
Low Energy Data Management for Different On-chip Memory Levels in Multi-
Context Reconfigurable Architectures* 

                                                                 
* This work was sponsored by the New Del Amo program. 

 
M. Sánchez-Élez, M. Fernández, M. Anido†, H. Du§, N. Bagherzadeh§, R. Hermida 

 
Dept. de Arquitectura de Computadores y Automática – Universidad Complutense de Madrid – 28040 SPAIN 

†Nucleo de Computacion Electronica – Federal University do Rio de Janeiro – Brazil 
§Dept. of Electrical and Computer Engineering – University of California, Irvine – CA 92697 USA 

 
 
 

Abstract: 
This paper presents a new technique to improve the 
efficiency of data scheduling for multi-context 
reconfigurable architectures targeting multimedia and DSP 
applications. The main goal is to improve application 
energy consumption. Two levels of on-chip data storage are 
assumed in the reconfigurable architecture. The Data 
Scheduler attempts to optimally exploit this storage, by 
deciding in which on-chip memory the data have to be 
stored in order to reduce energy consumption. We also 
show that a suitable data scheduling could decrease the 
energy required to implement the dynamic reconfiguration 
of the system. 
 

1. Introduction 
The emergence of high capacity reconfigurable devices is 
igniting a revolution in general-purpose processors. It is 
now possible to tailor and dedicate reconfigurable units to 
take advantage of application dependent dataflow. These 
reconfigurable systems combine reconfigurable hardware 
units with a software programmable processor. They 
generally have wider applicability than an application 
specific circuit. In addition, they attain a better performance 
than a general-purpose processor for a wide range of 
computationally intensive applications.  
FPGAs [1] are the most common fine-grained devices used 
for reconfigurable computing. Dynamic reconfiguration [2] 
has emerged as a particularly attractive technique for 
minimizing the reconfiguration time, which has a negative 
effect on FPGA performance. Multi-context architectures 
are an example of dynamic reconfiguration, which can store 
a set of different configurations (contexts) in an internal 
memory. When a new configuration is needed, it is loaded 
from this internal memory which is faster than 
reconfiguration from the external memory. Examples of 
such chips are MorphoSys SIMD system-on-chip [3] or 
FUZION architecture [4]. 
Multimedia applications are fast becoming one of the 
dominating workloads for reconfigurable systems. For these 
applications the system energy is clearly dominated by 
memory access. Most of these applications apply block-

partitioning algorithms to the input data. Within these 
blocks there is a significant data reuse as well as spatial 
locality [5]. These blocks are relatively small and can easily 
fit into reasonably sized on-chip memories. Therefore, a 
data scheduling at this block level significantly reduces the 
system energy consumption. 
Previous work [6][7][8] discussed scheduling for multi-
context architectures, in particular using MorphoSys. It 
achieves high performance compared with other 
approaches, on several DSP and multimedia algorithms. 
These applications are typically composed of a group of 
macro-tasks (kernels), which are characterized by their 
contexts and their data. 
A kernel scheduling technique is proposed in [6] to 
generate a kernel sequence that estimates the execution time 
through tentative context and data schedules. Context 
scheduling is discussed in [7] and its goal is to minimize the 
number of context loads. A first approach to data 
scheduling was discussed in [8] but it does not deal with 
energy minimization and different on-chip memory levels. 
The method presented in this paper optimizes data storage 
in different on-chip memory levels, reducing the energy 
consumption. 
Although previous work has been done related to energy 
optimizations, this kind of data management for 
reconfigurable systems has not been discussed in detail by 
other authors. A review of data memory design for 
embedded systems is discussed in [9]; but it does not take 
into account the reconfiguration energy consumption. A 
method to decrease the power budget by transforming the 
initial signal or data processing specifications is suggested 
in [10], but it deals with fine-granularity problems. In [11] a 
data scheduler for dynamic architectures is proposed, 
though it does not optimize memory management and 
energy consumption. A method to minimize memory traffic 
is suggested in [12], but it does not deal with memory 
allocation in detail. However, regarding memory 
organization most effort has been made in cache 
organization for general-purpose computers, see [13][14], 
and not on more custom memory organizations, as needed 
for example by multimedia and DSP applications.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
 1530-1591/03 $17.00  2003 IEEE 



Figure 1: M2 MorphoSys Chip 

The paper begins with a brief overview of MorphoSys and 
its compilation framework. Section 3 describes the 
problem. Section 4 analyzes data management in different 
on-chip memory levels. A data management in FB to reduce 
energy consumption is discussed in Section 5. Experimental 
results are presented in Section 6. Finally we present some 
conclusions from our research in Section 7. 

 
2. Architecture and framework overview 

This section describes the target system M2 (second 
implementation of MorphoSys). We also present the 
development framework that integrates the data scheduler 
with other compilation tasks. 
MorphoSys [3] (Figure 1) consists of an 8x8 array of 
reconfigurable cells (RC). Its functionality and 
interconnection network are configured through 32-bit 
context words. The context word controls the ALU 
functions, the usage of registers, the internal RAM, etc, of 
each RC. These context words are stored in a context 
memory (CM). 
The frame buffer (FB) serves as a data cache (level 1) for 
the RC Array; it is logically organized into two sets. This 
arrangement helps in overlapping computation with data 
load/store. Data from one set is used for current 
computation, while the other set stores results in the 
external memory and loads data for the next round of 
computation. Moreover, each cell has an internal RAM 
(level 0 cache) that can be used to store the most frequently 
accessed data and results. The Data Scheduler reduces these 
data and results transfers and optimizes their storage to 
minimize energy consumption.  
The DMA controller establishes the bridge that connects 
the external memory to either the FB or the CM. Thus, 
simultaneous transfers of data and contexts are not possible. 
A RISC processor controls MorphoSys operation.  
An overview of the proposed compilation framework is 
shown in Figure 2. The application assembly code and 
contexts are written in terms of kernels that are available in 
a kernel library. The information extractor generates the 
information needed by the compilation tasks that follow it, 

including kernel execution time, data size and number of 
contexts for each kernel.  
The kernel scheduler [6] explores the design space to find a 
sequence of kernels that minimizes the execution time. It 
decides which is the best sequence of kernels and creates 
clusters. The term cluster is used here to refer to a set of 
kernels that are assigned to the same FB set and whose 
components are consecutively executed. For example, an 
application is composed of kernels k1, k2, k3, k4; the kernel 
scheduler, estimating context and data transfers, could 
assign k1 and k2 to one FB set, and k3 and k4 to the other set. 
This implies the existence of two clusters c1={k1, k2} and 
c2={k3, k4}. The first cluster is being executed using data of 
one FB set and/or internal RAMs, meanwhile the contexts 
and data of the other cluster kernels are being transferred to 
CM and to the other FB set respectively. 
The kernel scheduler generates one possible kernel 
sequence that minimizes the overall execution time. The 
context and data schedulers specify when and how each 
transfer must be performed to reduce the energy budget. 
The code generator builds the optimized code that is going 
to be implemented in M2. 
 

3. Problem Overview 
We propose in this paper a new methodology to perform 
data scheduling on a given set of clusters. 
The problem could be defined as: “Given an ordered set of 
clusters with their data and results sizes, and a memory 
hierarchy, find the data scheduling that minimizes the 
energy consumption”. 
As [5] explains, multimedia applications have a significant 
data reuse as well as spatial locality at block level (kernel 
level). The Data Scheduler makes good use of this 
characteristic to reduce energy. If several data have a 
reasonable reuse, these can be stored in the low energy 
memory to minimize energy consumption as is explained 
below. Energy is calculated by multiplying time and power. 
The MorphoSys execution model allows overlapping of 
context and data transfers with system computation, but it 
does not allow simultaneous transfers of data and contexts. 
Therefore the execution time [6] for a cluster c is the 

Figure 2: Compilation Framework 



greater of either the sum of data, results and context transfer 
times or the sum of kernel computation times. For 
multimedia applications the data and results transfers are 
more time consuming than kernel computation time. 
The Data Scheduler reduces data and results transfers to 
reduce application execution time. It keeps the cluster data 
or results in FB, which are later used by other clusters, in 
order to avoid unnecessary transfers. 
The Data Scheduler uses FB free space to store data in 
executed kernels RF consecutive times (Context Reuse 
Factor [8]) to reduce contexts transfers.  
On the other hand, we consider that the memory access is a 
major contributor to the overall power consumption [14]. 
The main sources of memory power are: the power 
dissipated in the bit-lines, the power dissipated in word-
lines, and the power used to drive the external buses. 
Though memory access has the higher power contribution, 
we also take into account the power dissipated by 
reconfigurable hardware elements and RISC processor. We 
are not considering the energy dissipated in the address 
decoders, since we found this value to be negligible 
compared to the other components [15]. 
The power dissipated in the bit and word lines depends on 
memory size, in smaller memories a smaller capacity is 
switched. The Data Scheduler reduces power consumption 
by storing the most frequently used data in the smallest on-
chip data memories. In addition, the Data Scheduler allows 
consecutive kernel executions, which reduces context 
transfers by a factor RF, the power consumption of context 
memory is also diminished. The Data Scheduler reduces 
data and context transfers, which implies that the power 
used to drive the external buses is also reduced.  
MorphoSys’ speed is limited by the access time to FB. Each 
RC has a small internal RAM tightly coupled with it, only 
used to store executed square root, sine or cosine algorithm 
data. But these memories could be used to store any other 
data and results since algorithm data do not occupy the 
whole RC-RAM and they are not used in many 
applications. In addition, Tiny RISC makes the instructions, 
which do not depend on FB data running faster than the 
dependent ones. As RC-RAMs are within RC, they are 
quicker and also smaller than FB. Therefore, if the Data 
Scheduler uses these RC-RAMs to store the most accessed 
data, it reduces energy consumption, as we discuss in 
section 4.  
Although our approach to solving this problem targets one 
particular reconfigurable system, MorphoSys, this approach 
is quite general in nature and may be easily applied to other 
reconfigurable and embedded systems. 
 

4. Low Energy RC-RAM Management. 
In this section we discuss a low energy RC Data 
Management. 
MorphoSys has a hierarchical memory design wherein RC-
RAM is the lowest hierarchy level. This RC memory was 

only used to store data for special algorithms because data 
transfers to/from RC-RAM were very time consuming in 
the M1 chip (7 cycles to transfer one word).  These 
algorithm data were loaded previous to application 
execution and there was no transfer between FB and RC-
RAM during the execution. 
In M2 we have developed new instructions and RC 
contexts, which allow 1 cycle data transfers to/from RC-
RAM. These transfers are carried out through DMA. A new 
Tiny RISC instruction loads DMA with the FB start 
address, number of words, transfer type (load/store) and RC 
cell. RC-RAM access is controlled by new contexts, with 
the address register and the transfer type. Within the M2 
reconfigurable cell we add a counter, which increases the 
RC-RAM access address in each clock cycle until DMA 
generates a stop signal. Moreover, a multiplexer at the RC-
RAM port allows both transfers to/from FB and to/from RC 
registers. This method makes one cycle transfers between 
FB and RC-RAM possible, and lets the Data Scheduler 
optimize data storage in on-chip memories. 
The execution time of instructions that work on RC-RAM 
data is less than that of instructions working on FB data. 
Power consumption is also smaller in RC-RAM than in FB, 
therefore load data in RC-RAM should reduce energy 
consumption. However, the data storage in RC-RAM does 
not always reduce energy consumption. There is an increase 
in execution time due to the data transfers from FB to RC-
RAMs having to be done within their cluster computation 
time, instead of overlapping with previous cluster 
computation, as occurs in transfers between external 
memory and FB. And there is an increase in power because 
data must be loaded into the FB before loading them into 
RC-RAM. Therefore, if several data are transferred from 
FB to RC-RAM and they are read just once, the 
improvement in energy is negative. However, if they are 
read nmin times, the decrease in energy from using data in 
RC-RAM is larger than the energy wasted in transferring 
data from FB to RC-RAM (Figure 3). If the energy 
consumption of the data when stored in RC-RAM is less 
than the energy consumption when stored in FB, the Data 

-150

-130

-110

-90

-70

-50

-30

-10

10

30

50

1 2 3 4 5 6 7

number of access

re
la

tiv
e 

im
pr

ov
m

en
t (

%
)

      Energy
      Time
      Power

Figure 3: Relative Improvement when data are 
stored in RCRAM (RCRAM size = 1/4 FB size) 



c = cluster with the maximum RFFB; 
(c’,i) = RC-cell and its cluster with the maximum RFFB; 
RC_list(c,i);  
fin=0;  
while (fin==0)  {  
       RF_FB = calculate_RFFB(c); 
       RF_RC = calculate_RFRC(c’,i);  
       if RF_FB<= RF_RC then {  
              RF = RF_FB;  
              fin=1;  
       } else  {  
              E_FB = e_improvement_FB(RF_FB);  
              E_RC = e_improvement_RC(RF_RC);  
              if    E_FB>E_RC then { 

      reduce_RC(RC_list(c,i));  
       (c’,i) = recalculate(RC_list);  
              } else RFFB = RFFB – 1;  
} } 

Figure 4: Algorithm to calculate RF. 

Scheduler must store them in the RC-RAM. (i.e. more than 
3 instructions that read these data in a “RC-RAM = FB/4” 
case). In addition, there are several data shared among 
clusters or several results used as data by some clusters.  
The Data Scheduler attempts to keep these data or results in 
RC-RAM instead of reloading them in each cluster 
execution, to increase energy reduction. 
EFRC reflects the energy reduced if these data or results are 
stored in RC-RAM: 
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    nacc: the number of instructions that read these data or 
results 
    nmin(): the minimum number of instructions to improve 
energy consumption. (d: data; r: results). 
   D(u,v): the input shared data size of data stored in the 
RC-RAM for cluster u execution and not used after cluster 
v execution.  
   R(u,v): an intermediate shared results size produced in 
cluster u execution and not used as data after cluster v 
execution. 
   N: the number of clusters that read these data or results. 
 
The Data Scheduler stores data and results following the 
energy factor until no more data fit into RC-RAM. The data 
size stored in the RC memories can be obtained by the sum   
of all data and results sizes (RCDS). It takes into account 
that data have to be stored before the first cluster that uses 
them is executed. The results are stored while the kernel 
that produces them is executed and the space occupied by 
the results or data that are not going to be used again is used 
to store new data or results.   
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   dj(u,c): the input data size for kernel j of cluster c, except 
those shared with kernels executed after kj {kj+1, …, kn}; 
these data were stored in the RC-RAM for cluster u 
execution.  
   rjt(c,v): an intermediate results size of kj of cluster c, 
which are data for kt and not for any kernel executed after kt 
of cluster c; these results were produced in cluster u 
execution. 
 
The Data Scheduler sorts the data and results to store in 
RC-RAM according to EFRC. It starts checking that the data 
with the highest EFRC fit in the RC-RAM (RCDS ≤  
RAM_size). Scheduling continues with data or results with 
less EFRC. If RCDS > RAM_size for some data or results, 
these are not kept. The Data Scheduler keeps the highest 
possible amount of data or results that minimizes energy 

consumption. The algorithm results is RC_list(c,i), a list of 
data and results stored in RC_RAM for cluster c and cell i,  
ordered by energy improvement. 
The Data Scheduler repeats this algorithm for all the 64 RC 
cells. However, in most cases, this is not necessary because 
the 64 RC cells have the same execution behavior, though 
on different data.    
 

5. Low Energy FB Management 
The Data Scheduler has to take the RC-RAMs into account 
to calculate the FB management. These new memories 
complicate scheduling and could increase energy 
consumption. In this section we discuss the changes made 
to the data scheduler developed in [8] to handle RC-RAMs 
and to reduce energy consumption. 
Cluster data and results have to be stored in the FB even 
though they are transferred to RC-RAM or to external 
memory. Therefore, the data size stored in FB can be 
obtained by the sum of all data and results used and 
generated by all kernels. The data transferred to RC-RAM 
have to be stored initially in FB, before execution of  the 
first kernel in the cluster. The space occupied by these data 
is released when they are stored in RC-RAMS (before 
execution of  the first kernel in the cluster), and their space 
can be used to store the results of cluster kernels. On the 
other hand, the results stored in RC-RAM have to be stored 
in FB before they are transferred to the external memory. 
But this is done after the last kernel in the cluster is 
executed.  
Multimedia applications are composed of a sequence of 
kernels that are consecutively executed over a part of the 
input data, until all data are processed. This part of the 
input data depends on application scheduling and FB size, 
for example n times to process the total amount of data. In 
this case their contexts may be loaded into CM n times. 
However, sometimes loop fission can be applied to execute 
a kernel RF consecutive times before executing the next one 
(loading kernel data for RF iterations in FB). In this case 



kernel contexts are reused because they have to be loaded 
only n/RF times, reducing context transfers from the 
external memory and thus minimizing energy consumption. 
The number of consecutive kernel executions RF (Reuse 
Factor) is limited by the internal memory sizes. 
The Data Scheduler finds the maximum common RF value 
in FB (RFFB) and also the maximum RF value for each cell 
(RFRC). However, RF may be the same for all clusters and 
cells, on account of data and results dependencies. The 
Figure 4 algorithm is applied to decide which is going to be 
the application RF value. 
The procedure calculate_RFFB(c) finds the maximum RF 
value for cluster c. The procedure calculate_RFRC(c,i) 
finds the maximum RF value for RC cell i RCRAM for 
cluster c. The procedure e_improvement_FB(RFFB) 
calculates the energy improvement if kernels are executed 
consecutively RF_FB times (RF_RC = RF_FB). The 
procedure e_improvement_RC(RF_RC) calculates the 
energy improvement if kernels are executed consecutively 
RF_RC times (RF_FB = RF_RC). The procedure 
reduce_RC(RC_list(c,i)) extracts from the list the data or 
result with least energy improvement, where if some data 
have the same energy the procedure extracts the largest one. 
The procedure recalculate(RC_list) calculates the new 
clusters and cell with the maximum data size. 
If RF_FB < RF_RC then RF = RF_FB because all data 
have to be stored beforehand in FB. However, if RF_FB > 
RF_RC the algorithm finds the RF that minimizes energy. 
This can be achieved by decreasing RFFB or increasing 
RFRC. The later is the result of reducing the data stored in 
RC-RAM.   
Context and data transfers are very energy consuming. In 
order to reduce context transfers, the Data Scheduler 
achieves the highest common RF value to all clusters. 
However, in most cases, though context transfers are 
minimized, there is wasted energy on account of 
unnecessary data transfers between FB and the external 
memory.  
Data transfer reduction between FB and external memory 
was discussed in [8]. The difference between that 
scheduling and this scheduling is the RCRAM memory 
management. The Data Scheduler finds the external data 
and intermediate results shared among clusters but not 
stored in any RC-RAM. The Data Scheduler attempts to 
keep these in FB instead of reloading them to increase 
energy reduction. EFFB reflects the energy reduced if these 
data or results are kept in FB: 
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The Data Scheduler stores data and results following the 
energy factor until no more data fit in FB.  
The Data Scheduler reduces energy because data and 
results used by cluster kernels are loaded only once even 
though more than one kernel uses them. Memory write and 

read operations are executed mainly in the RC-RAMs 
which consume less energy than FB. The Data Scheduler 
minimizes write and read to/from the external memory due 
to the fact that it tries to transfer only the input data and the 
output results of the application, keeping the intermediate 
results, when possible, in the FB and RC-RAMs.  
Although the number of memory accesses could not be 
minimized, there are other techniques to minimize energy 
consumption. For example, reducing switching activity on 
the memory address and data buses produces a decrease in 
energy consumption. These energy reductions can be 
brought about by the appropriate reorganization of memory 
data, thus consecutive memory references exhibit spatial 
locality. This locality, if correctly exploited, results in a 
power-efficient implementation because, in general, the 
Hamming distance between nearby addresses is less than 
that between those that are far apart [16]. During the cycles 
for which the data-path is idle, all power consumption can 
then be easily avoided by any power-down strategy. A 
simple way to achieve this is, for example, the cheap gated-
clock approach [17].  
 

6. Experimental Results 
In this section we present the experimental results for a 
group of synthetic and real experiments, in order to 
demonstrate the quality of the proposed methodology. As a 
real experiment we have developed a ray-tracing algorithm 
for MorphoSys. It projects rays into the computer’s model 
of the world to determine what color to display at each 
point in the image [18].  
The data scheduling depends on kernel scheduling, data 
size and available internal memory. We analyze different 
kernel schedules for different memory sizes as shown in 
Table 1. We compare the previous data scheduling [8] and 
the data scheduling proposed in this paper with the Basic 
Scheduler [6]. E1 stands for the relative energy 
improvement on the previous data scheduler, E2 stands for 
the relative energy improvement of the current Data 
Scheduler and E1-2 compares the current Data scheduler 
with the previous data scheduler. 
We have tested the same kernel schedules for different memory  
 

 N n DS RAM FB RF E1 E2 E1-2 
A1 5 4 1.1 0.125 0.5 2 45% 53% 18% 
A2 5 4 1.1 0.06 0.25 1 5% 20% 16% 
B1 5 5 2.7 0.25 1 5 60% 65% 15% 
B2 5 5 2.7 0.5 1 5 60% 69% 28% 
C 4 3 2.5 0.25 1 5 55% 68% 30% 

RT1 4 2 2 0.25 1 1 6% 26% 22% 
RT2 4 2 2 0.5 2 3 55% 68% 37% 
RT3 7 2 4 0.5 2 2 55% 58% 10% 

 
 
 
 
 

N: total number of clusters; n: maximum number of kernels per 
cluster; DS: total data size per iteration (input data + intermediate 
results + final results) in KB ; RF: reuse context factor; FB: One 

frame buffer set size in KB;RAM: RC-RAM size in KB. E1, E2, E1-2: 
Data Schedulers relative energy improvement  

Table 1. Experimental Results 



sizes as shown, A1-A2 or B1-B2 or RT1-RT2.  RC-RAM 
size is always smaller than FB size because RC-RAM is 
hierarchically the lowest memory.  A1 and A2 have few 
data stored in RC-RAM since the majority of data are not 
read many times. The increase in FB size achieves a better 
reduction in energy budget by avoiding context transfers. 
B1 and B2 have many data stored in RC-RAM. 
For B1 all the most accessed data cannot be stored in RC-
RAM. Therefore an increase in RC-RAM size, as B2 
shows, achieves a better E2 result. RT1 and RT2 represent 
simple image ray-tracing, and for this case an increase in 
RC-RAM does not improve energy performance because all 
the most accessed data fit into RC-RAM. However an 
increase in FB and RC-RAMs allows context reuse. 
Although the increase in memory is more energy consuming 
this effect is worthwhile due to greater data and context 
reuse. C stands for an intermediate example context reuse 
between A and B. RT3 stands for a more complicated 
image ray-tracing, which increases data size and number of 
kernels. In all cases the Data Scheduler achieves better 
energy results than the previous version, as E2 and E1-2 
show, due to the current Data Scheduler improving FB and 
RC-RAMs usage, minimizing energy consumption. 

 
7. Conclusions 

In this paper we have presented a new technique to improve 
data scheduling for multi-context reconfigurable 
architectures. It stores the most frequently accessed data in 
the on-chip memories (FB or RC-RAMs) to minimize data 
and context transfers, reducing the energy budget. 
We have developed a method to efficiently store data and 
results in RC-RAMs. The Data Scheduler decides which 
data or results have to be loaded into these internal 
memories to reduce energy consumption.  
The Data Scheduler allows data and results reuse within a 
cluster, minimizing the memory space required by cluster 
execution. It allows the reuse of data and results among 
clusters if the FB has sufficient free space. It chooses the 
shared data or results to be kept within FB, allowing further 
reductions in transfers to/from the external memory.  
The Data Scheduler maximizes the available free space in 
the FB. This allows the number of consecutive iterations 
(RF) to increase and as a consequence, kernel contexts are 
reused during these iterations, reducing context transfers. 
The experimental results demonstrate the effectiveness of 
this technique in reducing the execution time and power 
budget compared to previous data schedulers. 
Future work will address data management within a kernel, 
as well as a detailed study of optimal memory sizes for 
applications. 
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