
Low Energy Data Management for Different On-chip Memory Levels in Multi-
Context Reconfigurable Architectures*

* This work was sponsored by the New Del Amo program.

M. Sánchez-Élez, M. Fernández, M. Anido†, H. Du§, N. Bagherzadeh§, R. Hermida

Dept. de Arquitectura de Computadores y Automática – Universidad Complutense de Madrid – 28040 SPAIN

†Nucleo de Computacion Electronica – Federal University do Rio de Janeiro – Brazil
§Dept. of Electrical and Computer Engineering – University of California, Irvine – CA 92697 USA

Abstract:
This paper presents a new technique to improve the
efficiency of data scheduling for multi-context
reconfigurable architectures targeting multimedia and DSP
applications. The main goal is to improve application
energy consumption. Two levels of on-chip data storage are
assumed in the reconfigurable architecture. The Data
Scheduler attempts to optimally exploit this storage, by
deciding in which on-chip memory the data have to be
stored in order to reduce energy consumption. We also
show that a suitable data scheduling could decrease the
energy required to implement the dynamic reconfiguration
of the system.

1. Introduction
The emergence of high capacity reconfigurable devices is
igniting a revolution in general-purpose processors. It is
now possible to tailor and dedicate reconfigurable units to
take advantage of application dependent dataflow. These
reconfigurable systems combine reconfigurable hardware
units with a software programmable processor. They
generally have wider applicability than an application
specific circuit. In addition, they attain a better performance
than a general-purpose processor for a wide range of
computationally intensive applications.
FPGAs [1] are the most common fine-grained devices used
for reconfigurable computing. Dynamic reconfiguration [2]
has emerged as a particularly attractive technique for
minimizing the reconfiguration time, which has a negative
effect on FPGA performance. Multi-context architectures
are an example of dynamic reconfiguration, which can store
a set of different configurations (contexts) in an internal
memory. When a new configuration is needed, it is loaded
from this internal memory which is faster than
reconfiguration from the external memory. Examples of
such chips are MorphoSys SIMD system-on-chip [3] or
FUZION architecture [4].
Multimedia applications are fast becoming one of the
dominating workloads for reconfigurable systems. For these
applications the system energy is clearly dominated by
memory access. Most of these applications apply block-

partitioning algorithms to the input data. Within these
blocks there is a significant data reuse as well as spatial
locality [5]. These blocks are relatively small and can easily
fit into reasonably sized on-chip memories. Therefore, a
data scheduling at this block level significantly reduces the
system energy consumption.
Previous work [6][7][8] discussed scheduling for multi-
context architectures, in particular using MorphoSys. It
achieves high performance compared with other
approaches, on several DSP and multimedia algorithms.
These applications are typically composed of a group of
macro-tasks (kernels), which are characterized by their
contexts and their data.
A kernel scheduling technique is proposed in [6] to
generate a kernel sequence that estimates the execution time
through tentative context and data schedules. Context
scheduling is discussed in [7] and its goal is to minimize the
number of context loads. A first approach to data
scheduling was discussed in [8] but it does not deal with
energy minimization and different on-chip memory levels.
The method presented in this paper optimizes data storage
in different on-chip memory levels, reducing the energy
consumption.
Although previous work has been done related to energy
optimizations, this kind of data management for
reconfigurable systems has not been discussed in detail by
other authors. A review of data memory design for
embedded systems is discussed in [9]; but it does not take
into account the reconfiguration energy consumption. A
method to decrease the power budget by transforming the
initial signal or data processing specifications is suggested
in [10], but it deals with fine-granularity problems. In [11] a
data scheduler for dynamic architectures is proposed,
though it does not optimize memory management and
energy consumption. A method to minimize memory traffic
is suggested in [12], but it does not deal with memory
allocation in detail. However, regarding memory
organization most effort has been made in cache
organization for general-purpose computers, see [13][14],
and not on more custom memory organizations, as needed
for example by multimedia and DSP applications.

 1530-1591/03 $17.00 2003 IEEE

Figure 1: M2 MorphoSys Chip

The paper begins with a brief overview of MorphoSys and
its compilation framework. Section 3 describes the
problem. Section 4 analyzes data management in different
on-chip memory levels. A data management in FB to reduce
energy consumption is discussed in Section 5. Experimental
results are presented in Section 6. Finally we present some
conclusions from our research in Section 7.

2. Architecture and framework overview

This section describes the target system M2 (second
implementation of MorphoSys). We also present the
development framework that integrates the data scheduler
with other compilation tasks.
MorphoSys [3] (Figure 1) consists of an 8x8 array of
reconfigurable cells (RC). Its functionality and
interconnection network are configured through 32-bit
context words. The context word controls the ALU
functions, the usage of registers, the internal RAM, etc, of
each RC. These context words are stored in a context
memory (CM).
The frame buffer (FB) serves as a data cache (level 1) for
the RC Array; it is logically organized into two sets. This
arrangement helps in overlapping computation with data
load/store. Data from one set is used for current
computation, while the other set stores results in the
external memory and loads data for the next round of
computation. Moreover, each cell has an internal RAM
(level 0 cache) that can be used to store the most frequently
accessed data and results. The Data Scheduler reduces these
data and results transfers and optimizes their storage to
minimize energy consumption.
The DMA controller establishes the bridge that connects
the external memory to either the FB or the CM. Thus,
simultaneous transfers of data and contexts are not possible.
A RISC processor controls MorphoSys operation.
An overview of the proposed compilation framework is
shown in Figure 2. The application assembly code and
contexts are written in terms of kernels that are available in
a kernel library. The information extractor generates the
information needed by the compilation tasks that follow it,

including kernel execution time, data size and number of
contexts for each kernel.
The kernel scheduler [6] explores the design space to find a
sequence of kernels that minimizes the execution time. It
decides which is the best sequence of kernels and creates
clusters. The term cluster is used here to refer to a set of
kernels that are assigned to the same FB set and whose
components are consecutively executed. For example, an
application is composed of kernels k1, k2, k3, k4; the kernel
scheduler, estimating context and data transfers, could
assign k1 and k2 to one FB set, and k3 and k4 to the other set.
This implies the existence of two clusters c1={k1, k2} and
c2={k3, k4}. The first cluster is being executed using data of
one FB set and/or internal RAMs, meanwhile the contexts
and data of the other cluster kernels are being transferred to
CM and to the other FB set respectively.
The kernel scheduler generates one possible kernel
sequence that minimizes the overall execution time. The
context and data schedulers specify when and how each
transfer must be performed to reduce the energy budget.
The code generator builds the optimized code that is going
to be implemented in M2.

3. Problem Overview
We propose in this paper a new methodology to perform
data scheduling on a given set of clusters.
The problem could be defined as: “Given an ordered set of
clusters with their data and results sizes, and a memory
hierarchy, find the data scheduling that minimizes the
energy consumption”.
As [5] explains, multimedia applications have a significant
data reuse as well as spatial locality at block level (kernel
level). The Data Scheduler makes good use of this
characteristic to reduce energy. If several data have a
reasonable reuse, these can be stored in the low energy
memory to minimize energy consumption as is explained
below. Energy is calculated by multiplying time and power.
The MorphoSys execution model allows overlapping of
context and data transfers with system computation, but it
does not allow simultaneous transfers of data and contexts.
Therefore the execution time [6] for a cluster c is the

Figure 2: Compilation Framework

greater of either the sum of data, results and context transfer
times or the sum of kernel computation times. For
multimedia applications the data and results transfers are
more time consuming than kernel computation time.
The Data Scheduler reduces data and results transfers to
reduce application execution time. It keeps the cluster data
or results in FB, which are later used by other clusters, in
order to avoid unnecessary transfers.
The Data Scheduler uses FB free space to store data in
executed kernels RF consecutive times (Context Reuse
Factor [8]) to reduce contexts transfers.
On the other hand, we consider that the memory access is a
major contributor to the overall power consumption [14].
The main sources of memory power are: the power
dissipated in the bit-lines, the power dissipated in word-
lines, and the power used to drive the external buses.
Though memory access has the higher power contribution,
we also take into account the power dissipated by
reconfigurable hardware elements and RISC processor. We
are not considering the energy dissipated in the address
decoders, since we found this value to be negligible
compared to the other components [15].
The power dissipated in the bit and word lines depends on
memory size, in smaller memories a smaller capacity is
switched. The Data Scheduler reduces power consumption
by storing the most frequently used data in the smallest on-
chip data memories. In addition, the Data Scheduler allows
consecutive kernel executions, which reduces context
transfers by a factor RF, the power consumption of context
memory is also diminished. The Data Scheduler reduces
data and context transfers, which implies that the power
used to drive the external buses is also reduced.
MorphoSys’ speed is limited by the access time to FB. Each
RC has a small internal RAM tightly coupled with it, only
used to store executed square root, sine or cosine algorithm
data. But these memories could be used to store any other
data and results since algorithm data do not occupy the
whole RC-RAM and they are not used in many
applications. In addition, Tiny RISC makes the instructions,
which do not depend on FB data running faster than the
dependent ones. As RC-RAMs are within RC, they are
quicker and also smaller than FB. Therefore, if the Data
Scheduler uses these RC-RAMs to store the most accessed
data, it reduces energy consumption, as we discuss in
section 4.
Although our approach to solving this problem targets one
particular reconfigurable system, MorphoSys, this approach
is quite general in nature and may be easily applied to other
reconfigurable and embedded systems.

4. Low Energy RC-RAM Management.
In this section we discuss a low energy RC Data
Management.
MorphoSys has a hierarchical memory design wherein RC-
RAM is the lowest hierarchy level. This RC memory was

only used to store data for special algorithms because data
transfers to/from RC-RAM were very time consuming in
the M1 chip (7 cycles to transfer one word). These
algorithm data were loaded previous to application
execution and there was no transfer between FB and RC-
RAM during the execution.
In M2 we have developed new instructions and RC
contexts, which allow 1 cycle data transfers to/from RC-
RAM. These transfers are carried out through DMA. A new
Tiny RISC instruction loads DMA with the FB start
address, number of words, transfer type (load/store) and RC
cell. RC-RAM access is controlled by new contexts, with
the address register and the transfer type. Within the M2
reconfigurable cell we add a counter, which increases the
RC-RAM access address in each clock cycle until DMA
generates a stop signal. Moreover, a multiplexer at the RC-
RAM port allows both transfers to/from FB and to/from RC
registers. This method makes one cycle transfers between
FB and RC-RAM possible, and lets the Data Scheduler
optimize data storage in on-chip memories.
The execution time of instructions that work on RC-RAM
data is less than that of instructions working on FB data.
Power consumption is also smaller in RC-RAM than in FB,
therefore load data in RC-RAM should reduce energy
consumption. However, the data storage in RC-RAM does
not always reduce energy consumption. There is an increase
in execution time due to the data transfers from FB to RC-
RAMs having to be done within their cluster computation
time, instead of overlapping with previous cluster
computation, as occurs in transfers between external
memory and FB. And there is an increase in power because
data must be loaded into the FB before loading them into
RC-RAM. Therefore, if several data are transferred from
FB to RC-RAM and they are read just once, the
improvement in energy is negative. However, if they are
read nmin times, the decrease in energy from using data in
RC-RAM is larger than the energy wasted in transferring
data from FB to RC-RAM (Figure 3). If the energy
consumption of the data when stored in RC-RAM is less
than the energy consumption when stored in FB, the Data

-150

-130

-110

-90

-70

-50

-30

-10

10

30

50

1 2 3 4 5 6 7

number of access

re
la

tiv
e

im
pr

ov
m

en
t (

%
)

 Energy
 Time
 Power

Figure 3: Relative Improvement when data are
stored in RCRAM (RCRAM size = 1/4 FB size)

c = cluster with the maximum RFFB;
(c’,i) = RC-cell and its cluster with the maximum RFFB;
RC_list(c,i);
fin=0;
while (fin==0) {
 RF_FB = calculate_RFFB(c);
 RF_RC = calculate_RFRC(c’,i);
 if RF_FB<= RF_RC then {
 RF = RF_FB;
 fin=1;
 } else {
 E_FB = e_improvement_FB(RF_FB);
 E_RC = e_improvement_RC(RF_RC);
 if E_FB>E_RC then {

 reduce_RC(RC_list(c,i));
 (c’,i) = recalculate(RC_list);
 } else RFFB = RFFB – 1;
} }

Figure 4: Algorithm to calculate RF.

Scheduler must store them in the RC-RAM. (i.e. more than
3 instructions that read these data in a “RC-RAM = FB/4”
case). In addition, there are several data shared among
clusters or several results used as data by some clusters.
The Data Scheduler attempts to keep these data or results in
RC-RAM instead of reloading them in each cluster
execution, to increase energy reduction.
EFRC reflects the energy reduced if these data or results are
stored in RC-RAM:

22
min

22
min

)(),())(()(

)(),())(()(

NvuRrnnREF
NvuDdnnDEF

accRC

accRC

⋅⋅−=

⋅⋅−=

 nacc: the number of instructions that read these data or
results
 nmin(): the minimum number of instructions to improve
energy consumption. (d: data; r: results).
 D(u,v): the input shared data size of data stored in the
RC-RAM for cluster u execution and not used after cluster
v execution.
 R(u,v): an intermediate shared results size produced in
cluster u execution and not used as data after cluster v
execution.
 N: the number of clusters that read these data or results.

The Data Scheduler stores data and results following the
energy factor until no more data fit into RC-RAM. The data
size stored in the RC memories can be obtained by the sum
of all data and results sizes (RCDS). It takes into account
that data have to be stored before the first cluster that uses
them is executed. The results are stored while the kernel
that produces them is executed and the space occupied by
the results or data that are not going to be used again is used
to store new data or results.

()

++

+

+=

∑

∑ ∑∑

−

+==

== ===∈∈

Nc

cvu

Nc

cvu

ni

itj
jt

n

ij
jniNc

vuRvuD

vcrcudMAXMAXRCDS

,1

1,1

,

,1

,

,1},...1{},...1{

),(),(

),(),(

 dj(u,c): the input data size for kernel j of cluster c, except
those shared with kernels executed after kj {kj+1, …, kn};
these data were stored in the RC-RAM for cluster u
execution.
 rjt(c,v): an intermediate results size of kj of cluster c,
which are data for kt and not for any kernel executed after kt
of cluster c; these results were produced in cluster u
execution.

The Data Scheduler sorts the data and results to store in
RC-RAM according to EFRC. It starts checking that the data
with the highest EFRC fit in the RC-RAM (RCDS ≤
RAM_size). Scheduling continues with data or results with
less EFRC. If RCDS > RAM_size for some data or results,
these are not kept. The Data Scheduler keeps the highest
possible amount of data or results that minimizes energy

consumption. The algorithm results is RC_list(c,i), a list of
data and results stored in RC_RAM for cluster c and cell i,
ordered by energy improvement.
The Data Scheduler repeats this algorithm for all the 64 RC
cells. However, in most cases, this is not necessary because
the 64 RC cells have the same execution behavior, though
on different data.

5. Low Energy FB Management
The Data Scheduler has to take the RC-RAMs into account
to calculate the FB management. These new memories
complicate scheduling and could increase energy
consumption. In this section we discuss the changes made
to the data scheduler developed in [8] to handle RC-RAMs
and to reduce energy consumption.
Cluster data and results have to be stored in the FB even
though they are transferred to RC-RAM or to external
memory. Therefore, the data size stored in FB can be
obtained by the sum of all data and results used and
generated by all kernels. The data transferred to RC-RAM
have to be stored initially in FB, before execution of the
first kernel in the cluster. The space occupied by these data
is released when they are stored in RC-RAMS (before
execution of the first kernel in the cluster), and their space
can be used to store the results of cluster kernels. On the
other hand, the results stored in RC-RAM have to be stored
in FB before they are transferred to the external memory.
But this is done after the last kernel in the cluster is
executed.
Multimedia applications are composed of a sequence of
kernels that are consecutively executed over a part of the
input data, until all data are processed. This part of the
input data depends on application scheduling and FB size,
for example n times to process the total amount of data. In
this case their contexts may be loaded into CM n times.
However, sometimes loop fission can be applied to execute
a kernel RF consecutive times before executing the next one
(loading kernel data for RF iterations in FB). In this case

kernel contexts are reused because they have to be loaded
only n/RF times, reducing context transfers from the
external memory and thus minimizing energy consumption.
The number of consecutive kernel executions RF (Reuse
Factor) is limited by the internal memory sizes.
The Data Scheduler finds the maximum common RF value
in FB (RFFB) and also the maximum RF value for each cell
(RFRC). However, RF may be the same for all clusters and
cells, on account of data and results dependencies. The
Figure 4 algorithm is applied to decide which is going to be
the application RF value.
The procedure calculate_RFFB(c) finds the maximum RF
value for cluster c. The procedure calculate_RFRC(c,i)
finds the maximum RF value for RC cell i RCRAM for
cluster c. The procedure e_improvement_FB(RFFB)
calculates the energy improvement if kernels are executed
consecutively RF_FB times (RF_RC = RF_FB). The
procedure e_improvement_RC(RF_RC) calculates the
energy improvement if kernels are executed consecutively
RF_RC times (RF_FB = RF_RC). The procedure
reduce_RC(RC_list(c,i)) extracts from the list the data or
result with least energy improvement, where if some data
have the same energy the procedure extracts the largest one.
The procedure recalculate(RC_list) calculates the new
clusters and cell with the maximum data size.
If RF_FB < RF_RC then RF = RF_FB because all data
have to be stored beforehand in FB. However, if RF_FB >
RF_RC the algorithm finds the RF that minimizes energy.
This can be achieved by decreasing RFFB or increasing
RFRC. The later is the result of reducing the data stored in
RC-RAM.
Context and data transfers are very energy consuming. In
order to reduce context transfers, the Data Scheduler
achieves the highest common RF value to all clusters.
However, in most cases, though context transfers are
minimized, there is wasted energy on account of
unnecessary data transfers between FB and the external
memory.
Data transfer reduction between FB and external memory
was discussed in [8]. The difference between that
scheduling and this scheduling is the RCRAM memory
management. The Data Scheduler finds the external data
and intermediate results shared among clusters but not
stored in any RC-RAM. The Data Scheduler attempts to
keep these in FB instead of reloading them to increase
energy reduction. EFFB reflects the energy reduced if these
data or results are kept in FB:

22

22

)1(),()(

)1(),()(

+⋅=

−⋅=

NvuRREF
NvuDDEF

FB

FB

The Data Scheduler stores data and results following the
energy factor until no more data fit in FB.
The Data Scheduler reduces energy because data and
results used by cluster kernels are loaded only once even
though more than one kernel uses them. Memory write and

read operations are executed mainly in the RC-RAMs
which consume less energy than FB. The Data Scheduler
minimizes write and read to/from the external memory due
to the fact that it tries to transfer only the input data and the
output results of the application, keeping the intermediate
results, when possible, in the FB and RC-RAMs.
Although the number of memory accesses could not be
minimized, there are other techniques to minimize energy
consumption. For example, reducing switching activity on
the memory address and data buses produces a decrease in
energy consumption. These energy reductions can be
brought about by the appropriate reorganization of memory
data, thus consecutive memory references exhibit spatial
locality. This locality, if correctly exploited, results in a
power-efficient implementation because, in general, the
Hamming distance between nearby addresses is less than
that between those that are far apart [16]. During the cycles
for which the data-path is idle, all power consumption can
then be easily avoided by any power-down strategy. A
simple way to achieve this is, for example, the cheap gated-
clock approach [17].

6. Experimental Results
In this section we present the experimental results for a
group of synthetic and real experiments, in order to
demonstrate the quality of the proposed methodology. As a
real experiment we have developed a ray-tracing algorithm
for MorphoSys. It projects rays into the computer’s model
of the world to determine what color to display at each
point in the image [18].
The data scheduling depends on kernel scheduling, data
size and available internal memory. We analyze different
kernel schedules for different memory sizes as shown in
Table 1. We compare the previous data scheduling [8] and
the data scheduling proposed in this paper with the Basic
Scheduler [6]. E1 stands for the relative energy
improvement on the previous data scheduler, E2 stands for
the relative energy improvement of the current Data
Scheduler and E1-2 compares the current Data scheduler
with the previous data scheduler.
We have tested the same kernel schedules for different memory

 N n DS RAM FB RF E1 E2 E1-2
A1 5 4 1.1 0.125 0.5 2 45% 53% 18%
A2 5 4 1.1 0.06 0.25 1 5% 20% 16%
B1 5 5 2.7 0.25 1 5 60% 65% 15%
B2 5 5 2.7 0.5 1 5 60% 69% 28%
C 4 3 2.5 0.25 1 5 55% 68% 30%

RT1 4 2 2 0.25 1 1 6% 26% 22%
RT2 4 2 2 0.5 2 3 55% 68% 37%
RT3 7 2 4 0.5 2 2 55% 58% 10%

N: total number of clusters; n: maximum number of kernels per
cluster; DS: total data size per iteration (input data + intermediate
results + final results) in KB ; RF: reuse context factor; FB: One

frame buffer set size in KB;RAM: RC-RAM size in KB. E1, E2, E1-2:
Data Schedulers relative energy improvement

Table 1. Experimental Results

sizes as shown, A1-A2 or B1-B2 or RT1-RT2. RC-RAM
size is always smaller than FB size because RC-RAM is
hierarchically the lowest memory. A1 and A2 have few
data stored in RC-RAM since the majority of data are not
read many times. The increase in FB size achieves a better
reduction in energy budget by avoiding context transfers.
B1 and B2 have many data stored in RC-RAM.
For B1 all the most accessed data cannot be stored in RC-
RAM. Therefore an increase in RC-RAM size, as B2
shows, achieves a better E2 result. RT1 and RT2 represent
simple image ray-tracing, and for this case an increase in
RC-RAM does not improve energy performance because all
the most accessed data fit into RC-RAM. However an
increase in FB and RC-RAMs allows context reuse.
Although the increase in memory is more energy consuming
this effect is worthwhile due to greater data and context
reuse. C stands for an intermediate example context reuse
between A and B. RT3 stands for a more complicated
image ray-tracing, which increases data size and number of
kernels. In all cases the Data Scheduler achieves better
energy results than the previous version, as E2 and E1-2
show, due to the current Data Scheduler improving FB and
RC-RAMs usage, minimizing energy consumption.

7. Conclusions

In this paper we have presented a new technique to improve
data scheduling for multi-context reconfigurable
architectures. It stores the most frequently accessed data in
the on-chip memories (FB or RC-RAMs) to minimize data
and context transfers, reducing the energy budget.
We have developed a method to efficiently store data and
results in RC-RAMs. The Data Scheduler decides which
data or results have to be loaded into these internal
memories to reduce energy consumption.
The Data Scheduler allows data and results reuse within a
cluster, minimizing the memory space required by cluster
execution. It allows the reuse of data and results among
clusters if the FB has sufficient free space. It chooses the
shared data or results to be kept within FB, allowing further
reductions in transfers to/from the external memory.
The Data Scheduler maximizes the available free space in
the FB. This allows the number of consecutive iterations
(RF) to increase and as a consequence, kernel contexts are
reused during these iterations, reducing context transfers.
The experimental results demonstrate the effectiveness of
this technique in reducing the execution time and power
budget compared to previous data schedulers.
Future work will address data management within a kernel,
as well as a detailed study of optimal memory sizes for
applications.

References:
[1] S. Brown, J. Rose. “Architecture of FPGAs and CLPDs: A
Tutorial,” IEEE Design and Test of Computer, Vol. 13, No 2, pp.
42-57, 1996.

[2] E. Tau, D. Chen, I. Eslick, J. Brown and A. De Hon, “A First
Generation DPGA Implementation”, FDP’95, Canadian
Workshop of Field-Programmable Devices, May 29-Jun 1, 1995.
[3] H. Singh, M. Lee, G. Lu, F. Kurdahi, et al, - “MorphoSys: An
Integrated Reconfigurable System for Data-Parallel and
Computation-Intensive Applications”, IEEE Transactions on
Computers, pp. 465-481, Vol. 49, No. 5, May, 2000.
[4] M. Meiβner, S.Grimm, W. Straβer, et al, “Parallel Volume
Rendering on a Single-Chip SIMD Architercture”, IEEE
Symposium on Parallel and Large-Data Visuallization and
Graphics, San Diego, Ca, October, 2001.
[5] S. Sohoni, R. Min, Z. Xu, Y. Hu. “A study of memory system
performance of multimedia applications”, SIGMETRICS
Performance 2001, pp. 206-215.
[6] R. Maestre, F. Kurdahi, et al. “Kernel Scheduling in
Reconfigurables Architectures”, DATE Proceedings pp 90-96,
1999.
[7] R. Maestre, F. J. Kurdahi, M. Fernandez, et al. "Configuration
Management in Multi-Context Reconfigurable Systems for
Simultaneous Performance and Power Optimizations", ISSS
Proceedings, pp. 107-113, 20-22 September 2000.
[8] M. Sanchez-Elez, M. Fernández, et al. “A Complete Data
Scheduler for Multi-Context Reconfigurable Architectures”
DATE Proceedings, Paris, France, pp. 547-552 March 2002.
[9] Panda, P. R., Catthoor, F., Dutt, N. D., Danckaert et al. “Data
and Memory Optimization Techniques for Embedded Systems”,
ACM Transactions on Design Automation of Electronic Systems.
Vol. 6, Iss. 2. Apr. 2001
[10] S. Wuytack, F. Catthoor, et al. “Global communication and
memory optimizing transformations for low power design,” in
Proc. IWLPD-94: Int. Workshop on Low Power Design, Napa
Valley, CA, Apr. 1994, pp. 203–208.
[11] M. Kaul, R. Vemuri, et al. “An Automated Temporal
Partitioning and Loop Fission approach for FPGA based
reconfigurable synthesis of DSP applications” Proc. 36th Design
automation conference, 1999, Pages 616 - 622
[12] A. Jantsch, P. Ellervee, A. Hemani, et al. “Hardaware-
Software Partitioning and Minimizing Memory Interface Traffic”,
DATE Proceedings, 1994, Pages 226 – 231.
[13] P.R. Wilson, M.S. Johnstone, M Neely, and D Boles
“Dynamic Storage Application A Survey and Critical Review”
IWMM 1995: 1-116
[14] M. B. Kamble and K. Ghose, “Analytical Energy Dissipation
Models for Low Power Caches”, ACM/IEEE International
Symposium on Microarchitecture, pp 184-193, Research triangle
Park, NC, December 1997.
[15] J. Kin, M. Gupta and W. H. Mangione-Smith, “The Filter
Cache: An Energy Efficient Memory Structure”, MICRO-97:
International Symposium on Microarchitecture, pp 184-193,
Research Triangle Park, NC, December 1997.
[16] W. Cheng, M. Pedram, “Low Power Techniques for Address
Encoding and Memory Allocation”, Procc. of Asia and South
Pacific DAC, Jan. 2001, pp. 245-250.
[17] P. Van Oostende, G. Van Wauve, “Low Power design: a
gated-clock strategy” Low Power Workshop, Ulm, Germany,
Sep.’94
[18] A. Glassner. “An Introduction to Ray Tracing”. Academic
Press, 1989

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

