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Abstract
The growing impact of within-die process variation has created

the need for statistical timing analysis, where gate delays are mod-

eled as random variables. Statistical timing analysis has traditionally

suffered from exponential run time complexity with circuit size, due

to the dependencies created by reconverging paths in the circuit. In

this paper, we propose a new approach to statistical timing analysis

which uses statistical bounds. First, we provide a formal definition of

the statistical delay of a circuit and derive a statistical timing analy-

sis method from this definition. Since this method for finding the

exact statistical delay has exponential run time complexity with cir-

cuit size, we also propose a new method for computing statistical

bounds which has linear run time complexity. We prove the correct-

ness of the proposed bounds. Since we provide both a lower and

upper bound on the true statistical delay, we can determine the qual-

ity of the bounds. The proposed methods were implemented and

tested on benchmark circuits. The results demonstrate that the pro-

posed bounds have only a small error.

1  Introduction
Static timing analysis has become an indispensable part of perfor-

mance verification. Traditionally, the variation in the underlying pro-

cess parameters were modeled in static timing analysis (STA) using

so-called case analysis. In this methodology, best-case, nominal and

worst-case SPICE parameters sets are constructed and the timing

analysis is performed several times, each time using one case file.

Each execution of the static timing analysis is therefore determinis-

tic, meaning that the analysis uses deterministic delays for the gates

and any statistical variation in the underlying silicon is hidden.

While this approach has been successfully used in the past to model

die-to-die variations in device and interconnect delay, it is not able to

accurately model variations within a single die. With the continual

scaling of feature sizes, the ability to control critical device parame-

ters on a single die has become increasingly difficult. Using a worst-

case analysis for these so-called within-die variations therefore leads

to very pessimistic analysis results since it assumes that all devices

on the die have worst-case characteristics, ignoring their inherent

statistical variation. The emerging dominance of within-die varia-

tions therefore poses a major obstacle for deterministic STA, giving

rise to the need for new statistical timing analysis approaches.

Variations in the delays of a circuit can be broadly classified into

two categories: environmental variations and process variations.

Environmental variation are caused by uncertainty in the environ-

mental conditions during the operation of a chip, such as power sup-

ply and temperature variations. Process variations are due to

uncertainty in the device and interconnect characteristics, such as

effective gate length, doping concentrations, and oxide thickness.

These variations can be divided into between-die variations (or inter-

die variation) and within-die variations (or intra-die variations).

Within-die variations can have a deterministic component due to

topologically dependencies of device processing, such as CMP

effects and topologically correlated lithographic distortions. In some

cases, such topological dependencies can be directly accounted for

in the analysis, thereby reducing the statistical variation [11],

whereas in other cases, such variations are treated as random.

In this paper, we propose a formal model and efficient analysis

method for statistical STA in the presence of random within-die pro-

cess variations. Since between-die variations can be adequately cap-

tured using case analysis, we focus on within-die variations. We also

treat all variations as random variations, meaning that topological

dependencies are either removed prior to the analysis or are treated

as random variations. We initially also do not address environmental

variations, although the proposed model and analysis methods can

be extended to such variations.

The extensive use of deterministic STA in recent years is in large

part due to its linear run time complexity with circuit size. In con-

trast, statistical STA has an underlying worst-case complexity that is

exponential with circuit size, which poses a fundamental obstacle to

its practical application. This high run time complexity is the result

of reconverging paths in the circuit which causes correlations

between their path delays due to shared sections of such paths. Pre-

vious statistical STA approaches [4-9] have therefore suffered from

very high runtimes, from the use of approximate methods with

unclear accuracy impact, or from unrealistic assumptions, such as an

assumed Gaussian distribution of gate delays.

In this paper, we propose a new method for statistical STA. Since

the formulation of statistical STA has varied in subtle but important

ways in the literature, we first provide a formal model of statistical

STA. We then derive the proposed procedure for statistical STA in a

strict manner from this problem formulation. Since the computa-

tional complexity of exact statistical STA is exponential with the cir-

cuit size, we present a new method for computing bounds on the

exact statistical delay of the circuit and proof the correctness of these

bounds. By computing only bounds of the true statistical behavior of

the circuit, we are able to preserve the important characteristic of

deterministic STA that it has a linear run time complexity with cir-

cuit size. Since we provide both a lower and upper bound on the true

statistical delay, we can determine the quality or error of the com-

puted bounds. The proposed method provides a statistical STA

approach with linear run time, that is guaranteed conservative and

has a bounded error. The proposed methods were implemented and

tested on large benchmark circuits. The difference between the

expected values of the upper and lower bound was shown to be

small, ranging from 4 - 12%.

The remainder of this paper is organized as follows. In Section 2

we presents a formal model of statistical STA. In Section 3, we

present a number of probabilistic timing graph transformations. In

Section 4, we derive our method for exact statistical timing analysis.

In Section 5, we present the computation of the lower and upper sta-
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tistical bounds on the true statistical behavior. In Section 6 we

present our results and in Section 7 our concluding remarks.

2  Statistical Timing Analysis Formulation

In this Section, we present a formal model of statistical static tim-

ing analysis. Our goal is to model the impact of gate delays variation

due to within-die process variations on the circuit delay. Although at

design time, the delay of each gate is unknown, after a chip has been

manufactured, the gate delays are fixed and have a deterministic

value for each particular die. The randomness or variability of the

circuit delay is therefore over the fabricated die, and it is the cumula-

tive distribution of the circuit delay that statistical timing analysis

aims to obtain.

At this point, we do not account for temporal variations of the

gate delays due to environmental factors, such as power supply fluc-

tuations, temperature dependence and noise, which must be modeled

using case analysis. However, our general analysis approach can be

extended to these types of variations as well. Also, for simplicity of

formulation, we ignore the presence of false paths since these are

orthogonal to the issues discussed in this paper. We now give the fol-

lowing definition of a timing graph:

Definition 1. A timing graph G is a directed graph having exactly

one source and one sink node: G={N,E,ns,nf}, where

N={n1,n2,...,nk} is a set of nodes, E={e1,e2,...,el} is a set of edges,

is the source node, and is the sink node and each

edge  is simply an ordered pair of nodes e=(ni,nj).

The nodes in the timing graph correspond to nets in the circuit, and

the edges in the graph correspond to connections from gate inputs to

gate outputs. Although circuits generally have multiple inputs and

outputs, we can trivially transform them to graphs with a single

source and sink by adding a virtual source and sink node.

In our formulation, a deterministic timing graph GD represents a

particular manufactured die, where each gate has a fixed delay value.

Each edge e in GD is assigned a delay D(e), which represents the

deterministic signal propagation delay from a gate’s input to its out-

put. Similar to other statistical STA methods, we ignore the depen-

dence of gate delay on the transition time of the gate input signals.

A path P of a timing graph G is a sequence of nodes, such that

each pair of adjacent nodes ng and nh has an edge egh=(ng,nh). The

path delay dP of path P is the sum of all the delays D(eij) of edge eij

on path P. Among all paths terminating at a node n, we define the

path with the maximum delay as the critical path of n. The delay of

the critical path of node n is equal to its arrival time, ta(n). Note that

the arrival time for the source node ns is a deterministic value equal

to 0. The critical path of the sink node nf of a timing graph is referred

to as the critical path of the timing graph, and the arrival time of nf, is

referred to as its graph delay.

After fabrication, a deterministic timing graph GD can be concep-

tually formulated for each die. However, during the design of a chip,
the gate delays are unknown and must be modeled as random vari-
ables. Each gate delay is therefore specified either with a cumulative
distribution function (CDF) or probability density function (PDF)

and we define a probabilistic timing graph GP as follows:

Definition 2. A probabilistic timing graph GP is a timing graph

whose edges are assigned random variables of delay values.

Figure 1 shows an example of a delay cumulative distribution func-

tion and its corresponding probability density function. Since these

functions represent the variation of gate delays, they have the follow-

ing obvious but important property:

Property 1. A delay CDF equals 0 for all delay values less than

its minimum value dmin and equals 1 for all values greater than its

maximum value dmax. A delay PDF is non-zero only on a finite

interval [dmin, dmax].

This property follows from the fact that the delay of a real gate can-

not be less that some finite minimum delay value dmin or more than

some finite maximum delay value dmax. Similar to previous statisti-

cal STA methods [4 - 7], we assume statistical independence of all

edge delays. In practice, edge delays may be spatially correlated,

which complicates the analysis by creating additional correlations

between path delays. The contribution of this paper is therefore that

it provides an efficient solution to the problem of path delay correla-

tion due to path reconvergence. The methods presented in this paper

can also be extended to timing graphs with correlated edge delays.

Note also that our method does not restrict the shape of the PDF of

edge delays, which in general is not Gaussian.

To simplify the implementation of statistical STA it is often more

convenient to approximate continuous probability density and distri-

bution functions with discrete functions. A discrete PDF, corre-

sponding to continuous PDF f(t), can be represented by a sequence

of pairs (di,pi), where and . For com-

putational efficiency, we use discrete PDFs and CDFs in the final

implementation of our proposed statistical timing analysis

approaches. However, for generality, we will formulate the statistical

timing analysis task using continuous functions.

We now consider the sample space S of a probabilistic timing

graph GP, consisting of all deterministic timing graphs GD with edge

delays corresponding to the non-zero values of their cumulative dis-

tribution functions. The probability that a timing graph GD in S has

an edge i with delay Di between ti and Ti is

(EQ 1)

where is the probability density function of edge i. Given a

deterministic timing graph GD in S, we can compute its delay

D(GD), using any of the currently available means, such as tradi-

tional static timing analysis. The delay D(GP) is therefore defined on

the sample space S and is a random variable which completely

defines its timing behavior. The CDF of D(GP) is defined as follows:

Definition 3. The cumulative distribution function of the delay of

a probabilistic timing graph is expressed as:

ns N∈ n f N∈

e E∈

Figure 1.  Delay CDF and PDF
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, (EQ 2)

where pi(ti) is the probability density function of the delay of edge

i and the integration is performed over the volume of sample

space where delay D(GD) of timing graph GD is less than t.

The probability density function can be computed by simple dif-

ferentiation. The CDF of the graph delay can be used in a number of

ways. First, given a particular performance constraint, the probabil-

ity of obtaining a fabricated die that meets this constraint, also called

the performance yield, can be determined. Conversely, given a

required performance yield, the maximum expected performance

can be obtained.

If we use discrete edge delay PDFs, we can compute the graph

delay PDFs by enumerating the entire sample space consisting of all

permutations of the non-zero delay probabilities of all edges. Of

course, this method is exponential in its run time complexity with

circuit size and is not useful as a practical solution. However, its for-

mulation is useful as a formal definition and for understanding the

underlying problem that needs to be solved.

3  Probabilistic Timing Graph Transforms

Before we discuss exact and bounded methods for computing the

CDF of the graph delay, we briefly discuss three basic transforma-

tions for probabilistic timing graphs.

3.1  Series Reduction.

Figure 2(a) shows a probabilistic timing graph consisting of two

series connected edges with delays described by pdf p(t) and q(t).
The total delay of the timing graph is the sum of its edge delays and

by applying EQ2, the CDF of the graph delay DGp(t) is:

(EQ 3)

The sum of the two independent edge delays is the convolution of

its edge delays, as is well known from standard probability theory

[3], and the two edges can be replaced with a single edge having the

following probability density function:

(EQ 4)

The cumulative distribution function of the graph delay is

obtained through integration of EQ4.

3.2  Parallel Reduction.

Figure 2(b) shows a timing graph GP consisting of two parallel

edges with delays described by pdfs p(t) and q(t). Since the edge

delays of both edges are statistically independent, the probability

is the product of the probabilities that each edge delay

is less than or equal to t:

(EQ 5)

Through differentiation, we obtain the probability density func-

tion of the graph delay D(GP) as follows:

, (EQ 6)

Therefore, the graph in Figure 2(b) can be replaced with a single

edge have the pdf pGp(t).

4  Statistical Timing Analysis

The initial formulation presented in the Section 2 relies on the

enumeration of all possible edge delays with non-zero probability

and is difficult to use for an efficient solution to the problem. Deter-

ministic timing analysis has traditionally used an approach where

arrival times are propagated through the circuit in topological order.

We therefore derive such a propagation based approach for comput-

ing the graph delay CDF DGp, in a manner that is consistent with the

definition of DGp in Section 2. We first define the cumulative distri-

bution of the latest arrival time, An(t) at node n as follows:

Definition 4. The latest arrival time CDF, An(t) at node n of GP is

the probability that a deterministic timing graph GD in the sample

space S(GP) has an arrival time .

In the subsequent discussion, we will refer to the latest arrival time

as simply the arrival time, noting that a similar derivation can be per-

formed for the earliest arrival time. We also make the following use-

ful definition.

Definition 5. A fanin subgraph GS,n of timing graph GP at node n

is a timing graph consisting of all edges and nodes of GP that lie

on a path from the source node ns of GP to node n, and where

node n is set as the sink node nf of GS,n.

From Definition 4 and 5, it follows that the arrival time An at node n

is equivalent to the graph delay of subgraph GS,n. Hence, computing

arrival time distributions and graph delay distributions are equivalent

problems. The objective of statistical timing analysis is to compute

the arrival time CDF of node n based on the arrival time CDFs of its

predecessor nodes np. We can then use such a method to propagate

arrival times through the circuit in topological fashion. To compute

the arrival time of n, we must consider if the arrival times of its pre-

decessor nodes np are independent random variables. We now state

the following theorem:

Theorem 1. Two arrival times An,i and An,j at nodes ni and nj are

independent if the fanin subgraphs GS,i and GS,j at nodes ni and nj

are disjoint (meaning they have no common edges) or if any com-

mon edges have a deterministic delay.

The proof follows from the fact the arrival times An,i and An,j are

composed of edges delays in their fanin subgraphs, and hence have

no shared random variables. The proof is omitted for brevity.

Arrival time propagation.

If all arrival times are independent, the circuit has a tree like struc-

ture and arrival times can be computed using the max function of

EQ5 and convolution of EQ4 in linear time. To determine if two

arrival times are dependent, we consider a node n with predecessor

nodes np which have arrival times Ap and fanin subgraphs GS,p. If the

fanin subgraphs GS,p share one or more edges with random delays,

the arrival times Ap will be dependent random variables and the sta-

tistical maximum function cannot be applied. An example of such a

graph is shown in Figure 3(a). To determine for which portions the

P D GP( ) t≤( ) p1 t1( ) p2 t2( )…dt1dt2…
D GD( ) t≤

∫=

Figure 2.  Series and parallel reduction
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pGp t( ) p t τ–( ) q τ( ) τd⋅ ⋅
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∞
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subgraphs GS,p share edges, we use the following definition of a

dependence set.

Definition 6. Consider the set of k predecessor nodes np,i of node

n, with fanin subgraphs GS,i, and the intersection graph

GI={NI,EI} consisting of the union of edges and nodes shared by

two or more subgraphs, excluding the source node ns. The depen-

dence set of n is the set of nodes {n1, n2,...., nd,...}, such that nd

lies on the intersection graph, , and has one or more

fanout edges ei that do not lie on the intersection graph, .

In Figure 3(a), the set of dependence nodes for node nf is {b, d}.

Note that a is not in the dependence set of nf since both its fanout

edges belong to GI. Also nodes h and e have empty dependence sets.

Conceptually, dependence nodes mark the last points in the graph

where the fanin subgraphs are shared and give rise to correlation

between their arrival times.The concept of dependence nodes is sim-

ilar to that used in probabilistic simulation [12]. We refer to a node

in GP as a convergence node nc if it has a non-empty dependence set.

We also define the global set of dependence nodes nD as the union of

the dependence sets nd,i and refer to a node as a dependence node, if

it is an element in this list.

In order to compute the graph delay of a graph Gp with one or

more dependence nodes, we sort the list of global dependence nodes

in topological order. We then consider the first node nD,1 in the

ordered set nD. In Figure 3(a), nD = {a,b,d}, and nD,1 = a. By select-

ing the first node nD,1 in the list, we ensure that fanin subgraph GS,1

at node nD,1 does not contain any dependence nodes, and it follows

that we can replace GS,1 with a single edge e1 connecting source

node ns and nD,1, where the edge delay CDF D1 of e1 is equal to the

arrival time CDF A1 at nD,1, as shown in Figure 3(b). Similarly, it is

clear that the arrival time CDF A1 at nD,1 can be computed using

independent arrival time propagation.

For simplicity, we assume that the edge delay pdf D1 is discrete

and is specified by a set of delay, probability pairs (di,pi). According

to our construction, random variable D1 does not depend on the edge

delays of other edges in the transformed graph Gp. Then, using con-

ditional probabilities [3] the arrival time pdf px(t) at node x, can be

computed as , where px,i(t) is the arrival

time pdf at node x when the delay of e1 is equal to di and pi = P(D1 =

di). We therefore compute the arrival time pdf px(t) by performing k

arrival time computations, each weighted by the conditional proba-

bility pi. Since during the computation of px,i, edge e1 has a deter-

ministic delay it is no longer a random variable and does not create

dependence between arrival times. Node nD,1 is therefore no longer a

dependence node and we can propagate arrival times using indepen-

dent arrival time propagation until we encounter the next global

dependence node, nD,2. Here, we repeat the same process, enumerat-

ing the arrival time pdf at nD,2 using conditional probabilities and

eliminating it as a dependence node.

Below is the procedure for dependent arrival time propagation:

1. Identify all dependence nodes in the circuit.

2. Propagate arrival time PDFs in the circuit until the first depen-

dence node nd is encountered.

3. Enumerate the pairs (ti, pi) of arrival time PDF Ad at nd and for

each pair propagate ti with conditional probability pi.

4. Propagate ti, using independent arrival time propagation until the

next dependence node is encountered and repeat step 3.

5. Compute the final arrival time PDF at node x by summing the

conditional arrival time PDFs weighted by the product of their

conditional probabilities.

Since we recursively enumerate the arrival time PDFs of all

dependence nodes, the complexity of this approach grows exponen-

tially with the number of total dependence nodes in a circuit. Note,

however, that the number of dependence nodes is, in practice, signif-

icantly less then the number of edges in GP. Dependent arrival time

propagation therefore has a lower complexity than enumeration of

the entire sample space. It can be shown that the set of nodes at

which arrival times are enumerated is the sufficient and necessary set

for exact arrival time computation. It is therefore not possible to enu-

merate fewer nodes without creating arrival time dependencies in the

circuit. Nevertheless, dependent arrival time propagation is useful

only for very small timing graphs or timing graphs with mostly tree-

like structures.

5  Statistical bounds

We now propose an efficient method for computing lower and

upper bounds of the exact arrival time CDF of GP. We are interested

in both upper and lower bounds since this allows us to determine the

quality of the bounds by comparing their difference. Also, for digital

circuits, analysis of both slow and fast paths are important for cor-

rect circuit operation and therefore a lower bound on the earliest
arrival time CDF could be useful. We define the upper and low

bounds of a CDF as follows:

Definition 7. The arrival time CDF P(t) is an upper bound of the

arrival time CDF Q(t) if and only if for all t, .

A similar definition and property can be formulated for lower

bounds. Figure 4 shows two arrival time CDFs P(t) and Q(t), where

P(t) is an upper bound on Q(t). Note that the upper bound P(t) is

itself a valid CDF and that not only the expected value of Q(t),

but also other characteristics, such as the 95% confidence point, are
Figure 3. Dependent arrival time computation for node f. Intersection

graph is shaded and dependence nodes are marked black.
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bounded by P(t) on Q(t). By using CDF P(t) instead of Q(t), we will

overestimate the delay corresponding to a particular probability or

performance yield, resulting in a conservative analysis for late

arrival times, as shown in Figure 4. Similarly, for a particular

required delay, the probability that a die will meet this delay con-

strain will be underestimated by using P(t) instead of Q(t).

Upper bound computation.

To efficiently compute an upper bound on the exact graph delay

CDF of Gp, we propose the following theorem for random variables:

Theorem 2. Let x, y and z be random variables that satisfy Prop-

erty 1. Let x1, x2 be random variables with cumulative distribu-

tions that are identical to x. Then, the CDF of random variable

max(x1+y, x2+z) is an upper bound on CDF of the random vari-

able max(x+y, x+z).

Proof. The cumulative distribution function of random variables

max(x+y, x+z) and max(x1+y, x2+z) are:

(EQ 7)

(EQ 8)

Multiplying equation EQ7 by the integral of probability density

function p(v) from minus infinity to infinity, rearranging some of the

terms and renaming integration variables, gives us:

(EQ 9)

Integrals from formulae EQ8 and EQ9 for cumulative distributions

P(t) and Q(t) have the same integration functions

f(x1,x2,y,z)=p(x1)p(x2)q(y)r(z) and f(x,v,y,z)=p(x)p(v)q(y)r(z) and dif-

fer only in the names of the variables. We now split the 4D domain

of both functions into two subdomains: and . cumulative

distributions P(t) and Q(t) can be represented as the sum of two

terms corresponding to the contribution of each subdomain.

(EQ 10)

For subdomain we define a one to one mapping (bijection) so

that (x1,x2,y,z) corresponds to (v,x,y,z) i.e. x1=v and x2=x. In this sub-

domain, inequality follows from inequality

. Therefore, the region of integration for

computing in this subdomain includes the integration

region for computing and hence

because in both cases we integrate the same function.

For subdomain we define a one to one mapping (bijection)

so that (x1,x2,y,z) corresponds to (x,v,y,z) i.e. x1=x and x2=v. Similar

to the above consideration, follows from

in this subdomain and the region of integra-

tion for computing includes the region of integration for

computing . Therefore, .

Combining inequalities for P(t) and Q(t) from each subdomain,

we obtain the inequality for the whole sample space

which proves the theorem.

We now consider the simple graph Gp1 shown in Figure 5(a) with

delay equal to max((da+db+dd), (da+dc+de)), where di is the delay

of edge i. Figure 5(b) shows the timing graph Gp2 where edge a is

split into edges a1 and a2 with the same delay CDFs as a. From The-

orem 2, it follows that Gp2 has a delay CDF that is an upper bound

on delay CDF of the graph Gp1. In fact, it is clear that the CDF of

arrival times at all nodes in Gp2 are upper bounds of the CDF of

arrival times of corresponding nodes in Gp1 and hence we refer

graph Gp2 is an upper bound on graph Gp1. Based on this graph rep-

resentation of Theorem 2, we therefore pose the following Corol-

lary:

Corrolary 1. If for graph GP1 with one or more convergence

nodes, arrival times are computed for all nodes using the proce-

dure of independent arrival time propagation, the computed

arrival time CDFs will be an upper bound on the true arrival time

CDFs at those nodes.

The validity Corrolary 1 can be seen by considering the timing

graph Gp1 with dependence nodes nD, as illustrated in Figure 3(a).

Following the procedure for dependent arrival time propagation, we

replace subgraph GS,1 with a single edge e1, as shown in Figure 3(b),

where the edge delay CDF D1 of e1 is equal to the arrival time CDF

A1 at nD,1. We now create a graph Gp2, which bounds Gp1 by split-

ting edge e1 as shown in Figure 3(c), such that nD,1 is no longer a

dependence node in Gp2. By repeating this process for all depen-

dence nodes, we obtain a timing graph Gp,k that bounds the original

timing graph Gp1 and which has no convergence nodes. We can

compute the exact arrival time CDFs of Gp,k by performing indepen-

dent arrival time propagation. Finally, it is easy to observe that we

need not explicitly replace subgraph GS,1 with edge e1 and split it,

and that we will compute identical arrival times to those of Gp,k by

simply performing independent arrival time propagation on graph

Gp1, as stated in Corrolary 1.

Lower bound computation.

We now discuss the computation of a low bound on the exact

arrival time CDFs. Given the CDFs X(t) and Y(t) of two dependent
random variables x and y and the random variable z = max(x, y), it is

clear that the CDF min(X(t), Y(t)), as shown in Figure 6, is a lower

bound on the CDF of z. This can be seen by considering the graph in

Figure 2(b), consisting of two parallel edges with delays x and y and

edge delay CDFs X(t) and Y(t), respectively. The probability that the

Figure 4.  Lower and upper bounds of a CDF
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Figure 5. Bounded graph transformation through node splitting.
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graph delay z = max(x, y) exceeds a certain delay t is greater than or

equal to the probability that either edge delay exceeds t, regardless

of the correlation of the x and y. In other words ,

and . Since ,

, and , it follows that

and , from which it follows that min(X(t),
Y(t)) is a lower bound on the CDF of z.

The lower bound computation is therefore identical to indepen-

dent arrival time propagation, except that at convergence nodes, the

CDF of the arrival time is computed by taking the minimum of the

incoming arrival time CDFs for each time point. The lower bound

computation has a linear run time complexity with circuit size.

6  Results

The proposed statistical timing analysis methods for computing

upper and lower arrival time bounds were implemented. Also, the

exact statistical timing analysis methods through edge enumeration

described in Section 2 and dependent arrival time propagation

described in Section 4 were implemented. In the cases where it was

possible to compute the exact graph delay CDF with these methods,

it was used to confirm the correctness of the computed bounds. For

larger circuits, Monte Carlo simulation with 100,000 samples was

used. To properly stress the proposed methods, fairly large standard

deviations were used for the edge delay CDFs in the timing graphs,

ranging between 15% and 35% of their mean.

In Table 1, we show the circuit characteristics and results for the

ISCAS [10] benchmark circuits. The table shows the average and

maximum number of dependence nodes per convergence node (#
dependence). Some circuits have extensive reconvergence, indicated

by their high number of dependence nodes, making them difficult

test cases for statistical timing analysis.

Table 1 also shows the results for the bound computation. The

expected value of the lower and upper bound CDFs (bound low/

upper) and their relative difference (bound diff) is shown. Although

we only report the expected value of the bounds in Table 1, the com-

puted bounds are CDFs and allow the computation of other useful

values, such as confidence points. We also show deterministic

bounds (det. bound), obtained by selecting for each edge the mini-

mum or maximum edge delay with non-zero probability and com-

puting the graph delay with deterministic STA. The statistical upper

and lower bounds have a relatively small difference in their mean

value of 4% to 12%, showing their effectiveness. For all circuits, the

run time of the bound computation did not exceed 5 seconds. Also,

the Monte Carlo results fall between the computed bounds, as

expected. Finally, Figure 7 shows the CDFs for the proposed lower

and upper bound as well as the CDF obtained through Monte-Carlo

simulation for circuit c7552.

7  Conclusions

In this paper, we have proposed an efficient method for computing

bounds on the statistical behavior of the circuit delay due to within-

chip process variations. We presented a general method for statistical

timing analysis. Since the exact statistical timing analysis method

has exponential run time complexity with circuit size, we show how

statistical bounds on the graph delay can be computed with linear

run time complexity. We prove the correctness of the upper and

lower bounds and demonstrate that the obtained bounds are close.
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Circuit
#

dependence

det

bound monte

carlo

bound

name
#

edges
# conv avg max

low/

upper

low/

upper
%diff

c17 19 3 0.8 3 1.6/2.4 2.24 2.18/2.28 5%

c499 481 38 6.3 56 6/9.6 8.48 7.64/8.7 12%

c432 379 39 7.9 32 8.8/15.0 12.5 11.9/13.1 9%

c880 815 85 6.4 48 11.6/18.4 14.9 14.5/15.3 6%

c1355 1137 240 2.5 26 11.6/19.0 16.7 15.2/17.1 11%

c1908 1556 103 5.9 85 17.4/28.8 23.4 22.7/23.9 5%

c2670 2449 259 5.5 51 15.2/24.6 20.7 19.9/21.4 6%

c3540 3011 480 23.5 275 20.2/33.6 27.4 26.5/28.1 6%

c5315 4687 152 4.2 15 21.4/34.0 27.9 27.6/28.6 4%

c6288 4864 1626 93.7 1142 54.4/89.8 75.7 72.5/79.0 8%

c7552 6459 391 6.1 98 19.6/30.8 25.5 24.7/26.0 5%

Table 1. Circuit statistics and exact reduction improvement

Figure 6. Lower bound for two dependent arrival times.
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Figure 7. Comparison of CDF bounds and Monte-Carlo CDF
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