
A New Algorithm for Energy-Driven Data Compression
in VLIW Embedded Processors

Alberto Macii# Enrico Macii# Fabrizio Crudo* Roberto Zafalon*
 #Politecnico di Torino, Torino - Italy *STMicroelectronics Agrate Brianza (Milano) - Italy

Abstract

This paper presents a new algorithm for on-the-fly
data compression in high performance VLIW
processors. The algorithm aggressively targets energy
minimization of some of the dominant factors in the
SoC energy budget (i.e., main memory access and high
throughput global bus). Based on a differential
technique, both the new algorithm and the HW
compression unit have been developed to efficiently
manage data compression and decompression into a
high performance industrial processor architecture,
under strict real time constraints (Lx-ST200: A 4issue,
6-stages pipelined VLIW processor with on-chip D and
I-Cache). The original DataCache line is compressed
before write-back to main memory and, then,
decompressed whenever Cache refill takes place. An
extensive experimental strategy has been developed
for the specific validation of the target Lx processor. In
order to allow public comparison, we also report the
results obtained on a MIPS pipelined RISC processor
simulated with SimpleScalar. The two platforms have
been benchmarked over Ptolemy and MediaBench
programs. Energy savings provided by the application
of the proposed technique range from 10% to 22% on
the Lx-ST200 platform and from 11% to 14% on the
MIPS platform.

Keywords: Data compression algorithms, system-level
energy optimization, VLIW embedded processors.

1 Introduction

The embedded processor market is rapidly growing
and the complexity of embedded applications is
increasing even faster. Recently, VLIW architectures
have been proposed as an attractive alternative to more
conventional CPUs, to balance performance with
hardware complexity and scalability [1]. The
performance/complexity trade-off is made possible by a
sophisticated Instruction Level Parallelism (ILP)
compiler infrastructure that aims at scheduling high
performance parallel code at compile time rather than at
run time.

In this paper, we focus our attention to a specific
aspect of the design of embedded system architectures,
namely, the speed/energy optimization of the
processortomemory communication path. In particular,
we consider the problem of reducing the amount of
memory traffic, and consequently the dissipated
energy, when data is exchanged between the processor
and the storage sub-system (i.e., L1 cache and main
memory) in a high performance VLIW processor
architecture, under strict real time constraints. In
particular, we pursue our goal by relying on
compression of the information being transferred
between Cache and main memory.

Until recently, information compression techniques
were only targeted towards code size reduction [7][10].
A few of them were adopted with remarkably good
results and industrial exploitation (e.g., CodePack [14]
and ARM Thumb [5]), but energy optimization was
never considered as primary optimization objective, and
thus acquired just as a by-product of code size
minimization.

Starting with the work presented in [8][9], some
selective instruction compression techniques for low-
power successfully appeared, bringing to evidence that
a key trade-off between code size and total execution
energy does exist when dealing with advanced
computing embedded platforms. The fundamental
principles exploited in low-energy code compression
can be further extended to the general case of low-
energy data compression, provided that some
significant adaptations are applied to the traditional,
widespread data compression approaches. In fact, while
achieving extremely good compression ratios, the
traditional asymmetric algorithms [3][4] usually work on
bounded, yet long, input streams and purposely shift
the largest portion of the heavy computational effort to
be run “off-line”, once and for all, at compression time.
This enables the use of a much faster and lighter “on-
line” decompression step. On the receiving side, the
decompression task needs to be performed anytime at
the user’s terminal, often under severe real-time
requirement (e.g., MPEG2, MPEG4 and MP3 [4]).

In our case, an unbounded, although short, input
stream of N bits (usually a single Cache line) must be
compressed in a shorter string of bits K<N at any Cache

1530-1591/03 $17.00 2003 IEEE

1530-1591/03 $17.00 2003 IEEE

write-back and decompressed at any Cache refill. Both
the compression and decompression steps have to be
performed on the target embedded system, thus
requiring extremely high efficiency (time and energy) on
either side. As a matter of fact, it comes out that the
traditional compression techniques are largely
unsuitable for this scenario since they would provide
good compression ratio only at the cost of huge, if not
simply unfeasible, system overheads at compression
time. On the opposite, our novel differential scheme is
extremely effective just for the compression of the small
data-lot represented by an individual data Cache-line.

Our major goal is to apply innovative data
compression techniques on today’s highly integrated
VLIW embedded systems, in order to enable further
energy savings with no system degradation in terms of
both performance and area.

The advantage of using data compression on the
Cache-to-Memory path is multiple. In fact:

1. Storing a data-lot in compressed format requires a
smaller number of energy-expensive memory
accesses on both read and write mode.

2. The average switching activity across the CPU-to-
memory communication bus is reduced thanks to a
smarter and less-demanding bandwidth allocation.

3. Including the HW assisted compression-
decompression unit (CDU) between Data-Cache
and main memory allows us to save on the total
energy budget while easily buffering and
compensating the CDU’s extra delay (the CDU is a
combinational HW block, and its critical path fits
into one processor clock cycle only).

Our data compression algorithm proves to be simple to
work on a regular Cache line; differential to smoothly
deal with the very limited data predictability of
computing systems (although embedded); with no
overhead, since embedded systems are often subject to
very tight performance and max latency constraints;
effective, as it provides energy savings ranging from
10% to 22%, depending on the benchmark and the
architectural platform to which it is applied.

The remainder of this paper is organized as follows.
Previous work on the subject of low-energy data
compression is briefly reviewed in Section 2, while the
target VLIW processor architecture (Lx-ST200) for
which the presented new algorithm has been developed
and qualified is summarized in Section 3. Section 4
presents the new Diff-Lx differential compression
scheme, together with an efficient HW implementation
of the compressiondecompression unit. Section 5 is
devoted to experimental results collected through
extensive experimentation on the Lx-ST200 VLIW core.
Results from the MIPS RISC processor (SimpleScalar)
are provided as well, to prove the generality of the
proposed compression algorithm. The paper closes with
some final remarks in Section 6.

2 Previous Work

The idea of applying data compression to minimize
computational energy derives from code compression.
In particular, successful attempts were made to limit
energy consumption in embedded systems by reducing
memory energy requirements through the compression
of ICache [8][12] and main program memory [7][9].
The issue of designing fast and inexpensive HW
compression units for processor’s machine-code has
been extensively investigated in [2] and found its way
in some industrial products (e.g., [5][14]). A dictionary
based instruction compression technique was first
proposed in [10]. Further evolutions of code
compression algorithms for low-power have been
recently developed in [12].

3 Target VLIW Processor: Lx-ST200

In this section we will briefly describe the
architecture of our target embedded processor.

Lx is a scalable and customizable VLIW processor
architecture, jointly developed by STMicroelectronics
and HP-Labs to aggressively target multimedia and
signal processing embedded applications [1]. The basic
Lx architecture is a 128 bit wide, 4-issues VLIW core,
featuring four 32-bit integer ALUs, two 16x32
multipliers, one load/store unit, a branch unit and a
64x32-bit general purpose, multiple ports Register-File (8
Read ports, 4 Write ports). Lx has an in-order 6-stage
pipeline and features a simple integer RISC ISA. It also
includes an embedded 32 KB direct mapped I-Cache
and a 4-ways set associative 32 KB D-Cache with FIFO
replacement policy.

Bundle

Instr. 1 Instr. 2 Instr. 3 Instr. 4

Slot 1 Slot 4Slot 3Slot 2

Bundle

Instr. 1 Instr. 2 Instr. 3 Instr. 4

Slot 1 Slot 4Slot 3Slot 2

Figure 1. Bundle of 4 parallel operations in Lx -VLIW

For the first generation, realized in 0.25µm HCMOS
technology at nominal Vdd=2.5V, the scalable Lx
processor runs at 200 MHz (typ) and is planned to span
from one to four clusters (i.e., from 4 to 16 instructions
issued per cycle). The instruction level parallelism (ILP)
is achieved through the execution of 4 explicitly parallel
operations (also called syllables) at each cycle; these
operations are statically scheduled to constitute the
128-bit Very Long Instruction Word (also called
instruction or bundle). Figure 1 shows the bundle of 4
operations.

The Lx’s tool-chain includes an aggressive ILP
compiler [1], GNU tools and libraries as well as a fast
and efficient ISS, which has been used in our
experiments by assuming an external main memory of
8MB SDRAM (i.e.: AS4LC4M16SO by Alliance
Semiconductors). The length of Lx’s basic data word is
W=32 bits while the D-Cache line is 8 words wide (i.e.:

32 bytes). Memory blocks used in the D-Cache enable
data write of 64-bit blocks and data read of 32-bit blocks
at a time (see Figure 2). This structure has been chosen
in Lx to increase block replacement speed by exploiting
the burst access capability of the main memory.

TAG 0
XT4_21

TAG 2
XT4_21

TAG 3
XT4_21

TAG 1
XT4_21

LSW 0
XD4_64

LSW 3
XD4_64

LSW 2
XD4_64

LSW 1
XD4_64

MSW 0
XD4_64

MSW 3
XD4_64

MSW 2
XD4_64

MSW 1
XD4_64

DBUS
ABUS
CBUS

TAG 0
XT4_21

TAG 2
XT4_21

TAG 3
XT4_21

TAG 1
XT4_21

LSW 0
XD4_64

LSW 3
XD4_64

LSW 2
XD4_64

LSW 1
XD4_64

MSW 0
XD4_64

MSW 3
XD4_64

MSW 2
XD4_64

MSW 1
XD4_64

DBUS
ABUS
CBUS

TAG 0
XT4_21

TAG 2
XT4_21

TAG 3
XT4_21

TAG 1
XT4_21

LSW 0
XD4_64

LSW 3
XD4_64

LSW 2
XD4_64

LSW 1
XD4_64

MSW 0
XD4_64

MSW 3
XD4_64

MSW 2
XD4_64

MSW 1
XD4_64

DBUS
ABUS
CBUS

Figure 2. Lx D-Cache (32KB, 4-ways set associative)

4 Hardware-Assisted Differential Data
Compression Algorithm

An efficient hardware compression and
decompression unit (CDU) for data read and write to the
main memory was recently presented in [11]. As we
mentioned earlier, the CDU is placed between Data-
Cache and the main memory in order to better attack
two of the dominant factors in SoC energy budget (i.e.,
high throughput global bus and main memory access
rate), while easily buffering and compensating the CDU
extra delay. The CDU proposed in [11], whose high-
level block diagram is shown in Figure 4, offers a
versatile and customizable template that can
accommodate different compression algorithms, which
can thus be designed according to the constraints and
application domain posed by the processor
architectural template of choice. For example, in [11] the
MIPS RISC processor was considered as the target
architecture, and several compression algorithms were
developed with such architecture in mind.

The CDU is a combinational block of minimal
hardware complexity, and its critical path fits snugly
into one processor’s clock cycle only. Hence,
compression is performed in one extra clock cycle on
Cache writeback, while decompression is on Cache
refill. With reference to Figure 4, the Line Compressor
(LC) and the Line Decompressor (LD) have been
synthesized as multi-level combinational logic circuits
starting from Verilog RTL descriptions. They are small
in size (around 3000 equivalent gates) and tailored to
the differential compression scheme we have devised.
This justifies the choice of privileging a fast
implementation of the CDU. Indeed, its energy
contribution is still negligible with respect to the total
system budget (see the energy breakdown of Figure 3).
Finally, the Compressed Line Address Table (CLAT) is
a content addressable memory (CAM), keeping the

address of each Cache block currently written-back to
main memory. It provides the way to know the actual
format (compressed or not) of a line to be fetched from
main memory whenever the Cache Controller issues a
refill request.

As mentioned earlier, in this paper we focus on
VLIW architectures, and we propose a new differential
algorithm that best exploits the characteristics of
operation execution in this kind of processors. We call
the algorithm Diff-Lx; it features remarkably less bus
traffic and total energy than those in [11], thanks to a
minimum additional overhead in the compression field
format.

Figure 3. Energy breakdown for Lx-VLIW platform

CDU

LC

LD

CLAT

D-cache Main Memory

Refill req

Line in

addr

Write-back req

Line out

Match

Match

Compressed
Data

Uncompressed
Data

Data
Read

Address

Data

Write

CDU

LC

LD

CLAT

D-cache Main Memory

Refill req

Line in

addr

Write-back req

Line out

Match

Match

Compressed
Data

Uncompressed
Data

Data
Read

Address

Data

Write

Figure 4. CDU: Compression Decompression Unit

The differential algorithm, which is described next,

has been implemented and integrated into the Lx tool-
chain, extending in this way the exploration space for
next generation low-power embedded systems.

4.1 The Diff-Lx Algorithm

Let’s assume that the main memory is byte
addressable, the D-Cache line size is L bytes and the
basic data word is W bits long. Compression and
Decompression are performed on-the-fly in one clock
cycle, seamlessly to the processor. The algorithm
allows defining the minimum compressed line size S
(S<L), as the threshold to discriminate whether or not
the current Cache write-back will actually go to main
memory in compressed format.
The basic idea behind the Diff-Lx differential scheme
lies on realizing that for data words appearing in the

same Cache line, some of the bits are common across
pairs of adjacent words, either from the LSB (Least
Significant Bit) to the MSB (Most Significant Bit) or
vice versa. As an example, if data can take values from a
limited range, it may well occur that some of the most

significant bits among each pair of words in the Cache
line are the same. As a consequence, it would then be
possible to store a much shorter line, leveraging on
bit’s sharing. In particular, given the original Cache line
(illustrated, for example, with four words in Figure 5), for
each pair of data words Wi and Wj, we look for the
maximum number of common bits cntij, by scanning the
Cache line both from LSB to MSB and vice versa.

MSB LSB

W bit W bit W bit W bit

W1 W2 W3 W4

Original Cache Line

Compressed Cache Line

W1

W bit

Cnt12 D12 WC2 Cnt23 D23 WC3 Cnt34 D34 WC4

log2W bit

1 bit 1 bit1 bitK12 K34K23

MSB LSB

MSB LSB

W bit W bit W bit W bit

W1 W2 W3 W4

Original Cache Line

Compressed Cache Line

W1

W bit

Cnt12 D12 WC2 Cnt23 D23 WC3 Cnt34 D34 WC4

log2W bit

1 bit 1 bit1 bitK12 K34K23

W1

W bit

Cnt12 D12 WC2 Cnt23 D23 WC3 Cnt34 D34 WC4

log2W bit

1 bit 1 bit1 bitK12 K34K23

MSB LSB

Figure 5. Example of a 4-words Cache Line, before
and after the compression, respectively. Please

notice that for Lx -VLIW the Cache line is 8 words
wide.

In the target compressed line of Figure 5, the field
cntij (whose fixed length is log2W) is the number of
shared bits and Dij the one bit direction flag. Dij selects
whether LSB or MSB is starting point for the
decompression of the cntij shared bits. Furthermore, we
define WCi as the remaining portion of the word Wi,
complementary to the shared bits cntij. We have |WCi|
=Kij=W-cntij and |Cij|=|cntij|+|Dij|. Now, the Cache-line
will be actually compressed on writeback, if and only if
the following threshold condition is satisfied:

(1) |W1|+|C12|+|WC2|+|C23|+|WC3|+|C34|+|WC4| ≤ S*8

In essence, the wider the agreement between the word’s
pairs in the original Cache line (i.e., the value of cntij),
the higher the achievable compression ratio on write-
back to main memory.

5 Experimental SetUp and Results

5.1 Lx-ST200 VLIW Architecture

The proposed Diff-Lx algorithm has been applied to
the Lx VLIW architecture running a set of benchmark
programs taken from the MediaBench (MB) [15] and
Ptolemy (PT) [16] suites.

Data and address buses are 32-bit wide, and the size
of the D-Cache line is 8 words of 4 bytes each: total
length S=32 (bytes). When condition (1) applies, Lx-
VLIW can actually save up to 22 bytes in transfer and
storage to main memory.

The detailed results we have achieved are presented
in Table 1 (Mediabench benchmarks) and Table 2
(Ptolemy benchmarks), while Figure 6 and Figure 7
provide a pictorial summary. All the energy figures
reported hereafter are based on circuit implementation
with STMicroelectronics’ 0.25µm HCMOS technology,
operating at typical supply VDD=2.5V.

Regarding memory traffic (column Memory Traffic),
tables report the number of words written/read to/from
memory when no compression is used (column
Uncomp), when the comp ression is performed (column
Comp) and the percentage reduction of memory traffic
when the CDU is used (column %).

Concerning the energy savings (column Energy), it
is roughly proportional to the memory traffic because it
is an indication of the memory access (for the most part)
and of the CDU component. Also in this case, values
obtained with or without compression and savings are
reported.
Analyzing the total execution time for each SW
benchmark (column Execution Time), we observe that
the use of the compression engine does not degrade
the processor’s performance at all.

5.2 MIPS RISC Architecture

Diff-Lx compression has also been benchmarked on
the MIPS RISC processor, using SimpleScalar as
simulation environment. This was done with the
purpose of proving the robustness of the algorithm.

SimpleScalar was configured to execute the PISA
instruction set, derived from MIPS-IV 64 bit [13]. Such a
configuration is very commonly used for public domain
benchmarking because the MIPS architecture is a well-
known single issue, pipelined RISC machine. The
configuration of SimpleScalar’s functional Cache
simulator engine (i.e.: “simcache”), is the following:
2KB L1 I-Cache, 4KB D-Cache and 16MB SDRAM main
memory.

Data and address buses are 32bit wide, the data
word is W=4 byte wide and the Cache line’s length is 4
words (i.e.: 16 bytes). This means that when a Cache
refill takes place, if the word is compressed and S=8
(bytes), we save 8 bytes of memory traffic, since the
original Cache line’s size is L=16 (bytes),

As per the Lx-VLIW, the adopted D-Cache policy
was “FIFO replacement”. The detailed results for MIPS

are presented in Table 3 and Table 4 again on both
Mediabench and Ptolemy benchmarks.

As expected, results are slightly worse for the MIPS
environment than for the Lx architecture, as the Lx-Diff
algorithm was explicitly thought for the Cache
organization of a VLIW core. Yet, the achieved energy
savings are satisfactory, indicating that the proposed
method can be applied to other architectures than just
VLIW.

6 Conclusions

We have presented a new data compression
technique for energy efficient high performance VLIW
embedded processors. The approach addresses energy
minimization of two of the dominant factors in SoCs
energy budget (i.e., main memory access and high
throughput global bus), by enabling an aggressive
energy savings with limited overhead in chip area and
no system performance degradation (i.e., execution
speed). Based on differential techniques, both the new
algorithm and the HW compression unit have been
developed to efficiently manage data compression and
decompression into a high performance industrial VLIW
processor (i.e. STMicroelectronics’ Lx-ST200), under
strict real time constraints.

An extensive experimental test strategy has been
applied for validation, addressing both the Lx-ST200
processor and the MIPS RISC core. The new differential
algorithm, called diff-Lx, achieves energy savings
ranging on average from 10% to 22% on the Lx-ST200
and from 11% to 14% on the MIPS.

7 References
[1] J. Fisher, P. Faraboschi, G. Brown, G. Desoli and F.

Homewood, “Lx: a technology platform for customizable
vliw embedded processing,” in Proceedings of the
International Symposium on Computer Architecture, June
2000, pp. 203–213.

[2] S. Bunton, G. Borriello, “Practical Dictionary Management
for Hardware Data Compression, Comm. of the ACM, Vol.
35, No. 1, pp. 95104, 1992.

[3] J. Ziv, A. Lempel, “A Universal Algorithm for Sequential
Data Compression,” IEEE Trans. on Information Theory,
Vol. 23, No.3, pp. 337-343, 1977.

[4] Moving Picture Experts Group, MPEG-2 Generic coding of
moving pictures and associated audio information, standard
document ISO/IEC 13818.

[5] ARM Ltd., “An introduction to Thumb,” Mar. 1995.
[6] B. Abali, et al., “Performance of Hardware Compressed

Main Memory,” HP Journal, pp. 7381, 2001.
[7] Y. Yoshida, B.Y. Song, H. Okuhata, T. Onoye, I.

Shirakawa, “An Object Code Compression Approach to
Embedded Processors,” ISLPED97, pp. 265268, 1997.

[8] L. Benini, A. Macii, A. Nannarelli, “CachedCode
Compression for Energy Minimization in Embedded
Processors,” ISLPED01, pp. 322327, 2001.

[9] L. Benini, A. Macii, E. Macii, M. Poncino, “Selective
Instruction Compression for Memory Energy Reduction in
Embedded Systems,” ISLPED99, pp. 206211, 1999.

[10] C. Lefurgy, P. Bird, I. Chen , T. Mudge, “Improving Code
Density Using Compression Techniques,”
Microarchitecture, 1997. Proceedings, pp. 194203, 1997.

[11] L. Benini, D. Bruni, A. Macii, E. Macii, “HardwareAssisted
Data Compression for Energy Minimization in Systems
with Embedded Processors,” DATE-02, pp. 449-453,
March 2002.

[12] H. Lekatsas, H. Wolf , “SAMC: A Code Compression
Algorithm for Embedded Processors,” Trans. On CAD
1999, pp. 16891701, Vol. 18, No. 12, Dec. 1999.

[13] D. Burger, T. Austin ”The SimpleScalar ToolSet, Version
2.0,” Tech. Rep. UCB/ERL No. 1342, Univ. of
WisconsinMadison, Dept. of CS, 1997.

[14] IBM, “Codepack PowerPC Code Compression Utility,”
User’s Manual Version 4.1.

[15] C. Lee, M. Potkonjak, W. H. Mangione Smith,
“MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems,” 30th Annual
IEEE/ACM International Symposium on
Microarchitecture, 1997.

[16] J. Davis II, et al., “Overview of the Ptolemy Project,”
Tech. Rep. UCB/ERL No. M99/37, Univ. of California,
Dept. of EECS, 1999.

Benchmark

Uncomp Comp % Uncomp Comp % Uncomp Comp %

JPEGdec 3,27E+06 2,54E+06 22,4 1,09E+08 8,44E+07 22,3 5,29E+09 5,25E+09 0,8
MPEG2dec 3,18E+05 2,98E+05 6,2 1,06E+07 9,90E+06 6,2 3,70E+07 3,67E+07 0,7
Edge_detect 3,60E+05 2,93E+05 18,7 1,20E+07 9,76E+06 18,5 1,78E+07 1,76E+07 1,2

Opendvx 2,63E+07 1,90E+07 27,7 8,75E+08 6,35E+08 27,4 3,76E+09 3,99E+09 -6,1
MatMult 1,19E+06 7,77E+05 34,7 3,97E+07 2,60E+07 34,5 2,88E+06 2,87E+06 0,3
Average 21,9 21,8 -0,6
Dev Std 10,7 10,6 3,1

Memory Traffic Energy [nj] Execution Time

Table 1. Lx Results on Mediabench benchmark.

Benchmark
Uncomp Comp % Uncomp Comp % Uncomp Comp %

Dft 1,56E+05 1,47E+05 5,4 5,14E+06 4,87E+06 5,3 3,30E+08 3,29E+08 0,4
DTMFCodec 6,99E+04 6,95E+04 0,5 2,31E+06 2,30E+06 0,3 1,51E+08 1,52E+08 -0,2

Filterbank 2,35E+05 1,82E+05 22,7 7,79E+06 6,04E+06 22,5 2,30E+08 2,26E+08 1,7
Average 9,5 9,4 0,8
Dev Std 11,6 11,7 1,4

Memory Traffic Energy [nj] Execution Time

Table 2. Lx Results on Ptolemy benchmark

Uncompr. Compr. % Uncompr. Compr. % Uncompr. Compr. %
JPEGdec 1,89E+06 1,75E+06 7,3 1,56E+07 1,38E+07 11,9 3,05E+06 3,01E+06 1,1

MPEG2dec 7,19E+06 7,10E+06 1,3 5,93E+07 5,87E+07 1,1 1,10E+07 1,12E+07 -2,0
Edge_detect 1,49E+07 1,54E+07 -3,6 1,23E+08 1,16E+08 5,3 5,77E+07 5,92E+07 -2,5

MatMult 1,31E+06 1,05E+06 20,0 1,08E+07 6,38E+06 40,8 3,28E+06 3,13E+06 4,4
Opendvx 1,90E+07 1,72E+07 9,8 1,57E+07 1,37E+07 12,5 1,30E+07 1,29E+07 0,7
Average 6,9 14,3 0,3
Dev Std 9,0 15,5 2,8

Execution TimeMemory TrafficBenchmark Energy[nj]

Table 3. Simple Scalar Results on MediaBench benchmark

Uncompr. Compr. % Uncompr. Compr. % Uncompr. Compr. %
Dft 6,40E+05 5,87E+05 8,2 5,28E+06 4,83E+06 8,5 3,39E+06 3,37E+06 0,6

DTMFCodec 2,39E+05 2,17E+05 9,2 1,97E+06 1,71E+06 13,3 7,23E+06 7,22E+06 0,1
Filterbank 1,32E+07 1,24E+07 6,1 1,09E+08 9,74E+07 10,3 5,50E+07 5,48E+07 0,3
Average 7,8 10,7 0,3
Dev Std 1,6 2,4 0,3

Execution TimeMemory TrafficBenchmark Energy[nj]

Table 4. Simple Scalar Results on Ptolemy benchmark

Lx on MediaBench: Compr vs. Uncompr

-10,0

-5,0

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

JPEGdec MPEG2dec Edge_detect Opendvx MatMult Average Dev Std

A
ve

ra
ge

 P
er

fo
rm

an
ce

 %

Memory Traffic %

Energy Saving %

Execution Time
%

Figure 6. Lx Average Performance on MB Benchmark

Lx on Ptolemy: Compr vs. Uncompr

-5,0

0,0

5,0

10,0

15,0

20,0

25,0

Dft DTMFCodec Filterbank Average Dev Std

A
ve

ra
ge

 P
er

fo
rm

an
ce

 %

Memory Traffic %
Energy Saving %
Execution Time %

Figure 7. Lx Average Performance on Ptolemy Benchmark

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

