 4, we increase the energy cost of 
only one of the four load operations executed in the segment. On 
the other hand, the naïve approach would convert all the four load 
operations into secure loads thereby consuming significantly more 
energy than our strategy. 

The total energy consumed without any masking operation is 
46.4 uJoule. Our algorithm consumes 52.6 uJoule while the naïve 
approach consumes 63.6 uJoule (all loads and stores are secure 
instructions). When all instructions are secure instructions, it will 
consume almost as twice as much as the original, 83.5 uJoule.  This 
scheme is the one used in current dual-rail solutions [4]. 

5.   CONCLUSIONS 
 Smart cards, unlike magnetic stripe cards, can carry all 
necessary functions and information on the card. Therefore, recent 
years have witnessed a significant increase in smart card use 
throughout the world. In fact, Data Monitor predicts that over 3 
billion smart cards are in circulation worldwide. As a result, 
ensuring secure use of smart cards is receiving a lot of attention.  
 In this paper, we focus on addressing the problem of 
information leakage using power analysis and propose a solution. 
The uniqueness of our solution comes from the fact that, unlike 
many previous techniques, we approach the problem from an 
architectural perspective and consider adding secure instructions to 
a given architecture. The purpose of these secure instructions is to 
hide the energy behavior of sensitive variables in the application 
(e.g., key values). Our experiments with the DES application 
demonstrate that the proposed solution is very effective in 
preventing the information leakage due to power analysis. 
 This work has certain limitations that need to be addressed. 
The use of complementary values and dual rail logic alone will not 
be sufficient in the future. This is because power consumption 

differences will also arise due to signal transitions on adjacent lines 
of on-chip buses [8]. Current dual-rail encoding schemes do not 
mask the key leakage arising due to these differences.  Thus, more 
work is required in addressing power analysis attacks. 
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