
Masking the Energy Behavior of DES Encryption

H. Saputra, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, R. Brooks†, S. Kim and W. Zhang
Computer Science and Engineering, Applied Research Lab†

The Pennsylvania State University
Emails: { saputra, vijay, kandemir, mji, sookim, wzhang} @cse.psu.edu, rrb5@only.arl.psu.edu†

Abstract
 Smart cards are vulnerable to both invasive and non-invasive
attacks. Specifically, non-invasive attacks using power and timing
measurements to extract the cryptographic key has drawn a lot of
negative publicity for smart card usage. The power measurement
techniques rely on the data-dependent energy behavior of the
underlying system. Further, power analysis can be used to identify
the specific portions of the program being executed to induce timing
glitches that may in turn help to bypass key checking. Thus, it is
important to mask the energy consumption when executing the
encryption algorithms.

 In this work, we augment the instruction set architecture of a
simple five-stage pipelined smart card processor with secure
instructions to mask the energy differences due to key-related data-
dependent computations in DES encryption. The secure versions
operate on the normal and complementary versions of the operands
simultaneously to mask the energy variations due to value
dependent operations. However, this incurs the penalty of increased
overall energy consumption in the data-path components.
Consequently, we employ secure versions of instructions only for
critical operations; that is we use secure instructions selectively, as
directed by an optimizing compiler. Using a cycle-accurate energy
simulator, we demonstrate the effectiveness of this enhancement.
Our approach achieves the energy masking of critical operations
consuming 83% less energy as compared to existing approaches
employing dual rail circuits.

1. INTRODUCTION
With increased usage of smart cards, the financial incentive for

security attacks becomes attractive. For example, the smart card
usage in North America surged by 37% in 2000, particularly in the
financial segment where security is a prime issue. There are various
classes of security attacks that can be broadly classified as:
microprobing, software attacks, eavesdropping and fault generation
[15]. Microprobing is an invasive technique that involves physical
manipulation of the smart card circuit after opening the package.
Software attacks focus on protocol or algorithm weaknesses, while
eavesdropping techniques hack the secret keys and information by
monitoring the power consumption, electromagnetic radiation and
execution time. The fault generation techniques induce an
intentional malfunction of the circuit by using techniques such as
varying the supply voltage, inducing clock glitches, exposing the
circuit to ionizing radiation, etc. Our focus in this work is on
addressing the information leak due to eavesdropping power profile.

* This material is based on work supported in part by the Office of Naval
Research under Award No. N00014-01-1-0859, MARCO 98-DF-600 GSRC
Award, NSF Awards No. 0093082, 0093085, 0082064, 0103583. Any
opinions, findings, and conclusions or recommendations expressed in this
presentation are those of the authors and do not necessarily reflect the views
of the Office of Naval Research.

 Power analysis attack is based on analyzing the power

consumption of an operation. The main rationale behind this kind of
an attack is that the power consumption of an operation depends on
the inputs (in the case of cryptography, the inputs are plaintext and
secret key). The differences in values of the operands being
operated on result in different switching activities in the memory,
buses, datapath units (adders, multipliers, logical units) and pipeline
registers of the smart card processor. Among these components, the
processor datapath and buses exhibit more data-dependent energy
variation as compared to memory components [16].

There are different degrees of sophistication involved in such
power analysis based attacks. Simple Power Analysis (SPA) [7]
uses only a single power consumption trace for an operation. From
this power trace, an attacker can identify the operations being
performed (such as whether a branch at point p is taken or not or
whether an exponentiation operation is performed). Using this
power information and by knowing the underlying algorithm being
implemented, such information can reveal the secret key. For
example, when a branch is taken based on a particular bit of a secret
key being zero, the attacker can identify this bit by monitoring the
power consumption difference between a taken and not taken
branch. Protecting against this type of simple attack can be achieved
fairly easily by restructuring the code. For example, a restructured
algorithm is provided in [3] to eliminate branch conditions that were
initially revealing the secret key information. Also, techniques that
randomly introduce noise into the power measurement can mislead
simple power analysis. An example of such technique involves
adding dummy modules and activating them at random time
intervals. These modules will consume additional power skewing
the original power profile. However, such techniques only provide
protection from straightforward hacking techniques. Higher-order
power analysis techniques can be used to circumvent these
protection mechanisms.

Differential power analysis (DPA) is currently the most
popular higher-order power analysis. This scheme utilizes power
profiles gathered from several runs and relies on the data-dependent
power consumption variation to break the key [7]. In [5], Goubin et
al. show how the secret key is guessed by using 1000 sample inputs
and their corresponding 1000 power consumption traces. Then, a
mean of all these power consumption traces represented as M is
obtained. Next, the hacker guesses a particular key and based on the
input determines a theoretical value for one of the intermediate bits
(b) generated by the program. Then, the outcome of this bit is used
to separate the 1000 inputs into two groups (G1 and G2) based on
whether b=0 or b=1. If the mean of the power profiles in Group G1
is significantly different from that of M, this indicates that the guess
was correct. This difference is a manifestation of the consequent
downstream computational power differences that used the bit b. As
evident from the above discussion, random noises in power
measurements can be filtered through the averaging process using a

1530-1591/03 $17.00 2003 IEEE

1530-1591/03 $17.00 2003 IEEE

large number of samples. However, the use of random noises can
increase the number of samples to an infeasible number to be of
practical concern.

In this work, we propose to counter DPA by modifying the
underlying circuit to make its power consumption independent of
the operand data using dual rail logic. However, the naïve use of
such logic to mask the data dependent energy behavior to protect
the secret keys has a significant energy penalty. Our goal is to limit
the use of the additional components required for energy masking
for selective operations. The key to identify the operations that
require energy masking is an optimizing compiler. This compiler
allows users to annotate certain critical variables. Whenever these
critical variables or values derived from them are operated on, it is
important to mask any data dependent energy behavior. This is
because the energy profile can be used to reveal sensitive data (e.g.,
key values in encryption algorithms) without any energy masking.
The compiler uses the secure instructions for all operations that
directly operate on the annotated variables. Further, it uses a
technique called forward slicing to identify other critical operations
that depend on the annotated ones. Forward slicing is required to
prevent indirect information leak from operations that do not
operate on the sensitive variables directly.

We evaluate the proposed scheme focusing on the DES
algorithm using a detailed cycle-accurate power analysis with the
help of an energy estimation framework. Note that our approach is
general and can be extended to other algorithms that need protection
against current measurements based breaks. We measure the energy
consumed in every cycle in picoJoules throughout the paper. The
use of the simulator provides a far greater control of the granularity
of information than would be practically possible for a hacker using
physical power measurement tools. Thus, our approach is
conservative and factors in possible improvements in measurement
fidelity. Our experiments show that the proposed approach based on
selective use of secure instructions achieves the energy masking of
critical operations consuming 83% less energy as compared to
existing approaches that apply masking to all operations due to the
lack of any compiler analysis.

The remainder of this paper is organized as follows. In Section
2, we discuss related work. In Section 3, we revise the DES
algorithm. In Section 4, we present our masking method. This
section gives explanation about our secure instruction and our
modified architecture. Finally, conclusions and a brief outline of
future work are given in Section 5.

2. RELATED WORK
 Various researchers have investigated the potential for both
invasive and non-invasive attacks against smart cards. An overview
of these techniques is presented in [4, 15]. In particular, the retrieval
of secret information from a smart card through its leakage called
side-channel analysis poses an important class of attack. Analyzing
the power profile of an encryption process is one of the popular
side-channel attacks. Kocher et al. [7] provide a detailed description
of the simple power analysis (SPA) and differential power analysis
(DPA) techniques. The difference between these two attacks is that
DPA is more sophisticated and involves statistical analysis using a
larger sample set.
 There have been prior attempts to address the SPA and DPA
attacks [2,3,5,6,7,12]. These counter measures can be classified into
three types as performed in [5]. First, random timing shifts and
noises can be added such that computed means for power
consumption do not correspond to the same instruction. However,
the difficulty in the protection process is to ensure such random
techniques are not vulnerable to statistical treatment using large
samples. While complete protection is difficult to achieve using
such a counter measure, it could make it infeasible for an attacker to
break the key. The second counter measure technique is to modify

the underlying software implementation or algorithm [3, 4, 5]. For
instance, the use of non-linear transformations of S-box operations
is proposed in [5] to avoid some DPA attacks. However, it is
observed in [4] that software counter measures may be difficult to
design.

The third form of countermeasure involves replacing some of
the critical instructions such that their energy consumption behavior
does not leak any information. Our approach falls into this category.
Dual-rail logic has been identified as one of the most promising
ways to provide protection to SPA and DPA [4]. The use of dual-
rail encoding and self-timed circuits is also proposed in [12]. The
use of self-timed circuits can alleviate problems arising from clock
glitches induced in synchronous circuits while the dual-rail logic
masks the power consumption differences due to bit variations. Our
contribution is the actual modification of an embedded processor to
implement this technique and the addition of secure instructions to
its instruction set. However, the use of dual-rail logic can increase
overall power consumption by almost two times as observed in our
experiments. In fact, power is an important constraint for smart card
markets such as the GSM industry and specific constraints on
maximum power are imposed by the GSM specification for
different supply voltages [4].

3. DATA ENCRTYPTION STANDARD
Data Encryption Standard (DES) is one of many symmetric

cryptography algorithms that are widely used. DES [1] uses 64
binary bits for the key, of which 56 bits are used in the algorithm
while the other 8 bits are used for error detection. Similar to other
cryptography algorithms, the security of the data depends on the
security provided by the key used to encrypt or decrypt the data.
Although the DES algorithm is public, one will not be able to
decrypt the cipher unless they know the secret key used to encrypt
that cipher.

 Figure 1. S-Box Operations (f(R,K)) [1]
The plaintext is permuted first before it goes to the encryption

process. The core of the DES encryption process consists of 16
identical rounds, each of which has its own sub secret key, called
Kn (n=1,2, ..16). Each Kn is 48 bits produced from the original
secret key using key-permutation and shift operations. Each round
consists of 8 S-Box operations which use the 48-bit input derived
from the permutated input and sub secret key Kn (see Figure 1).
Each S-box operation takes 6 bits from the 48-bit input that is
divided into 8 blocks. These 6-bits are used to index a table. This
table look up operation consequently generates 4 bits (for each S-
Box). These 32 output bits (4 x 8 S-Boxes) are then used as an input
combination for the next round.

The complete encryption process of DES is shown in Figure 2
(left side). Here, (+) denotes bit-by-bit addition modulo 2. From this
algorithm, we can identify the operations that can reveal the secret
key. These operations are key permutation, left-side and right-side
assignment operations and key generation. Next, we need to

identify the underlying instructions used to implement operations
and consider their secure versions.

 (a) Or iginal DES operations (b) Modified DES operations

Figure 2. Modified DES Algor ithm

4. ENERGY MASKING FOR DES

4.1 Overview
 Our energy masking approach is based on eliminating the input
dependencies of an operation. Our approach is focused on four
types of operations that are critical in the DES encryption:
assignment operation, bit-by-bit addition modulo two (XOR)
operation, shift operation and indexing operation. In our approach,
we do not mask all the operations, but only the operations that use
the secret key and those operations that use the data generated from
prior secure operations. The compiler analyzes the code and
identifies how these variables are used within the code. Then, for
the operators that work on these variables, the compiler employs
secure versions of the corresponding instructions. It should be
emphasized that it is not sufficient to protect only the sensitive
variables annotated by the programmer. This is because the
variables whose values are determined based on the values of the
protected variables can also be exploited to leak information.
Consequently, such variables also need to be protected. We achieve
this using a technique called forward slicing [11]. In forward
slicing, given a set of variables and/or instructions (called seeds),
the compiler determines all the variables/instructions whose values
depend on the seeds. The complexity of this process is bounded by
the number of edges of the control flow graph of the code being
analyzed. After all the variables whose values are affected by the
seeds are determined, the compiler uses secure instructions to
protect them.

 Figure 2 shows how we modified the DES operations. Figure
2(a) shows the original DES operations. The first step is initial
permutation of the plaintext. This operation does not use any secret
key and hence does not require being secure.

 The next operation is the key permutation. This operation
obviously needs to be secure. Figure 2(b) shows how we modify
this operation. In this figure, the symbol “=” corresponds to the
original assignment (i.e., insecure assignment), and the symbol “�”
indicates that the assignment is secure.

 The next step contains the operations within each round. Since
some of these operations require the secret key, and the operations
are repeated in every round using the data generated from the
previous round, we need to secure all operations inside this block.
Note that the modified left side operation uses a secure assignment

operation, although it does not operate on the secret key directly.
This is because it uses the data generated from the previous round
(for �2nd round) that uses the secret key. In the right side operation,
all the instructions need to be secure. Each round uses four types of
secure operations: they are secure assignment, secure shift, secure
bit-by-bit addition modulo two and secure indexing. Note that the S
symbol in the figure represents the S-Box operation.

 The last operation is the output inverse permutation. This
operation does not need any secure instruction although it uses data
generated from secure instructions as it reveals only the information
already available from the output cipher. The following section
explains how our secure instructions are implemented.

4.2 Implementation of Secure Instructions
 Our target 32-bit embedded processor has five-pipeline stages
(fetch, decode, execute, memory access and write back) and
implements the integer instructions from the Simplescalar
instruction set architecture [16]. Its ISA is representative of current
embedded 32-bit RISC cores used in smart cards such as the
ARM7-TDMI RISC core. We augment our target instruction set
architecture with secure versions of select instructions. To support
these secure operations, the hardware should be modified as
explained below.

Figure 3. Secure Load Architecture (dotted por tion is the augmented
par t)

 First, we provide an overview of the underlying reasons for the
differences in the power consumption because of data dependencies
when executing these instructions. An assignment operation
typically involves loading a variable and storing it into another
variable. We will consider the parts of the load operation that are of
interest. All stages of our pipeline (see Figure 3) till the memory
access stage are independent of the loaded data (note that revealing
the address of data is not considered as a problem). The memory
access itself is not sensitive to the data being read due to the
differential nature of the memory reads. However, the output data
bus switching depends on the data being transmitted. For example,
let us consider the different scenarios for the 1st bit (d0) of the 32-
bit data read from the cache. If the values of d0 in two successive
cycles are 0 and 1, it consumes more power than the case when the
values are 0 and 0 in these two cycles. Specifically, for an internal
wire of 1pF and a supply voltage of 2.5V, the first case consumes
6.25pJ more energy than the second case. The output from the
memory access stage is fed to the pipeline register before being
forwarded for storing the data in the register file. Thus, based on
whether a bit value of one or zero is stored in the pipeline register
bits, a different amount of energy is consumed. Finally, the energy
consumed in writing to a register is independent of the data as the
register file can be considered as another memory array.

The secure version of the load operation will need to mask all
these energy differences due to bit dependences. This is achieved by

Data Initial Permutation
 (L0,R0) = PermuteIP(Data)
Key Permutation
 (C0,D0) = PermuteK1(Key)
= denotes insecure assignment

Data Initial Permutation
 (L0,R0) = PermuteIP(Data)
Key Permutation
 (C0,D0) � PermuteK1(Key)
� denotes secure assignment

 M th Rounds
Left Side Operation
Lm = Rm-1
M th Key Generation
Cm = Rotate(Cm-1,n)
Dm = Rotate(Dm-1,n)
Km =PermuteK2(Cm,Dm)
Right Side Operation
E(R)= PermuteE(Rm-1)
f(Rm-1,K) = S(E(R)(+) Km)
Rm = Lm-1 (+) f(Rm-1,K)

 M th Rounds
Left Side Operation
Lm � Rm-1
M th Key Generation
Cm � Rotate(Cm-1, n)
Dm � Rotate(Dm-1,n)
Km � PermuteK2(Cm,Dm)
Right Side Operation
E(R)� PermuteE(Rm-1)
f(Rm-1,K) � S(E(R) <+> Km)
Rm � Lm-1 <+> f(Rm-1,K)

Output Inverse Permutation
Output=PermuteIP-1(R16,L16)

Output Inverse Permutation
Output=PermuteIP-1(R16,L16)

Reg
File

ALU

M
em

or
y

Offset
Fetch

Address
Calculation

base

offset mem

memdata

!memdata
Memory
Fetch

Load
into Reg

Dummy
Capacitance
Load

IF ID EXE MEM WB

the following modifications to the architecture. The buses carrying
the data from a secure load are provided in both their normal and
complementary forms. Thus, instead of a 32-bit bus, we use a 64-bit
bus. Thus, the number of 1s and 0s transmitted in the bus will both
be 32. However, this is not sufficient for masking the energy
differences that depend on the number of transitions across the bus.
But this modification along with a pre-charged bus can mask this
difference. All the 64 bus lines are pre-charged to a value of one in
the first phase of the clock. In the next evaluating phase, the bus
settles to its actual value. Exactly, 32 of the bus lines will discharge
to a value of zero. In subsequent cycles, energy is consumed only in
pre-charging 32 lines independent of the input activity. The next
modification involves propagating the normal and complementary
values until the write back stage. The complementary values are
terminated using a dummy capacitive load. The required
enhancements to the underlying processor architecture are
illustrated in Figure 3. Similarly, a secure version of the store
operation involves passing along both the normal and
complementary forms of the data read from the register file in the
decode stage to the memory access stage.

 Figure 4. Code level representation of the left side operation

 A secure assignment uses a combination of both the secure
load and the secure store to mask the energy behavior of the
sensitive data. Figure 4 shows a specific elaboration of the use of
the secure assignment in assembly code for the assignment
performed during the “ left side operation” . The high-level
assignment statement leads to a sequence of assembly instructions.
The critical operations (the load and store instructions highlighted)
whose energy behavior needs to be made data independent are then
converted to secure versions in our implementation by the
optimizing compiler.

 The secure 32-bit XOR instruction is implemented using
complementary pre-charged circuit (see Figure 5) that will ensure
that for every XOR bit that discharges in the required circuit, the
complementary circuit will not discharge and vice-versa. In the first
clock phase (when v =0), all (64 = 32 original + 32 complementary)

the output nodes of the XOR circuit are pre-charged to one. In the
next phase (when v=1), half of them will discharge and the other
half of them will remain at one. In subsequent cycles that use the
XOR, the energy is consumed only for charging 32 output nodes
immaterial of the data activity.

 During the S-Box operation, a 6-bit value is used to index a
table. This operation is performed by a load operation with the 6-bit
value serving as the offset in our underlying architecture. Note that
our current secure load operation does not mask the energy
difference due to differences in the offset. As these 6-bits are
derived from the key, it is also important to hide the value of this
offset. When the 6-bit value is added as an offset to the base address
of the table, the addition operation will consume an energy based on
the 6-bit value. In order to avoid this, we align the base address of
the table such that the 6-bit value serves as the least significant bits
of the lookup and the most significant bits are determined at
compile time. Further, the inverted value of this 6-bit index is
propagated to mask the energy consumption. Thus, the load
operations used for indexing are replaced by the secure indexing
that generates the memory address using our secure version.

Figure 5. XOR circuit and its complement. v is the clock. A and B are
the inputs to the XOR function

 In order to utilize these augmented architectural features, the
compiler tags selected operations as secure. Secure instructions can
be implemented using either the unassigned opcodes (bits in the
instruction identifying the operation) in the processor architecture or
by augmenting the original opcodes with an additional secure bit
per operand. In our implementation, we resort to the second option
to minimize the impact on the decoding logic. Whenever a secure
version of the instruction is identified both the normal and
complementary versions of the appropriate segments of the
processor become active. For example, for the secure XOR
operations, the data values (both source data and result data) are
present in normal and complementary forms in the internal data
buses. Further, the required and complementary versions of the
circuit operate together. Since the additional parts consume extra
power, the clock to the complementary versions is gated to reduce
energy consumption. The details of the gating (note that the
complementary version of the circuit is provided with a clock v
gated with secure signal – secure v - for the evaluation phase) for
the XOR unit implementation are shown in Figure 5. Thus, as
opposed to energy consumption of 0.06pJ in the secure mode, the
XOR unit consumes only 0.03pJ in the normal mode. Additional
savings in energy also accrue during the execution of normal
versions due to gating of the additional buses and the pipeline
registers.

4.3 Evaluation
To evaluate the effectiveness of our approach, we have

implemented the DES algorithm in software and captured the
energy consumption in each cycle using a customized version of the

……….
/ / Lef t Si de Oper at i on
f or (i =0; i <32; i ++)
 newL[i] = ol dR[i]
……. .

.
$L12:

$L15:
 l w $2, i

 l a $4, newL
 addu $3, $2, $4
 move $2, $3
 l w $3, i
 move $4, $3
 s l l $3, $4, 2
 l a $4, ol dR
 addu $3, $3, $4
 move $4, $3
 l w $3, 0($4)
 sw $3, 0($2)
$L14:
 l w $3, i
 addu $2, $3, 1
 move $3, $2
 sw $3, i
 j $L12
$L13:
.
(a) Or iginal Assembly Code

.
$L12:

$L15:
 l w $2, i

 l a $4, newL
 addu $3, $2, $4
 move $2, $3
 l w $3, i
 move $4, $3
 s l l $3, $4, 2
 l a $4, ol dR
 addu $3, $3, $4
 move $4, $3
 sl w $3, 0($4)
 ssw $3, 0($2)
$L14:
 l w $3, i
 addu $2, $3, 1
 move $3, $2
 sw $3, i
 j $L12
$L13:
.
(b) Modified Assembly Code

publicly available SimplePower [16], a cycle-accurate energy
simulator. We focus only on the processor and buses in this work,
as memory power consumption is largely data-independent. The
simulator uses validated transition-sensitive energy models for both
the buses and functional units obtained through detailed circuit
simulation and is within 9% of actual values [16]. It is able to
accurately capture the differences in energy consumption due to
data transitions. The flexibility of working with the simulator
provides us the ability to monitor the energy consumed in every
cycle (along with details of actual instructions executed) and also
helps us in quickly identifying the benefits or (otherwise) in
modifying the underlying processor architecture. Current
measurement based approaches would be limited by the sampling
speed of the measuring devices and would also be more difficult to
correlate the operations and sources of energy consumption. The
processor modeled for our simulation results is based on 0.25micron
technology using 2.5V supply voltage.

 Figure 6. Energy consumption trace of encryption (every 10 cycles)

 First, we show the energy behavior of the original DES
algorithm to demonstrate the type of information that it leaks.
Figure 6 shows the energy profile of the original encryption process
revealing clearly the 16 rounds of operation. This result reiterates
that the energy profile can show what operations are being
performed. Next, we present a (differential) energy consumption
trace for two different secret keys to demonstrate that the energy
consumption profiles can reveal more specific information.
 Figure 7 illustrates the difference in energy consumption
profiles generated for two different secret keys using the same
plaintext. This example illustrates that it is possible to identify
differences in even a single bit of the secret key. Similar
observations on energy differences can also be made using
differences in one of key-related variables generated internally.

Figure 7. Difference between energy consumption profiles generated
using two different secret keys (vary in bit 10), 1st round

 Figures 8 and 9 show the difference between the two energy
consumption traces generated using two different secret keys and
the same plaintext before and after the energy masking. These
traces are shown only for the first round of DES algorithm for
clarity. The graphs clearly demonstrate that using secure
instructions can mask the energy behavior of the key related

operations. While the effectiveness of the algorithm is shown using
differences between profiles generated from two different keys, the
results hold good for other key choices as well. Specifically, the
mean of the energy consumption traces which generate different
internal (key related) bits will not exhibit any differences that can
be exploited by DPA attacks.

Figure 8. Difference between energy consumption profiles generated
using two different keys before masking process

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1940 3879 5818 7757 9696 11635 13574 15513 17452 19391

Time/Cycle (Masking)

E
n
e
rg

y
in

 p
Jo

u
le

Figure 9. Difference between energy consumption profiles generated
using two different keys after masking process

 Figures 10 and 11 depict the difference between the energy
consumption traces generated using two different plain texts but the
same secret keys.

-30

-20

-10

0

10

20

30

1 2151 4301 6451 8601 10751 12901 15051 17201 19351

Time/Cycle (Original)

E
ne

rg
y

in
 p

Jo
ul

e

 Figure 10. Difference between energy consumption profiles generated
using two different plaintexts before masking process

-0.5

0

0.5

1

1.5

2

2.5

3

1 2177 4353 6529 8705 10881 13057 15233 17409 19585

Time/Cycle (Masking)

E
n
er

gy
 in

 p
Jo

ul
e

Figure 11. Difference between energy consumption generated using two
different plaintexts after masking process

 The first operation in the DES is plaintext permutation. Since
this process is not operated in a secure mode, the differences in the

E
ne

rg
y

in
 p

Jo
ul

e
E

ne
rg

y
in

 p
Jo

ul
e

E
ne

rg
y

in
 p

Jo
ul

e

Time/Cycle (Original)

Time/Cycle

Time/Cycle (Original)

input values result in the difference in both the energy masked and
original versions. The other operations in the first round are secure;
as a result, there are energy consumption power differences.
 However, the proposed solution is not without its drawbacks.
The energy masking requires that the same amount of energy be
consumed independent of the data. Thus, additional energy is
consumed in the circuits added for the complementary portion of
the circuit as shown in Figure 12. However, this additional energy is
45 pJ per cycle (as compared to an average energy consumption of
165 pJ per cycle in the original application). Note that we add
excessive energy even in places where the differential profile in
Figure 8 shows no difference.

0

5

10

15

20

25

30

35

40

45

1 149 297 445 593 741 889 1037 1185 1333 1481 1629 1777

Time/Cycle (The 1st Key Permutation)

E
ne

rg
y

in
 p

Jo
u
le

Figure 12. Additional energy consumed due to the energy masking
operation dur ing the 1st key permutation

 This is because the same secure instruction is used for parts of
the input that are the same for both the runs. Of course, in portions
where the data was identical we have nothing to mask but we need
to be conservative to account for all possible inputs in a statistical
test using large samples. It must also be observed that our approach
of using selective secure instructions helps to reduce the energy cost
as compared to a naïve implementation that balances energy
consumption of all operations. For example, looking at code
segment shown earlier in Figure 4, we increase the energy cost of
only one of the four load operations executed in the segment. On
the other hand, the naïve approach would convert all the four load
operations into secure loads thereby consuming significantly more
energy than our strategy.

The total energy consumed without any masking operation is
46.4 uJoule. Our algorithm consumes 52.6 uJoule while the naïve
approach consumes 63.6 uJoule (all loads and stores are secure
instructions). When all instructions are secure instructions, it will
consume almost as twice as much as the original, 83.5 uJoule. This
scheme is the one used in current dual-rail solutions [4].

5. CONCLUSIONS
 Smart cards, unlike magnetic stripe cards, can carry all
necessary functions and information on the card. Therefore, recent
years have witnessed a significant increase in smart card use
throughout the world. In fact, Data Monitor predicts that over 3
billion smart cards are in circulation worldwide. As a result,
ensuring secure use of smart cards is receiving a lot of attention.
 In this paper, we focus on addressing the problem of
information leakage using power analysis and propose a solution.
The uniqueness of our solution comes from the fact that, unlike
many previous techniques, we approach the problem from an
architectural perspective and consider adding secure instructions to
a given architecture. The purpose of these secure instructions is to
hide the energy behavior of sensitive variables in the application
(e.g., key values). Our experiments with the DES application
demonstrate that the proposed solution is very effective in
preventing the information leakage due to power analysis.
 This work has certain limitations that need to be addressed.
The use of complementary values and dual rail logic alone will not
be sufficient in the future. This is because power consumption

differences will also arise due to signal transitions on adjacent lines
of on-chip buses [8]. Current dual-rail encoding schemes do not
mask the key leakage arising due to these differences. Thus, more
work is required in addressing power analysis attacks.

6. REFERENCES
[1] Data Encryption Standard (DES). Federal Information Processing

Standards Publication 46-2. 1993 December 30.

[2] E. Biham, A. Shamir. Power Analysis of The Key Scheduling of The
AES Candidates. Proceedings of the second AES Candidate
Conference, March 1999, pp. 115-121.

[3] J. Coron. Resistance Against Differential Power Analysis for Elliptic
Curve Cryptosystems. Ç.K Koç and C. Paar, Eds., Cryptographic
Hardware and Embedded Systems, vol. 1717 of Lecture Notes in
Computer Science, pp. 292-302, Springer-Verlag, 1999.

[4] J.-F. Dhem, N. Feyt. Hardware and Software Symbiosis Helps Smart
card Evolution. IEEE Micro, Vol. 21, Issue. 6, pp. 14-25, November –
December 2001.

[5] L. Goubin, J. Patarin. DES and Differential Power Analysis The
“Duplication” Method. Proceeding of CHES’99, Springer, Lecture
Notes in Computer Science, Vol. 1717, August 1999.

[6] P. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS and other Systems, Advances in Cryptology, Proceedings of
Crypto’96, LNCS 1109, N.Koblitz, Ed., Springer-Verlag, 1996,
pp.104-113.

[7] P. Kocher, J. Jaffe, and B. Jun. Introduction to Differential Power
Analysis and Related Attacks.
http://www.cryptography.com/dpa/technical,1998.

[8] P. Sotiriadis, A.P. Chandrakasan. Low Power Bus Coding Techniques
Considering Interwire Capacitance. IEEE Custom Integrated Circuits
Conference, April 2000.

[9] P. Wayner. Code Breaker Cracks Smart Cards’ Digital Save. New York
Times, June 22 1998.

[10] Secure Hash Standard. Federal Information, Processing Standards
Publication 180-1, April 17 1995.

[11] S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing Using
Dependence Graphs. ACM Transactions on Programming Languages
and Systems 12, 1 (January 1990), 26-60.

[12] S. Moore, R. Anderson, and M. Kuhn. Improving Smart card Security
Using Self-Timed Circuit Technology. The Eight IEEE International
Symposium on Asynchronous Circuit And Systems, Manchester, UK,
April 8 – April 11 2002.

[13] S. Skorobogatov, R. Anderson. Optical Fault Induction Attacks. IEEE
Symposium on Security and Privacy, 2002.

[14] S.W. Smith, E.R. Palmer, S. Weingart. Using a High-Performance,
Programmable Secure Coprocessor. Proceedings of the Second
International Conference on Financial Cryptography. Springer-Verlag
Lecture Notes in computer Science, 1998.

[15] O. Kommerling and M. G. Kuhn. Design Principles for Tamper-
Resistant Smart card Processors. USENIX Workshop on Smart card
Technology, Chicago, IL, May 10 – May 11 1999.

[16] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, "The Design
and Use of SimplePower: A Cycle-Accurate Energy Estimation Tool".
Design Automation Conference, June 2000.

[17] S. S. Muchnick. Advanced Compiler Design Implementation. Morgan
Kaufmann Publishers, San Francisco, CA, 1997.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

