
From C Programs to the Configure-Execute Model

João M. P. Cardoso∗

FCT/University of Algarve,
Campus de Gambelas,

8000-117 Faro, Portugal
Email: jmpc@acm.org

Markus Weinhardt
PACT XPP Technologies AG

Muthmannstrasse 1,
80939 Munich, Germany

Email: mw@pactcorp.com

Abstract
The emergence of run-time reconfigurable architectures

makes feasible the configure-execute paradigm. Compila-
tion of behavioral descriptions (in, e.g., C, Java, etc.), apart
from mapping the computational structures onto the avail-
able resources on the device, must split the program in tem-
poral sections if it needs more resources than physically
available. In addition, since the execution of the computa-
tional structures in a configuration needs at least two stages
(i.e., configuring and computing), it is important to split the
program such that the reconfiguration overheads are min-
imized, taking advantage of the overlapping of the execu-
tion stages on different configurations. This paper presents
mapping techniques to cope with those features. The tech-
niques are being researched in the context of a C compiler
for the eXtreme Processing Platform (XPP). Temporal par-
titioning is applied to furnish a set of configurations that
reduces the reconfiguration overhead and thus may lead to
performance gains. We also show that when applications
include a sequence of loops, the use of several configura-
tions may be more beneficial than the mapping of the entire
application onto a single configuration. Preliminary results
for a number of benchmarks strongly confirm the approach.

1 Introduction
Run-Time Reconfigurable (RTR) architectures promise

to be efficient solutions when flexibility, high-performance,
and low power consumption are required features. Since
Field-Programmable Gate Arrays (FPGAs) require long de-
sign cycles with low level hardware efforts and the fine-
granularity (bit level) used does not match many of today’s
applications, new reconfigurable processing units (RPUs)
are being introduced [1]. However, compilation research
efforts are still required in order to facilitate programming
on those architectures. Specifically, the mapping of large
programs must be automatically performed.

Moreover, those architectures deal with complex pro-
grams by executing sequences of configurations. Those

∗This work has been partially done during the year the author has spent
with PACT XPP Technologies AG.

configurations are obtained by splitting the computational
structures onto temporal partitions. Since for executing
each partition at least the stages configure and execute are
required, the model is called configure-execute. In order
to enhance performance, overlapping of different stages
should be considered. We have researched methods to ex-
ploit those features. The methods take advantage of the
configure-execute paradigm while trying to reduce the over-
all execution time by hiding some of the reconfiguration
time. This paper includes some of our research efforts,
which are related to the work that we have been carrying
on for compilingC programs to theXPParchitecture [2], a
data-driven, coarse-grained,2D array parallel structure.

This paper is organized as follows. The next section in-
troduces briefly theXPPtechnology. Section 3 explains the
configure-execute paradigm when using theXPP. Section 4
describes our approach to automatically output a set of con-
figurations from a C program attempting to minimize the
overall execution time. Section 5 shows some experimen-
tal results and section 6 describes the related work. Finally,
section 7 concludes the paper and summarizes ongoing and
planned future work.

2 The XPP technology

The XPP architecture is based on a2D array of coarse-
grained, adaptive processing elements (PEs), internal mem-
ories, and interconnection resources. TheXPP has some
similarities with other coarse-grained reconfigurable archi-
tectures, which have been especially designed for stream-
based applications (e.g., Function Processor [3], KressAr-
ray [4], and RaPiD [5]).XPP’smain distinguishing features
are its sophisticated configuration mechanisms.

Fig. 1 (taken from [6]) shows the structure of a simple
XPP. It contains a square ofPEsin the center and one col-
umn of independent internal memories on each side. There
are twoI/O units which can either be configured as ports for
streaming data or as interfaces for externalRAM. ThePEs
perform common arithmetic and logical operations, com-
parisons, and special operations such as counters. In each
configuration, aPEperforms one dedicated operation. Each

1

1530-1591/03 $17.00  2003 IEEE

thick line in the figure represents several segmented busses
which can be configured to connectPEs. The array is cou-
pled with aConfiguration Manager (CM) responsible for the
runtime management of configurations and for downloading
configuration data from external memory into the config-
urable resources of the array. Besides a finite state machine,
theCM has cache memory for accommodating multiple con-
figurations.

RAM

RAM

RAM

RAM

RAM

RAM

I/O

I/O

State
Machine

Cache

Configuration
Manager

(CM)

Figure 1: Simplified structure of anXPParray.

The interconnection resources on the array consist of two
independent sets of busses: data and event busses. Data
busses have a uniform bit width specific to the device type,
while event busses carry one-bit control information. The
busses include a ready/acknowledge protocol to synchro-
nize the data and events processed by thePEs. Pipelining
registers can be switched on or off in the bus segments. A
PEoperation is performed as soon as all necessary input val-
ues are available and the previous result has been consumed.
Similarly, a value produced by aPE is forwarded as soon
as all thePE’s receivers have consumed the previous value.
Note that anXPP is a synchronous machine operating at a
fixed clock frequency.

Events transmit state information which can be used to
control PEs’ execution or memory accesses. ThePEscan
perform operations such asMERGE, DEMUX, and MUX.
MERGE uses an event to select one of two operands.MUX
has a similar functionality, but discards the data on the input
not selected. Finally,DEMUX forwards its input data to the
selected output.DEMUX can also be used to selectively dis-
card data. SomePE operations generate events depending
on results or exceptions. A counter,e.g., generates a special
event only after it has terminated.

Every configurable object (e.g., PE, memory) locally
stores its current configuration state,i.e., if it is part of a
configuration or not (states “configured” or “free”). If a con-
figuration is requested, its configuration data is first copied
to the internal cache. Then theCM downloads the config-
uration onto the array, synchronizing with the configurable
objects. Once an object is configured, it changes its state
to “configured”. This prevents theCM from reconfiguring
an object which is still used by another configuration. Ob-
jects are released (i.e., changed to state “free”) by events on

a special input. These events are automatically broadcast
along all connectedPEssuch that the entire configuration is
removed. Events on release inputs can be explicitly gener-
ated by theCM or created in the array itself by aPE.

The XPP is supported by a complete development tool
suite (XDS) [2], consisting of a place and router (xmap), a
simulator (xsim), and a visualization tool (xvis). The ar-
chitecture can be programmed using the proprietaryNative
Mapping Language (NML). In NML, configurations consist
of modules, which are specified in a structural manner:PEs
are explicitly allocated, optionally placed, and their connec-
tions specified. Additionally,NML includes statements to
specify configuration handling.xmap compiles theNML
files, places and routes the objects, and generatesXPP bi-
nary files. Those binaries can either be simulated cycle by
cycle or directly executed on anXPP device. A high-level
compiler has been added toXDS and permits to mapC pro-
grams onto theXPP[6].

3 The configure-execute paradigm

The execution of a configuration in theXPP requires
three stages: fetching, configuring, and computing. Fetch-
ing is related to the load of the configuration data to theCM
cache. Configuring is related to the download of the config-
uration data from the cache onto the array structures. Com-
puting is related to the execution on the array. We include in
the computing stage the release of the used resources after
completion of execution, whenever such release is required.
This self-release of the resources makes possible to execute
an application consisting of several configurations without
any external control. When a computation is finished, the
PEdetecting the end (e.g., a counter) can generate the event
to be broadcast or can send an event to theCM requesting
the next configuration. The execution stages can be done
in parallel for different configurations (e.g., while doing the
configuring or computing stages of a configuration the fetch
of another configuration can be performed). Because of its
coarse-grain nature, anXPPcan be configured more rapidly
thanFPGAs. Since only the configuration of those array ob-
jects actually used is necessary, the fetching and configuring
times depend on each configuration.

A program too large to fit in anXPP can be handled by
splitting it in several parts (configurations) such that each
one is mappable [6]. Although that approach enables the
mapping of large computational structures onto the avail-
able resources, other goals must be considered. An auto-
matic approach must consider a judicious selection of a set
of configurations, such that the overall execution time of the
application is minimized and it is sucessfully mapped onto
theXPPresources. The costs to load into the cache, to con-
figure and to compute each configuration with theXPPmust
be taken into account.

The minimization of the overall execution time can be

mainly achieved by the following issues: (1) reduction of
each partition’s complexity can reduce the interconnection
delays (long interconnections may pass through registers
requiring more clock cycle); (2) reduction of the number
of references, in the section of the program related to each
partition, using the same resource, by distributing the over-
all references among partitions, might lead to performance
gains, as well. This happens with the statements presented
in the program referring the same array; (3) reduction of
the overall configuration overhead by overlapping fetching,
configuring and computing of distinct partitions.

Example 1: Consider theC examplemax_avg shown
in Fig. 2(a), where configuration boundaries are represented
by annotations. They define three regions of code (see Fig.
2(b)). Combining only the most frequently taken condi-
tional paths in the same partition can reduce the total execu-
tion time by substantially reducing the reconfiguration time
(since the partitions for the other paths are not configured
when they are not taken). In Fig. 2(b) if the path bb_0 and
bb_1 has been identified as the most frequently executed,
this path can be in the same partition. In that case, the con-
figuration related to bb_2 will only be requested when this
branch is taken.

start

end

bb_0

bb_1

bb_3

bb_2

// max_avg example

if(op==1) { // bb_0

} else {

}
... // bb_3

 // configuration boundary
 // max kernel // bb_2
 max = 0; // bb_2
 for(i=0;i<N; i++) { // bb_2
 if(x[i] > max) // bb_2

 } // bb_2
 // configuration boundary

 // configuration boundary
 average = sum/N; // bb_1
 } // bb_1
 sum+=x[i]; // bb_1

 for(i=0;i<N; i++) { // bb_1
 sum = 0; // bb_1
 // average kernel // bb_1

 max = x[i]; // bb_2

(a) (b)

... // bb_0

Figure 2: Example with two conditionally executed ker-
nels: (a)C code; (b)CFG. Lines crossing edges represent
the “configuration boundaries” annotated in the code. Bub-
bles containing basic blocks represent the regions to be im-
plemented in different partitions/configurations.

Example 2: TheNML code listed in Fig. 3 represents an
application with two configurations. One can see in theAP-
PLICATION section the specification of the reconfiguration
control flow, which will be executed by theCM. The ex-
ample instructs theCM to prefetch the two configurations.

Note, however, that the configurationMOD0 is downloaded
onto the array as soon as its configuration data is on the
CM cache (concurrently, the configuration data ofMOD1
is downloaded onto theCM cache). The example assumes
that each configuration (MOD0 andMOD1) self-releases its
resources after completion of computing.NML includes
statements to conditionally request configurations, which
are used in cases where the configuration to be requested
depends on a value of an event generated in the array.

XPP(...) // header identifying the parameters of the used XPP
MODULE MOD0 { // structure of configuration MOD0}
MODULE MOD1 { // structure of configuration MOD1}
APPLICATION example {

START(pre_fetch, c_MOD0) // this is the start command
CONFIG pre_fetch {

PREFETCH(c_MOD0) // request the prefetch of MOD0
PREFETCH(c_MOD1) // request the prefetch of MOD1

}
CONFIG c_MOD0 {

CONF_MODULE(MOD0) // start configuring MOD0
REQUEST(c_MOD1) // request c_MOD1

}
CONFIG c_MOD1 {

CONF_MODULE(MOD1) // start configuring MOD1
}

}
Figure 3: Example ofNML code, including the description
of the reconfiguration control flow.

4 Generation of configurations
As we can see by the aforementioned features, the

XPP is specially tailored to support the configure-execute
paradigm. But, from the point of view of the compila-
tion, which methods can be really employed to automati-
cally generate the configurations that will run on the plat-
form? Furthermore, how temporal partitioning can be per-
formed in order to reduce the overall execution latency (e.g.,
by hiding some reconfiguration overheads)? This section
presents our proposed approach, which is being tested in
theXPP-VCcompiler [6]. The compiler is based on theSUIF
compiler framework [7]. Fig. 4 shows theXPP-VCcompi-
lation flow. TheMODGen task of the compiler transforms
a sequentialC description in a data- and event-driven con-
trol/dataflow graph (CDFG), which can be directly mapped
to the structures of theXPParray. It uses a technique based
on thePipeline Vectorization method developed for recon-
figurable architectures [8] to vectorize inner programFOR-
loops, such that loop iterations are executed in a pipelined,
parallel fashion. AC program can be manually splited in
several sections, each one corresponding to a different con-
figuration, by using annotations. Otherwise, one can use au-
tomatic temporal partitioning in order to furnish mappable
partitions [6]. The compiler generates both theNML repre-
sentation of each partition and theNML section specifying
the control flow of configurations. Such control flow is or-
chestrated by theCM of theXPPduring runtime, as has been

already explained. Finally,xmap is used to place and route
each configuration structure, to generate the configuration
data, and the binaries to program theCM.

C
program

Preprocessing
+ Dependence

Analysis

TempPart
Temporal

Partitioning

MODGen
“Module Generation”

(with pipelining)

NML file xmap XPP
Binary Code

NML
Control Code Generation

(Reconfiguration)

Figure 4: XPP-VC compilation flow.

Our method starts by constructing, from the SUIF repre-
sentation of the C program, an extended Hierarchical Task
Graph1, HTG+. This graph has two types of nodes: (1) be-
havioral nodes representing program statements; (2) array
nodes representing each array variable in the program. Fig.
5 shows the top level of the HTG+ for an implementation
of the Discrete Cosine Transform (DCT) based on matrix
multiplications. Type (1) nodes have three distinct sub-
types: (a) block nodes representing basic blocks; (b) com-
pound nodes representing if-then-else structures; (c)
loop nodes representing loops. Loop and compound nodes
explicitly embody sub-HTG+s. Edges in the HTG+ represent
data communication between two nodes or just enforce ex-
ecution’s precedence.

start end Loop 1 Loop 2 Loop 3 Loop 4

x

coeff

tmp y

 Figure 5: HTG+ (top level) for the DCT example. Circles
and boxes represent behavioral and array nodes, respec-
tively. Data is read from an input port (Loop1) and written
to an output port (Loop4).

Estimation of the resources and execution latency on the
XPP for implementing each behavioral node is then per-
formed. The HTG+ nodes are labeled with the following
information: (1) block and compound nodes: number of
ALUs and REGs; (2) loop nodes: number of iterations (if
unbound, profiling should be used), and number of ALUs
and REGs; (3) array nodes: the size of the array, type of the
elements, and, when they do exist, the initialization values.
Each edge between two behavioral nodes is labeled with
the number of data words that might be transferred between
them. Each edge between an array node and a behavioral
node is labeled with the number of load and store references
in the source code represented by the behavioral node to
that particular array. The estimated number of times that
each load and store reference will be executed is also col-
lected. This is used to evaluate the impact of mapping sev-
eral computational structures in the same partition, since the

1The model has been chosen, because it can also be used to explicitly
represent loop and task level parallelism.

use of the same array by different behavioral nodes, might
increase the execution latency and the number of required
resources2.

The approach computes the number of XPP resources
needed and the computing latency by each configuration im-
plementing a single or a set of behavioral nodes. Based on
the estimation of the used resources, the approach estimates
the number of clock cycles to fetch and configure each parti-
tion (computed using the estimation of the needed resources
directly from the SUIF representation or with the number of
edges, ALUs, REGs, and pre-defined values existent in each
CDFG generated by MODGen).

After those steps, the algorithm starts with one parti-
tion/configuration per node on the top of the HTG+. Then,
it attempts to merge adjacent partitions until no perfor-
mance gains are achieved taking also into account the size
constraint. Each considered merge is only effectively per-
formed if it results in a reduction of the estimated overall ex-
ecution latency. The estimation takes into account the con-
currency of the fetching, configuring, and computing stages
for different partitions. Since the XPP is partially config-
urable, we use a conservative assumption that when a con-
figuration (c1) is computing on the array and another one
(c2) is being downloaded onto the array by the CM, the only
configuration words that can be configured in parallel are
those related to the number of resources of c2 exceeding the
number of resources used by c1.

The algorithm only considers partitioning sub-HTG+s if
a top level node cannot be mapped. Since the time to fetch
and configure may have a significant impact, it is in most
cases preferable to reuse a configuration as long as possible
in order to reduce the reconfiguration time overhead. Thus,
loops in the program are always good candidates to be en-
tirely implemented by a single configuration. The strategy
only exploits loop partitioning if an entire loop cannot be
mapped to the XPP or contains sequences of loops in its
body. When those cases occur, the algorithm is applied to
the body of the loop and the loop dissevering technique [6]
is used.

Each partition must currently define, on the control flow
graph (CFG) of the program, regions of code with all en-
tries to the same instruction and possibly multiple exists.
For each exit point existent in each partition there will be
an event connected to one of the CM ports available in the
XPP (the CM can check if an event is generated and can pro-
ceed with different configurations based on the value of the
event).

To furnish feasible temporal partitions (i.e., partitions
that can be truly mapped onto the XPP) the approach ulti-

2E.g., twice the number of references to the same RAM leads to more
than twice the number of objects required on XPP, and delays each access
because of the objects needed to MERGE and DEMUX data and address
values.

mately uses checks with MODGen and xmap before furnish-
ing the set of partitions. Since it might not be tolerable to
check each performed merge, the algorithm only checks the
final merges with xmap. Everytime the estimated resources
using MODGen exceed the size constraint, there is no need
to call xmap. The approach is explained in [6] and it uses
three levels of checks and performs merge steps decreasing
the size constraint until a feasible set is found.

5 Experimental results
Tab. 1 shows some results obtained when compiling a

set of benchmarks with the automatic temporal partition-
ing scheme presented in [6] (1) and with the new scheme
proposed in this paper (2). Note that none of the examples
shown was specially coded to exploit more efficiently the ar-
chitectural features of the XPP (e.g., partitioning and distri-
bution of arrays among the internal memories) and thus the
results can be further improved. We use an hypothetic XPP
array with 16×16 PEs. Columns #loC, #LPs, #cf, and #PEs,
represent the number of lines of C code, number of loops,
number of configurations, number of used PEs (it is shown
the maximum number of PEs of the largest configuration
and the total number of PEs virtually needed), respectively.
On column Exec we show, for each example, the number of
clock cycles (150 MHz can be considered as a typical clock
frequency) of the overall execution latency (taken into ac-
count the setup, fetching, configuring, data communication
and computing stages).

Table 1: Results obtained with the proposed approach.

Benchs #loC #LPs scheme #cf #PEs Exec

(#ccs)

DCT1 (a) 60 8 (1) 1 85/85 10,406

DCT1 (b) (2) 4 36/83 8,937

DCT1 (c) (1) 1 213/213 16,400

DCT1 (d) (2) 4 103/217 9,596

Chen (a) 169 5 (1) 1 286/286 20,424

Chen (b) (2) 5 180/398 11,624

Lee (a) 229 4 (1) 1 288/288 20,014

Lee (b) (2) 4 220/458 11,768

Haar (a) 55 8 (1) 1 127/127 82,200

Haar (b) (2) 4 57/172 76,406

Life (a) 118 10 (1) 4 144/304 2,516,652

Life (b) (2) 6 123/416 1,282,540

DCT1 is an 8×8 DCT implementation which is based on
two matrix multiplications (see the top level of its HTG+ in
Fig. 5). Splitting the program improves the overall latency
of DCT1 by 14% requiring 58% less PEs ((a) vs (b)). When
considering each of the innermost loops in the matrix multi-
plications fully unrolled, splitting the program improves the
overall latency of DCT1 by 41% requiring 52% less PEs ((c)
vs (d)). Chen and Lee are pointer-free versions of two other
DCT implementations. Our proposed scheme furnishes im-

proved versions: 43% in performance requiring 12% less
PEs for Chen ((a) vs (b)) and 41% in performance needing
24% less PEs for Lee ((a) vs (b)). Haar is an implementation
of the forward 2D Haar wavelet transform. An input image
of 64×64 is used. An increase in performance of 7% and a
reduction of 55% in size are achieved with the solution ob-
tained with our scheme ((a) vs (b)). Life refers to the Con-
way’s Game of Life included in the RawBench suite (using
a 32×32 grid and 8 iterations). An increase in performance
of 49% and a reduction of 15% in size is achieved when us-
ing 6 instead of 4 configurations ((a) vs (b)). The version
with 6 configurations uses loop dissevering to partitioning
the WHILE loop responsible for the iterations.

For each example, the compilation, from the source pro-
gram to the generation of the binary configuration file, is
performed in few seconds (using a Pentium III at 933 MHz
with Linux).

The results show that using our temporal partitioning ap-
proach leads to sets of configurations that reduce the recon-
figuration overhead and thus may lead to performance gains.
The results strongly confirm that when applications include
a sequence of loops, the use of several configurations may
be more beneficial than the mapping of the entire applica-
tion onto a single configuration. The achieved performance
gains with solutions using several configurations are more
evident when each kernel computes on small data sets and
thus the reconfiguration overhead is significant. Although
when larger data sets are used the performance gains might
be insignificant, the size reduction on the number of needed
resources justifies the use of the approach.

6 Related work

The work on compiling high-level descriptions onto re-
configurable logic has been the focus of many researchers
since the first simple attempts (e.g., [9]). Not so many
compilers have considered the integration of temporal par-
titioning. Probably, the first compiler to include temporal
partitioning was the dbC Napa compiler [10]. In that ap-
proach, each function defines a configuration and the only
way to control the generation of configurations is to manu-
ally group program statements in functions. An automatic
approach has been used in the Galadriel & Nenya com-
piler [11]. The initial program is transformed in an inter-
mediate representation graph where temporal partitioning
is performed. Other authors compile to architectures, which
explicitly support hardware virtualization (e.g., PipeRench
[12]). However, they only support acyclic computations or
computations where cyclic structures can be transformed to
acyclic ones.

Most of the current approaches attempt to achieve a min-
imum number of configurations (e.g., [13]). Those schemes
only consider another partition after the current one has
filled the available resources and are insensible to the op-

timization that must be applied to reduce the overall execu-
tion by overlapping the fetching, configuring and computing
steps. One of the first attempts to reduce the configuration
overhead in the context of temporal partitioning has been
presented in [14]. They attempt to overlap configuring with
computing of adjoining partitions. The approach uses the
simple model of splitting the available FPGA resources into
two parts and mainly performing temporal partitioning us-
ing half of the total available area as the size constraint.

In the context of scheduling configuration kernels, an ap-
proach targeting the MorphoSys architecture has been pre-
sented in [15]. They attempt to minimize the reconfigura-
tion overhead and to maximize data reuse. The approach
uses an exploration of the search space with some pruning
features. However, no automatic temporal partitioning is
considered and they assume the presence of each kernel’s
configuration data.

When performing automatic temporal partitioning of
high-level programs, the work presented in this paper is,
to the best of our knowledge, the first one that attempts to
achieve the minimization of the overall execution time by
considering the overlapping of the different stages to exe-
cute each configuration, and the overheads that might occur
when computation structures are grouped into the same con-
figuration.

7 Conclusions

This paper describes preliminary results obtained with
a novel scheme for mapping software programs onto a re-
configurable computing platform. The approach, supported
by temporal partitioning, enables the mapping of complex
programs, and attempts to furnish implementations with
maximum performance by hiding some of the reconfigu-
ration time. The scheme takes into account the size and
latency overheads, when computational structures access-
ing the same resource (e.g., memories) are merged onto the
same configuration. The obtained results prove that tempo-
ral partitioning must be sensible to those overheads and to
the hiding of reconfiguration times, while deciding on the
best set of configurations to implement a certain applica-
tion. A judicious selection of configurations might reduce
the overall execution time, by furnishing solutions that over-
lap the execution stages needed for each configuration, as is
demonstrated by the results achieved.

Considering the configure-execute model, the results
show that in many cases a smaller array can be used without
sacrificing performance. We expect to continue the evalua-
tion with a set of applications with a larger number of ker-
nels. Ongoing work focuses on tuning the estimation steps
and on improving the configuration data generated. Finally,
an extension of the approach to cope with the automatic ex-
ploitation of loop distribution is planned.

References
[1] R. Hartenstein, “A Decade of Reconfigurable Computing: a

Visionary Retrospective,” In Proc. Design, Automation and
Test in Europe (DATE’01), 2001, pp. 642-649.

[2] PACT XPP Technologies AG, Munich, Germany,
“The XPP White Paper,” Release 2.0, June 2001.
http://www.pactcorp.com

[3] J. Vasell, and J. Vasell. “The Function Processor: A Data-
Driven Processor Array for Irregular Computations,” in Fu-
ture Generation Computer Systems, 8(4), 1992, pp. 321-335.

[4] R. W. Hartenstein, R. Kress, and H. Reining, “A Dy-
namically Reconfigurable Wavefront Array Architecture
for Evaluation of Expressions,” in Proc. Int’l Conf. on
Application-Specific Array Processors (ASAP’94), IEEE
Computer Society Press, 1994.

[5] D. C. Cronquist, et al., “Architecture Design of Recon-
figurable Pipelined Datapaths,” In 20th Anniversary Conf.
on Advanced Research in VLSI, Atlanta, GA, USA, March
1999, pp. 23-40.

[6] J. M. P. Cardoso, and M. Weinhardt, “XPP-VC: A C Com-
piler with Temporal Partitioning for the PACT-XPP Archi-
tecture,” in Proc. 12th Int’l Conf. on Field Programmable
Logic and Applications (FPL’02), LNCS 2438, Springer-
Verlag, 2002, pp. 864-874.

[7] SUIF Compiler system, “The Stanford SUIF Compiler
Group,” http://suif.stanford.edu

[8] M. Weinhardt, and W. Luk, ”Pipeline Vectorization,” In
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Feb. 2001, pp. 234-248.

[9] I. Page, and W. Luk, “Compiling occam into FPGAs,” In FP-
GAs, Will Moore and Wayne Luk, eds., Abingdon EE&CS
Books, Abingdon, England, UK, 1991, pp. 271-283.

[10] M. Gokhale, and A. Marks, “Automatic Synthesis of Paral-
lel Programs Targeted to Dynamically Reconfigurable Logic
Array,” in Proc. 5th Int’l Workshop on Field Programmable
Logic and Applications (FPL’95), LNCS, Springer-Verlag,
1995, pp. 399-408.

[11] J. M. P. Cardoso, and H. C. Neto, “Macro-Based Hard-
ware Compilation of Java Bytecodes into a Dynamic Re-
configurable Computing System,” in Proc. IEEE 7th Sympo-
sium on Field-Programmable Custom Computing Machines
(FCCM’99), IEEE Computer Society Press, 1999, pp. 2-11.

[12] S. C. Goldstein, et al., “PipeRench: A Reconfigurable Ar-
chitecture and Compiler,” in IEEE Computer, Vol. 33, No.
4, April 2000.

[13] I. Ouaiss, et al., “An Integrated Partioning and Synthe-
sis System for Dynamically Reconfigurable Multi-FPGA
Architectures,” in Proc. 5th Reconfigurable Architectures
Workshop (RAW’98), Orlando, Florida, USA, March 30,
1998, pp. 31-36.

[14] S. Ganesan, and R. Vemuri, “An Integrated Temporal Par-
titioning and Partial Reconfiguration Technique for Design
Latency Improvement,” in Proc. Design, Automation & Test
in Europe (DATE’00), Paris, France, March 27-30, 2000, pp.
320-325.

[15] R. Maestre, et al., “A Framework for Reconfigurable Com-
puting: Task Scheduling and Context Management,” in
IEEE Transactions on VLSI Systems, Vol. 9, No. 6, Dec.
2001, pp. 858-873.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

