
Timing Verification with Crosstalk for Transparently
Latched Circuits

Hai Zhou
Electrical and Computer Engineering

Northwestern University
Evanston, IL 60208

ABSTRACT
Delay variation due to crosstalk has made timing analy-
sis a hard problem. In sequential circuits with transparent
latches, crosstalk makes the timing verification (also known
as clock schedule verification) even harder. In this paper,
we point out a false negative problem in current timing ver-
ification techniques and propose a new approach based on
switching windows. In this approach, coupling delay calcula-
tions are combined naturally with latch timing iterations. A
novel algorithm is given for timing verification with crosstalk
in transparently latched circuits and primitive experiments
show promising results.

Categories & Subject Descriptors
B.7.2 Design Aids: Verification

General Terms
Algorithms, Design, Verification

Keywords
Timing, Clock, Verification, Coupling, Delay

1. INTRODUCTION
With increasing clock frequencies and shrinking process ge-
ometries in deep sub-micron technology, both capacitive and
inductive crosstalk become big concerns in designs. Be-
sides introducing noises on quiet wires, crosstalk may greatly
change the wire delays. Even worse, the change of a delay
by crosstalk is data-dependent, that is, it can increase or
decrease the delay based on the switching directions of the
two coupled signals. These data-dependent delay variations
present a new challenge on timing analysis.

There are many recent works that deal with the timing anal-
ysis with crosstalk. Since whether two coupled signals will
change each other’s delay is dependent on whether they may
switch at (approximately) the same time, timing analysis
and crosstalk effect calculation are mutually dependent on
each other. To solve this chicken-and-egg problem, itera-
tive approaches are proposed to bring them into a consis-
tent state [10, 1, 3, 13]. Zhou et al. [13] established the
mathematical foundation of timing analysis with crosstalk
as a fixpoint on a complete lattice and pointed out different
ways to find a fixpoint (among possibly many fixpoints).
These works are mainly focused on timing analysis of a
combinational circuit. However, they can be easily carried
on to sequential circuits using only edge-triggered registers.

Because signals cannot pass transparently through edge-
triggered registers, timing analysis needs to be conducted
only on the combinational component of such a circuit. The
output times of the registers are used as the input times of
the combinational circuit, and the set-up and hold condi-
tions of the registers are checked against the combinational
outputs.

However, many sequential circuits have not only edge-triggered
registers but also level-sensitive latches. Especially in high-
performance designs, level-clocked circuits are dominant since
level-sensitive latches take less area and operate at higher
frequencies than edge-triggered registers [5]. The complex-
ity introduced by the latches is that signals can now pass
transparently through the latches and this makes time bor-
rowing across latch boundaries possible. Therefore, timing
analysis can no longer be carried only on the combinational
part since the output time of a latch is now dependent on
its input time. Szymanski and Shenoy [12, 11] provided a
now standard technique to solve the problem without con-
sidering crosstalk. They separated the computation of early
arrival times from that of late arrival times and formulated
each of them as a fixpoint computation. In each problem,
an iteration is started from a lower bound initial solution to
generate a monotonic increasing sequence.

In the presence of crosstalk, Hassoun et al. [7] directly com-
bined the Szymanski and Shenoy algorithm with Hassoun’s
dynamically bounded delay model [6] to handle timing verifi-
cation. Because of crosstalk, the early and late arrival times
of a signal can no longer be separated. However, the Szy-
manski and Shenoy algorithm uses constant latch-to-latch
path delays which are no longer valid in the presence of
crosstalk. This introduced a false negative problem in the
timing verification. These problems will be explained in
more details in Section 3.

To deal with the above problems, we propose a totally new
approach to solve the timing verification for transparently
latched in the presence of crosstalk. As a basis for our so-
lution, the timing verification problem without crosstalk is
first revisited. The traditional approach (such as Szymanski
and Shenoy) can be viewed as a steady state computation
and thus may introduce a false negative problem on hold
conditions. When crosstalk is presented, the false negative
problem may propagate to set-up conditions. To overcome
these problems, we give a new formulation of accumulating
switching windows which can be viewed as computing all

1530-1591/03 $17.00 2003 IEEE

1530-1591/03 $17.00 2003 IEEE

1530-1591/03 $17.00 2003 IEEE

states reachable from the initial state. Since crosstalk ef-
fects can be computed by increasing the switching windows,
in the presence of crosstalk, iterations for crosstalk and it-
erations for latches work in the same fashion and thus can
be combined in any order. Based on the chaotic iteration
scheme [2], we design an efficient algorithm for the verifica-
tion which exploits the flexibility in the order to speed up
the computation. Primary experimental results show that
our approach is correct and promising.

2. PRELIMINARIES
2.1 Models of clock and transparent latches
Clock is the most important mechanism used in a synchronous
circuit. A clock is a periodical signal used to regulate other
signals in the circuit. With the help of a clock, the design
of other signals is relaxed to tolerate glitches or false transi-
tions if they pass the safety checking of the clock. Multiple
phases of a clock may be used in a circuit. A clock scheme
for a circuit is a set of periodical signals φ1, . . . , φn with a
common period c. A three phase clocking scheme is shown
in Figure 1. Selecting a period of length c as the global
time reference, we can denote each phase φi by its starting
and ending times (si, ei) with respect to the reference. Note
that it is possible to have si > ei based on the selection of
global time reference. We generally order the phases such
that ei < ej if i < j. Also note that wi is used to represent
the width of phase i.

c�

e� 1

e� 2

e� 3

s� 1

s� 2

s� 3

w1

w2

w3

Figure 1: Three phase clocking with period c.

Memory elements are used in a circuit to store its state.
In a synchronous circuit, clock signals are usually applied
at memory elements to do the safety checking and to filter
out unintended transitions. For this purpose, besides the
data input and output, a synchronous memory element has
a control input. Only under a certain condition of the con-
trol input does the memory element respond to the data
input. Memory elements can be categorized into two groups
according to how they respond to the control input: flip-
flops store the data when the control switches; latches let
the output have the input value when the control level is
high. Figure 2 shows the symbol used for a memory ele-
ment and the signal responses in a latch and a flip-flop. As
we can see, when a clock signal is applied to the control in-
put of a memory element, transitions not synchronous with
the clock are filtered out. A flip-flop filters out all transi-
tions while a latch let the transitions within the high level
window of the control pass transparently to the output. Be-
cause of this, timing verification is easy in a circuit with only
flip-flops but is very hard when latches are used. We only
focus on the latter problem in the sequel.

2.2 Szymanski and Shenoy algorithm

input output

control

input

control

output

input

control

output

(a) (b) (c)

Figure 2: (a) A memory element; (b) Signal re-
sponse in a latch; (c) Signal response in a flip-flop.

Szymanski and Shenoy’s method for timing verification (also
known as clock schedule verification) [12] is based on a sim-
ple topological delay model of the combinational component.
Given the pin-to-pin delay of each gate, the maximal and
minimal delays from the output of one latch to the input of
another latch can be computed by traversing the topology of
the gate connections. Let ∆ij and δij to represent the max-
imal and minimal combinational delays from latch i to latch
j, respectively. Also let Ai and ai represent the later and
early signal arrival times on the input of latch i, and Di and
di the later and early signal departure times on the output
of latch i, respectively. Based on the SMO formulation [9],
they have

Ai = max
j→i

(Dj + ∆ji − Epjpi)

ai = min
j→i

(dj + δji − Epjpi)

Di = max(Ai, c− wpi)
di = max(ai, c− wpi)

Where pi is the clock phase controlling latch i and Eij is
defined as

Eij =

{
ej − ei if ej > ei
c+ ej − ei otherwise

We must also note that used here are local times referring
to local periods that end with the phase falling edges.

Szymanski and Shenoy verified the clock schedule by first
solving the above equations and then checking whether the
solution satisfies the set-up and hold conditions

Ai ≤ c− Spi
ai ≥ Hpi

The equations are solved by an iterative approach starting
from a lower bound, that is

a0
i = −∞

A0
i = −∞

dmi = max(ami , c− wpi)
Dm
i = max(Ami , c− wpi)
ami = min

j→i
(dm−1
j + ∆ji − Epjpi)

Ami = max
j→i

(Dm−1
j + δji − Epjpi)

3. FALSE NEGATIVE IN PREVIOUS AP-
PROACHES

Hassoun et al. [7] used the Szymanski and Shenoy algorithm
directly as a subroutine in their timing verification in the

presence of crosstalk. It works as follows. At the beginning,
no crosstalk is assumed to take effect and the Szymanski
and Shenoy algorithm is used to find a solution. Then the
solution is used to check for switching window overlap and
modify the delays based on crosstalk effects. These two
processes are repeated until there is no change on delays.

Without crosstalk, there is already a false negative problem
in the Szymanski and Shenoy algorithm. As the early arrival
and departure times increase monotonically to their steady-
state values, they might very well violate hold conditions
at various latches even if the steady-state solution will not.
This has been noted by Szymanski and Shenoy [12] and can
be easily fixed by checking the hold conditions at the first
iteration.

However, in the presence of crosstalk, this minor false nega-
tive problem on hold conditions may underestimate switch-
ing window overlap, and thus introduce false negative on
set-up conditions. This can be exemplified through a simple
circuit in Figure 3(a). There are four latches 1, 2, 3, 4 clocked
by two non-overlap phases. The clock period is 3d where d is
the gate delay of an inverter. We also assume that when the
two coupled signals switch in the opposite directions at the
same time, their delays will be increased by 0.5d. In Hassoun
et al.’s approach, no coupling is assumed to take effect at
the beginning of the iteration. The Szymanski and Shenoy
algorithm is used under the assumption that the delay from
latch 1 to latch 2 is 2d and that from latch 3 to latch 4 is
d. The converged solution of the latch arrival times by the
Szymanski and Shenoy algorithm is shown in Figure 3(b).
Notice that since there is only one path to each latch, the
early and late arrival times of the latch coincident with each
other. Since the departure windows at latch 1 and latch 3
do not overlap, the switching windows of the two coupled
signals do not overlap with each other. This means that the
solution in Figure 3(b) is a converged solution by Hassoun
et al and the clock schedule is valid.

However, this verification is false negative. Consider an ini-
tial state with value 0 at latches 1, 2, 4, and value 1 at latch
3. The violation trace is shown in Figure 3(c). When the
clock starts ticking, latches 1 and 3 will have their output
switch at the rising edge of φ1 (shown by the two shorter
arrows in Figure 3(c)). This will make the coupled signals
switch in opposite directions at the same time, thus will in-
crease the delays by 0.5d. The arrival times at latches 2
and 4 are thus delayed by 0.5d, which are shown by the
shorter arrows. In the second clock period, the arrival times
at latches 1 and 3 are both delayed by 0.5d, thus still make
the coupled signals switch at the same time. The arrival
times for all the latches are shown by the longer arrows. As
we can see, the set-up condition at latch 2 has already been
violated.

This false negative problem on set-up conditions is more
serious than that on hold conditions and cannot be easily
fixed. One of its causes is a theoretical pitfall in Hassoun et
al.’s approach: a constant latch-to-latch delay model is used
within the Szymanski and Shenoy algorithm; however, it is
not valid in the presence of crosstalk.

For example, consider the combinational part from latches

ø� 1 ø� 2

ø� 1

ø� 2

3d

d
�

d
�

d
�

d
�

d
�

d
�

1 2

3 4

ø� 1

ø� 2

(b)

1 2

3 4

(a)

ø� 1

ø� 2

1 2

3 4
(c)

Figure 3: False negative in Hassoun et al.’s ap-
proach. (a) The circuit and clock schedule; (b) So-
lution by Hassoun et al.; (c) A violation trace.

1 and 3 to latches 2 and 4 in Figure 3, redrawn in Figure 4.
The constant path delay model needs to assign a delay value
from a to x and a delay value from b to y. If we use 2d for
the first path and d for the second path, we underestimate
the delays when a and b switch at the same time; if we
use 2.5d for the first path and 1.5d for the second path, we
overestimate when a and b switch at different time. Since
the initial state and the steady state in the Szymanski and
Shenoy algorithm may have different timing behaviors, using
constant path delay model causes problems.

d
�

d
�

d
�

a

b

x

y�

a

b

x

y�

2d or 2.5d?

d or 1.5d?
�

Figure 4: Constant path delay model no longer
works in the presence of crosstalk.

4. A NEW FORMULATION BASED ON
SWITCHING WINDOWS

In this section, we revisit the timing verification for trans-
parently latched without crosstalk. Even though the minor
false negative on hold conditions can be easily fixed, we will
investigate the deep theoretical reason for its cause and pro-
pose a sound formulation based on switching windows. This
new formulation may look equivalent to the simple fix when
there is no crosstalk, but its benefit will show up in the
presence of crosstalk.

Szymanski and Shenoy [12] directly followed Sakallah et
al. [9] to solve the timing verification problem by first solving
the SMO equations and then checking the set-up and hold

conditions. However, none of them proved the correctness of
this approach. Szymanski and Shenoy discovered that there
may be multiple solutions to the SMO equations and, in
that case, not all of the solutions satisfy the set-up and hold
conditions. They also noted the false negative problem on
hold conditions. These problems should have raised enough
suspicions on the SMO formulation, but the tradition was
still followed.

Zhou et al. [13] established a firm foundation for timing anal-
ysis in the presence of crosstalk, which is based on the gen-
eral understanding of timing behavior as an approximation
of the circuit semantics. A key element in this understand-
ing is that the information we seek is not on a specific run
but on all possible runs. That is, the information should
be a subset of instances instead of just one instance. Since
what needs to be checked in the timing verification is the
stability of each latch input signal from the set-up time to
the hold time, the subset of all possible switching times of
the signal needs to be computed.

Based on the operation model of a latch, any signal tran-
sition in the input during the high level of the clock will
appear on the output and any stable transition before the
clock high level will generate a transition at the rising edge
of the clock. Therefore, if the switching times on the latch
input fall in [ai, Ai], then the switching times on the latch
output are in [di, Di], where

di = max(ai, c− wpi)
Di = max(Ai, c− wpi)

which has been characterized by the SMO formulation. How-
ever, these equations only compute the sets of switching
times in the next state from those in the current state. That
is, they are the counterparts of the transition functions in
a finite state machine. Iterating through them only gives
the timing information of the steady states1. Since the tim-
ing verification needs to check the timing safety of all pos-
sible states, we need to accumulate all possible switching
times. Let αi = [ai, Ai] denote the current subset of possi-
ble switching times on the input of latch i and δi the current
subset of possible switching times on the output of latch i.
Then, the subset of possible switching times on the output
should be increased as

δ′i = δi ∪ [max(ai, c− wpi),max(Ai, c− wpi)]. (1)

Intuitively, this formulation is similar to the union of all next
states to find the reachable states in model checking [8].

In (1), when δi is an interval and δi ∩ [max(ai, c − wpi),
max(Ai, c−wpi)] 6= ∅, the result δ′i is still an interval. Oth-
erwise, the representation of δ′i will become complicated.
However, under the constant path delay model, we can al-
ways expand a complicated set δ′i to the minimal interval
covering it without introducing false positive problems on
set-up and hold conditions.

Similar to Zhou et al. [13], if we use the set inclusion rela-

1Since iterating through transition functions cannot guaran-
tee convergence on states, the convergence of the Szymanski
and Shenoy algorithm should be considered a surprise. Fur-
ther study shows that the constant path delay model plays
a critical role in Szymanski and Shenoy’s convergence proof.

tion (⊆) as a partial order on the solution space, the itera-
tion function (1) is monotonic2. Specifically, the subset of
switching times on any signal is non-decreasing during the
iterations and thus will either converge to a fixpoint or vio-
late the set-up and hold conditions. Contrary to Sakallah et
al. [9] and confirmed with Szymanski and Shenoy’s observa-
tion [12], the selection of initial solution is very important
here. Usually, each latch has a reset input which can be
used to reset the latch into an initial state. By the worst
case principle, we assume that the next state will have a
different bit value on each latch from the initial one. This
means that initially there is always a transition on each latch
output at the rising edge of its clock phase. Started with
this initial solution, larger and larger subsets are computed
till they converge or violate the conditions. Checking a fix-
point against the setup and hold conditions will make sure
that the conditions are not violated at any point during the
circuit operation.

5. TIMING VERIFICATION WITH CROSS-
TALK

Our approach to timing verification with corsstalk in trans-
parently latched circuits is based on the new timing window
based formulation presented in Section 4. In this approach,
the verification is no longer carried out on the early and later
arrival times separately. Instead, switching windows are ac-
cumulated during the iterations. Because of this, the con-
stant path delay model is no longer used. Furthermore, since
the switching windows are non-decreasing in the new timing
verification, the window update by crosstalk can be combined
naturally with the window update by latch feedbacks. Specif-
ically, our algorithm, called XVeriClock, works as follows.
In the beginning, all the latch outputs have their switching
windows of length 0 at their clock rising edges, all the pri-
mary inputs have their given windows, and all other signals
have empty windows. Then switching windows are itera-
tively updated over the whole circuit through three kinds of
window propagations: the output window of a gate or a wire
has a constant delay from its input windows; the switching
window of a wire is changed by the switching windows of its
coupled wires; the switching window of a latch output is up-
dated through (1). It can be verified that all these window
update functions are monotonic, that is, if the input win-
dow does not get reduced, then the output window cannot
become smaller. For a more formal treatment of monotonic-
ity, see [13]. The advantage of (1) is the guarantee that the
latch output windows are monotonically non-decreasing dur-
ing the iterations. This, combined with the monotonicity of
window update functions, assures that all windows are non-
decreasing during the iterations. Therefore, the iterations
will either converged to a fixpoint or reach a point where
setup or hold condition is violated. The pseudo-code of the
algorithm XVeriClock is given in Figure 5.

Actually the above algorithm XVeriClock is just an algo-
rithm scheme. It does not give the order to de-queue the
windows in Q. Even for a given window w in Q, the sequence
to update the influenced windows may not be “crosstalk,
fanout, and then latch” as shown in the pseudo-code. Since
all the updates will increase the switching windows, based

2On the contrary, the SMO formulation is not monotonic on
this partial order set.

Algorithm XVeriClock

set all switching windows to empty;

window queue Q = ∅;
initialize primary input windows

and put them in Q;
set latch output windows to points at

clock rising edges and put them in Q;
while (Q 6= ∅ and not stop) {

de-queue a window w from Q;
if (w gets overlap with coupling windows)

update coupling windows;

if (w has fanouts)

update fanout windows;

if (w is a latch input)

update the latch output window;

add all changed windows to Q;
}

Figure 5: The algorithm XVeriClock

on the scheme of chaotic iteration [4, 13], the iterations will
reach the same result–either diverge or converge to the same
fixpoint–no matter what order of updates is applied. This
can be stated as the following theorem.

Theorem 1. If the algorithm XVeriClock converge to a
fixpoint in one update order, it will converge to the same
fixpoint in any update order.

The flexibility given in the update order can be further ex-
ploited to speed up the computation. The fanout relations
through gates and latches form directed edges between sig-
nals. Coupled signals form two directed edges between them
in opposite directions. Similar to Zhou et al. [13], if strongly
connected components are identified and processed one by
one in their topological order, some of the useless updates
will be skipped. However, since many latches form feedbacks
in a sequential circuit, we may have larger strongly con-
nected components here. Within each strongly connected
component, there are many different ways to arrange the
update order but there is no obvious winner [2]. Gener-
ally a strongly connected component is viewed as a DAG
(directed acyclic graph) plus a set of feedback edges. Even
though finding the minimal set of feedback edges is NP-hard,
a small set of feedback edges is usually desired. The method
to propagate through the feedback edges as soon as possible
is called the recursive approach; the method to propagate
through the feedback edges as later as possible is called the
iterative approach [2].

However, the edges in our system are not homogeneous. The
edges representing couplings have very different property
from those representing gate or latch fanout relations. Be-
cause of this, Szymanski and Shenoy’s upper bound on the
number of iterations to convergence [12] is no longer valid
when there is crosstalk. Fortunately the following result can
be proved.

Theorem 2. If the algorithm XVeriClock converges, it

must converge within n iterations after the last window up-
date from crosstalk, where n is the number of latches.

Proof. Here, each iteration means updating each signal
once. Since there is no delay changed by crosstalk in the
last n iterations, the path delay from a latch to another
is constant. Using results in Szymanski and Shenoy [12],
the iterations will diverge if they do not converge within n
iterations.

Because of the above theorem, we prefer to update coupling
windows as soon as possible, in the hope to find convergence
or divergence as early as possible. After each coupling win-
dow update, the number of iterations will be re-counted and
used as one of the stop criteria in the algorithm.

6. EXPERIMENTAL RESULTS
Different from Hassoun et al. [7], our approach is built di-
rectly upon accumulated switching windows, and thus does
not need to use the Szymanski and Shenoy algorithm and
the constant path delay model with it. This helps to solve
the false negative problems in Szymanski and Shenoy (mi-
nor one) and in Hassoun et al. (major one). Furthermore,
the approach also makes it possible to combine coupling up-
dates with latch updates. Our primary experiments are used
to test how large the switching windows could be under the
accumulated model. Combining the updates from couplings
and latches can greatly reduce the running time and is now
under testing.

Thanks to Hassoun, we got the test cases and the source
code used in their experiments [7]. In our primary exper-
iments, we change the iterations to accumulate switching
windows (i.e., using (1) instead of the SMO equations) but
keep the update order the same. We use the same parame-
ters, e.g. the same random delays of the combinational gates
and random capacitors equal in number to 10% of the total
nodes. For each of the test cases, a max and a min periods
are checked by our approach and Hassoun et al.’s approach.
When an approach diverges, we also give the violating win-
dow. The result is shown in Table 1.

7. CONCLUSIONS
Delay variation due to crosstalk has become an important
issue that must be taken into consideration in all timing
analyses and verifications of DSM designs. Combined with
the time borrowing across latch boundaries, it makes the
timing verification with crosstalk in transparently latched
circuits an important and difficult problem. A false nega-
tive problem in the hold condition is revealed by our study
of the SMO formulation and the traditional techniques with-
out crosstalk. Directly using the traditional techniques with
crosstalk will amplify the false negative problem and even
get it into the set-up condition.

In this paper, we proposed a new approach based on accu-
mulated switching windows to solve the timing verification
problem. In this approach, switching windows are accumu-
lated through the whole operation of the circuit thus no
false negative problem will happen. Furthermore, coupling
window updates can be combined naturally with window
updates through gates and latches. This flexibility is used

Table 1: Experimental Results
circuit max period min period

name PIs latches gates Hassoun ours Hassoun ours
bbsse 7 8 87 pass pass pass pass
cse 7 8 153 pass pass pass pass
dk16 2 11 189 pass pass [8.252,19.274] [6.38,19.274]
ex2 2 10 100 pass pass [9.321,18.984] [6.3,18.984]
ex6 5 17 89 pass pass [12.11,19.336] [12.11,19.336]
kirkman 12 8 174 pass pass pass pass
train4 2 4 13 pass pass [5.331,10.464] [5.331,10.464]

to speed up the computation in a novel algorithm and the
primary results are promising.

Acknowledgments
The author is grateful to S. Hassoun for providing the code
of their algorithm. This research was supported by a faculty
start-up fund from Northwestern University.

8. REFERENCES
[1] R. Arunachalam, K. Rajagopal, and L. T. Pilleggi.

Taco: Timing analysis with coupling. In Proc. of the
Design Automation Conf., pages 266–269, Los
Angeles, CA, June 2000.

[2] Francois Bourdoncle. Efficient chaotic iteration
strategies with widening. In International Conf. on
Formal Methods in Programming and Their
Applications, LNCS 735, number 735 in LNCS, pages
128–141, 1993.

[3] P. Chen, D. A. Kirkpatrick, and K. Keutzer.
Switching window computation for static timing
analysis in presence of crosstalk noise. In Proc. Intl.
Conf. on Computer-Aided Design, San Jose, CA,
November 2000.

[4] P. Cousot and R. Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In ACM
Symposium on Principles of Programming Languages,
pages 238–252, Los Angeles, CA, January 1977.

[5] C. Ebeling and B. Lockyear. On the performance of
level-clocked circuits. In Advanced Research in VLSI,
pages 242–356, 1995.

[6] S. Hassoun. Critical path analysis uing a dynamically
bounded delay model. In Proc. of the Design
Automation Conf., pages 260–265, Los Angeles, CA,
June 2000.

[7] Soha Hassoun, Christopher Cromer, and Eduardo
Calvillo-Gamez. Verifying clock schedules in the
presence of cross talk. In Proc. DATE: Design
Automation and Test in Europe, 2002.

[8] Kenneth L. McMillan. Symbolic Model Checking.
Kluwer Academic Publishers, 1993.

[9] Karem A. Sakallah, Trevor N. Mudge, and
Oyekunle A. Olukotun. checkTc and mintc: Timing
verification and optimal clocking of synchronous

digital circuits. In Proc. Intl. Conf. on
Computer-Aided Design, pages 552–555, November
1990.

[10] S. S. Sapatnekar. A timing model incorporating the
effect of crosstalk on delay and its application to
optimal channel routing. IEEE Transactions on
Computer Aided Design, 2000.

[11] Narendra V. Shenoy. Timing Issues in Sequential
Circuits. PhD thesis, UC Berkeley, 1993.

[12] T. G. Szymanski and N. Shenoy. Verifying clock
schedules. In Proc. Intl. Conf. on Computer-Aided
Design, 1992.

[13] H. Zhou, N. Shenoy, and W. Nicholls. Timing analysis
with crosstalk as fixpoints on a complete lattice. In
Proc. of the Design Automation Conf., pages 714–719,
2001.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

