
Hardware/Software Design Space Exploration for a Reconfigurable Processor

Alberto La Rosa Luciano Lavagno Claudio Passerone

Dipartimento di Elettronica, Politecnico di Torino, Italy
E-mail:{larosa,lavagno,passerone}@polito.it

Abstract

This paper describes an approach to hard-
ware/software design space exploration for reconfig-
urable processors. The existing compiler tool-chain,
because of the user-definable instructions, needs to be
extended in order to offer developers an easy way to
explore design space. Such extension often is not easy to
use for developer that have only a software background,
thus ignoring reconfigurable architecture details or
hardware logic synthesis on FPGA. Our approach differs
from others because it is based on a simple extension on
the standard programming model well known to software
developers.

1. Introduction

Reconfigurable computing is emerging as a promising
mean to tackle the ever-rising cost of design and masks
for Application-Specific Integrated Circuits. Adding a re-
configurable portion to a Commercial Off The Shelf IC
enables it to potentially support a much broader range of
applications than a more traditional ASIC or microcon-
troller or DSP would. Moreover,run-time reconfigura-
bility even allows one to adapt the hardware to changing
needs and evolving standards, thus sharing the advantages
of embedded software, with higher performance and lower
power than a traditional processor, thus partially sharing
the advantages of custom hardware.

A key problem with dynamically reconfigurable hard-
ware is the inherent difficulty of programming it, since
neither the traditional synthesis, placement and routing-
based hardware design flow, nor the traditional compile,
execute, debug software design flow directly support it. In
a way, dynamic reconfiguration is a hybrid between soft-
ware, where the CPU is “reconfigured” at every instruc-
tion execution and memory is abundant, and hardware,
where reconfiguration occurs seldom and very partially,
and memory is a scarce resource. Several approaches,
some of which are summarized in the next section, have
been proposed to tackle this problem, both at the architec-
ture and at the CAD level.

In this case study, we consider an architecture ([4]) in
which an FPGA has been added as one of the functional
units of a RISC processor. This approach has one huge ad-
vantage, that it can exploit, as discussed in the rest of this
paper, a standard software development flow. The FPGA

can be managed directly by the compiler, so today the de-
signer just needs to tag portions of the source code that
must be implemented as single FPGA-based instructions.
In the future, we are looking at ways of automating this
extraction. The disadvantage of the approach is that the
reconfigurable hardware accesses its main data memory
via the normal processor pipeline (load and store instruc-
tions), thus it partially suffers from the traditional proces-
sor bottleneck. Without a direct connection to main mem-
ory, we avoid to face memory inconsistency problems ([7]
[3]), thus simplifying the software programming model.

In this paper we show that, by efficiently organizing
the layout of data in memory, and by exploiting the dy-
namic reconfiguration capabilities of the processor, one
can obtain an impressive speed-up (better than 3X) for
a very compute-intensive task, like turbo-codes. Power
is also dramatically reduced due to the reduction in the
number of operations (less accesses to instruction mem-
ory subsystem), and to the more optimized datapath layout
that can be achieved within an FPGA. It is well-known,
in fact, that processors are power-hungry due to the high
number of high-capacitance connections that are required
by their very flexible and frequent “reconfiguration”. An
FPGA implementing several processor instructions on a
customized datapath goes in the same direction as DSPs,
in order to reduce this capacitance and the number of its
switchings. It also helps reducing expensive memory ac-
cesses due to register spills, thanks to the embedded flip-
flops within the FPGA array.

The goal thus is to bridge the huge distance between
software and hardware, currently at several orders of mag-
nitude, in terms of cost, speed and power. The result is
a piece of hardware that is reconfigured every 100 or so
clock cycles (at least in the application described in this
paper; other trade-offs are possible for applications with
a more static control pattern), and within that interval is
devoted to a single computation task. Ideally, we would
like to bring a traditional, hardware-bound task, that of
decoding complex robust codes for wireless communica-
tion, within the “software” computation domain.

In the case of our target processor and soft-
ware/hardware development flow, the design space ex-
ploration takes the form of identifying maximally time-
consuming portions of the code, bounded by a number of
accesses to memory and/or registers that is within the limit
of one FPGA-based instruction. In this case, Data Flow
Graph fragments with at most 4 inputs and 2 outputs, for
a total of 4 input/outputs (due to encoding limits of the

1530-1591/03 $17.00  2003 IEEE

DLX Instruction Set Architecture) are the objective of the
search. Once they are identified, possibly with the help of
(currently manual) code restructuring, they can be tagged,
and their impact on the overall execution time analyzed.

The rest of the paper is organized as follows: Sec-
tion 2 describes previous works in the area; Section 3
illustrates the target processor architecture and the soft-
ware toolchain that we developed; Section 4 describes the
methodology that we are advocating for hardware/soft-
ware development on a reconfigurable architecture; Sec-
tion 5 shows an example taken from an UMTS turbo-
decoder, and finally Section 6 concludes the paper.

2. Related work

Coupling a general purpose processor with an FPGA
generally requires to embed them on the same chip, other-
wise communication bandwidth limitations may severely
impact the performance of the entire system. There are
several ways of designing the interaction between them,
but they can be grouped into two main categories:

1. the reconfigurable array is another functional unit of the
processor pipeline;

2. the reconfigurable array is a co-processor communicat-
ing with the main processor.

In both cases, the FPGA can be reprogrammed on the
fly during execution to accommodate new kernels, if the
available space does not permit to have all of them at the
same time. Often, a cache of configurations is maintained
close to the array to speed up this process.

In the first category we find designs such as
PRISC [10], Chimaera [6, 13] and ConCISe [8].

The second category includes the GARP processor [2,
3]. Since the FPGA array is external, there is an over-
head due to the explicit communication using dedicated
instructions that are needed to move data to and from the
array. But because of the explicit communication, the con-
trol hardware is less complicated with respect to the other
case, since almost no interlock is needed to avoid hazards.
If the number of clock cycles per execution of the array is
relatively high, then the overhead of communication may
be considered negligible.

In all the cited examples a modified C compiler is used
to program the processor and to extract candidate ker-
nels to be downloaded on the FPGA. In particular, the
GARP compiler [3] and the related Nimble compiler [12]
identify loops and find a pipelined implementation, using
profiling-based techniques borrowed from VLIW compil-
ers and other software optimizations.

Tensilica offers a configurable processor, called
Xtensa, where new instructions can be easily added at de-
sign time within the pipeline. Selection of the new in-
structions is performed manually by using a simulator and
a profiler. When the Xtensa processor is synthesized, a
dedicated development tool-set is also generated that sup-
ports the newly added instruction as function intrinsics.

A Tensilica processor is specialized for a given algo-
rithm at fabrication time. On the other hand, a reconfig-
urable processor such as the XiRisc can be customized

directly by the software designer. Of course, this added
flexibility has a cost: an FPGA-based implementation has
area, delay and power cost that is about 10 times larger
than an ASIC implementation, such as Tensilica.

The Lisa tool-set [9] was designed specifically to fa-
cilitate the development of Application-Specific Instruc-
tion Processors, because it generates a complete tool chain
from a single specification of the ASIP’s instruction set.
However, it is not clear from the published literature
whether generation of a new suite supporting a new in-
struction is easy and fast enough to be used in a tight loop
during simultaneous design space exploration of the ap-
plication and of the underlying reconfigurable processor’s
instruction set.

Our approach is similar to the Tensilica one, in that we
rely on manual identification of the extracted computa-
tional kernels. However, we do not require re-generation
of the complete tool chain whenever a new instruction is
added. We also provided support for new DSP-like in-
structions and for a VLIW-like datapath.

3. The software development tool chain

3.1. Processor Architecture

We are targeting a reconfigurable processor that is be-
ing developed by the University of Bologna and is de-
scribed in [4]. Here we will briefly outline the main char-
acteristics, that are useful to understand the rest of the pa-
per.

The processor is based on a 32-bit RISC (DLX) refer-
ence architecture. However, both the instructions set and
the architecture have been extended to support:

• Dedicated hardware logic to perform multiply-accu-
mulate calculation and end-of-loop condition verifica-
tion, by using special DSP-like instructions added to
the standard DLX ISA.

• A double data-path, with concurrent VLIW execution
of two instructions. The added data-path is limited to
only arithmetic and logic instructions, and cannot di-
rectly access the external memory subsystem. How-
ever, both data-path can simultaneously access the reg-
ister file, which supports four read and two write oper-
ations. The two ALUs are fully bypassed to avoid data
dependencies.

• An FPGA to implement in hardware special kernels and
instructions. The FPGA can be dynamically reconfig-
ured at run-time; each cell may store up to 4 config-
urations that can be instantly switched when needed.
Depending on the FPGA configuration, it is possible to
realize complex user-defined pipelined data-paths that
can have variable latency and throughput.

3.2. The modifiedgcc toolchain

We have implemented a design flow to support the re-
configurable processor. It starts from afully C initial spec-
ification, where sections that must be moved to the FPGA

are manullay annotated, and automatically generates the
assembler code, the simulation model, and a hardware
model useful for instruction latency and datapath cost es-
timation. A key characteristic is that it supports compi-
lation and simulation of software including user-definable
instructions, without the need to recompile the tool chain
every time a new instruction is added.

The design flow is based on thegcc toolchain, be-
cause it is freely available for a large number of embed-
ded processor architectures, and features state-of-the-art
optimization capabilities. This section illustrates the main
changes that were needed to support the reconfigurable
processor.

3.2.1. The Compiler

We retargeted the compiler by changing the machine de-
scription files found in thegcc distribution, to describe
the extensions to the DLX architecture and ISA.

In order to describe the availability of the second data-
path, we doubled the multiplicity of all existing functional
units that implement ALU operations. The presence of
the reconfigurable unit was modeled as a new function
unit. To support different user-defined instruction on the
FPGA unit, we classified the FPGA instructions according
to their latency. Thus the FPGA function unit was defined
as a pipelined resource with a set of possible latencies.

3.2.2. The Assembler

The gcc assembler is responsible for the expansion of
macro instructions into sequences of machine instructions,
the scheduling of machine instructions to improve latency
in the presence of shared resources and multi-cycle in-
structions, and the generation of binary object code. We
had to modify both the scheduling and the generation of
the object code to support the processor architecture.

We modified the scheduler to handle the second data-
path. Since only the ALU has been duplicated, only in-
structions such as arithmetic, logical, and relational op-
erations, can be performed in parallel. All those instruc-
tions that require non duplicated units, such as the DSP-
like instructions, loads, stores, multiplications, jumps and
branches must be issued one at a time, by inserting anop
or a non-data-dependent ALU operation in the second is-
sue slot. Moreover, some static scheduling to avoid the
parallel issue of two instructions that read and write the
same register is required. This means that the instruction
scheduler in the assembler inserts enoughnops to avoid
such hazards at compile time.

We also modified both the assembler instruction
mnemonics and their binary encodings to add two classes
of instructions: one for the DSP instructions (multiply/ac-
cumulate and decrement/branch), that are treated just as
normal instructions and assigned some of the unused op-
codes, and another for the FPGA instructions.

3.2.3. The Simulator and Debugger

The standardgdb distribution already contains a flexi-
ble interpreted instruction set simulator, that however has

only limited performance analysis capabilities, and does
not support the second data-path, the DSP-like instruc-
tions, nor the on-board FPGA. The simulation models for
DSP instructions were permanently added to the simula-
tor, since they are a fixed part of the architecture. On the
other hand, FPGA instructions depend on the application,
and thus cannot be statically linked.

Simulating FPGA Instructions To simulate an FPGA
instruction we use a C model of its behavior, which is
called at simulation time when the instruction is encoun-
tered. The latency of the instruction is also specified by
the model, and it is used when computing the perfor-
mance. Obviously, when the object code for download
on the target processor is generated, the simulation model
is removed.

An FPGA instruction is identified in the source code
using apragma directive. The format used inlcudes the
mnemonic name of the instruction, its opcode, the latency
in clock cycles, the number of outputs and inputs, and list
of output and input variables, in this order. A simple shift
and add operation can be modeled in the following way:

#pragma fpga shift add 0x12 5 1 2 c a b
c = (a<< 2) + b;

#pragma end

The annotated source code is then processed to gener-
ate a new C program where, for each FPGA instruction,
we define two assembler macros, one to be used to gener-
ate code for the target architecture, the other to be used to
generate code for the simulator, and a function, which is
called only during simulation.

The macro defined for the FPGA simply specifies the
correspondence between variables and operands, plus the
opcode as an immediate operand, and the latency. The
one for the simulation model requires some special han-
dling: we use a fixed set of processor registers to pass
the inputs to the corresponding simulation function, to get
back outputs, and to return to the simulator the actual (pos-
sibly data-dependent) cycle count for the instruction. A
shadow register file saves the processor registers upon en-
tering the instruction simulation routine, and restores them
at the end, so none of the argument passing registers, nor
those used by the routine, need to be saved by the caller
of the FPGA instruction. Two special instructions, called
tofpga andfmfpga, are used to handle the shadow reg-
ister file.

The function generated to implement the specified
behavior is simply the code extracted from the user-
annotated section, preceded and followed by a sequence
of assembler instructions that transfers the input and out-
put data from and to the argument passing registers. The
last assembler instruction also loads a pre-defined register
with the total cycle count, to be used during profiling.

Simulating VLIW Instructions The simulator pro-
vided withgcc is able to simulate a processor architecture
with a single pipeline chain. Our objective was to simulate
VLIW instructions that run in parallel on the double data

path of the processor, and to simulate the extended instruc-
tions using the shared functional units that were added to
the ISA.

Since the target architecture is almost fully bypassed,
and since the assembler already prevents possible struc-
tural hazards to occur by insertingnop instructions for the
added pipeline chain (see Section 3.2.2), it is sufficient
to simulate instructions sequentially even though they are
executed in parallel on the processor. This is a very im-
portant assumption because it dramatically simplifies the
changes required to the simulator.

3.2.4. Performance Simulation

We assume that the processor never stalls, since most haz-
ards can be already resolved at compilation time. There-
fore, it is sufficient to increment the cycle count at each
instruction that is simulated, with two notable exceptions:

1. FPGA instructions should increment the clock cycle
count by the amount that their simulation code returns
in a pre-defined register.

2. Two parallel VLIW instructions are executed in the
same clock cycle. Therefore, only one of them should
increment the clock cycle count.

We also developed a simple profiler which takes a trace
as input and generates the total number of clock cycles of
the simulation run, the total number of clock cycles spent
for each different instruction (opcode), and the total num-
ber of clock cycles spent in each line of the source code.

4. Our approach to design exploration

Comparing reconfigurable processors with traditional
ones, software developers have to adopt an extended pro-
gramming model that includes reconfigurable units be-
sides their functional specification.

Such kind of extensions often require developers to
provide architecture specific items and to call user-defined
instructions directly through assembler code, thus lower-
ing the abstraction level provided by generic programming
languages like C or C++. As consequence, the main draw-
back of such approaches is that software developers need
to master reconfigurable processor details and hardware
description languages before being productive in writing
software for such kind of computer architectures.

The main goal of compiler tools is that to hide archi-
tecture details, by providing a standardized programming
model (variables, arithmetic and logical operators, control
constructs and functions and procedure calls) that permits
code reuse among different computer architectures.

Our approach to reconfigurable computing tries to ex-
tend the standard programming model to include easy and
transparent use of the reconfigurable instruction set.

The design flow is divided in two main phases:

• Design space exploration: here software developers an-
alyze existing source code (often written without spe-
cific knowledge of the target processor), and identify

groups of statements that may be implemented as user-
defined instructions on the FPGA. Each new instruction
is characterized by cost figures (latency, power, num-
ber of required CLB) and a software functional model,
later used in ISS simulation for performance estimation
and functional verification. In this way several hard-
ware/software partitions can be explored and compared.

• Software and hardware synthesis: this phase represents
the final link to the target architecture, when the bi-
nary code and the bit-stream for FPGA is generated
through software and hardware compiler tools. Start-
ing from the functional model of each user-defined in-
struction, a netlist of gates is synthesized and mapped
on FPGA CLBs. In this step real cost figures are com-
puted. Then the software compilation chain can be used
again, this time with real cost figures to optimize in-
struction scheduling and register allocation.

The design exploration methodology that we propose
is primarily aimed at optimizing performance in term of
speed, making use of a limited number of FPGA cells.
The reduction in number of executed instructions and
memory accesses also has a very beneficial effect on en-
ergy consumption.

The first step consists of identifying which statements
within the application, if implemented in hardware, may
improve performance. We use common profiling tools
(like gprof), analyzing the timing and the number of ex-
ecutions of each function. After selecting the most time
consuming functions, a further profiling step annotates
each line of source code with the number of cycles spent
in it during execution. Thus we identify which statements
need further investigation and are possible candidates to
become user-defined instructions.

In most cases, the chosen group of statements is a com-
putation kernel inside a loop. Such kernels are surrounded
by code fragments that access data memory to read input
values and to store results. Considering memory accesses
only, we distinguished those that read input values and
write output data, from those which read and write inter-
mediate values during kernel computation. The first set
of accesses depends on the application and on its memory
data structure, while the second set is dependent of the
computation kernel and its implementation.

At this point two different kinds of design exploration
paths are possible:

• implement in hardware the entire computation kernel
(or part of it) using the FPGA.

• optimize memory data structures in order to minimize
memory accesses for input and output or intermediate
values [5].

After extracting the control-data flow graph (CDFG) of
each identified kernel, we decompose it into non overlap-
ping subgraphs that can be implemented in hardware as
a set of single FPGA instruction. In our target architec-
ture the FPGA unit can receive up to four input operands
from the register file and output computed data up to two

registers, with a maximum of four register accesses per in-
struction due to instruction encoding constraints. Thus we
looked for subgraphs having up to four input edges and up
to two output edges.

Each extracted instruction includes some statements
(taken from the original source code of the computation
kernel). Those statements are used both as source code
for the hardware implementation and as simulation model
for the reconfigurable instruction set simulator.

By exploring various splitting of the CDFG, different
possible implementations of the computation kernel on
our reconfigurable processor can be tried. Then a trade-
off analysis between cost and performance will help in
selecting the optimal implementation.

In order to evaluate cost and performance, in the case
of hardware implementation, we characterized each sub-
graph according to the estimated latency and number of
required CLBs. These numbers can be derived manually
if the developer has enough knownledge digital hardware
design, or through an automated estimator available in our
software development chain.

After partitioning we recompile the source code with
our modifiedgcc (see Section 3.2). The compiler sched-
ules instructions so as to best exploit both the standard
data-paths and the FPGA, by using the latency assigned to
each FPGA instruction.

Then we use an instruction set simulator to analyze sys-
tem performance. The DLX Instruction Set Simulator that
is distributed withgcc was adapted to count execution
time of each native and user-defined instruction, accord-
ing to the estimated latency, while executing the code for
software implementation.

Once the optimal implementation is selected, a finer
analysis of performance and functionality is possible
through RTL simulation of the entire system (core and
FPGA). We first synthesize hardware starting from an
HDL translation of each CFDG subgraphs and then we
place and route the FPGA. Information extracted from re-
ports will help in refining user-defined instruction laten-
cies and costs, that were previously only estimated.

5. Case study: turbo decoding

We applied the design flow described in the previous
section to a decoder for turbo-codes [11]. The goal of the
exploration was to speed up the execution of one of the
most data intensive algorithms of future cellular telecom-
munications, by exploiting the programmable instructions
of the reconfigurable processor. We used as a starting
point for our optimization a publicly available version of
the decoder from [1]. That code was originally imple-
menting a Viterbi decoder, and we modified it so that it
used iterations in order to implement a real turbo-decoder.

A very important aspect of the optimization was a re-
organization of the memory layout, and a conversion of
floating point values to fixed point (int and short int) for
the target processor, which does not have a floating point
unit. By appropriately pairing shorts into a single memory
word, the memory access bandwidth, one of the bottle-
neck of the DLX-based architecture that we are using, can

be doubled. We also re-arranged the code so that accesses
to arrays in main memory was minimized. Since these
are standard transformations, that have little to do with
the reconfigurable nature of the processor, we refer the
interested reader to [5] for more details.All comparisons
between reconfigurable and non-reconfigurable processor
below are given based on the memory-optimized version
of the source code, for both processors.

Figure 1 shows the profile of the beginning of the back-
ward recursion step. The integer before each line repre-
sents the number of clock cycles required to execute it.
The code already includes the FPGA instruction pragmas,
but the profiling has been done on the bare DLX archi-
tecture. The same code sequence is repeated 4 times with
different inputs and outputs.

Figure 2 shows the profile of the same code exploit-
ing the FPGA1. It also shows clock cycle counts for each
FPGA-based instruction. We estimated that the execu-
tion of the instruction on the FPGA would require about 8
rows, for a total of about 256 CLBs, and a delay of 2 clock
cycles (mostly due to the 3 16-bit additions; the fast carry
chain of the FPGA can do 1 32-bit addition in a clock cy-
cle).

The total execution time for decoding 1 bit on the ba-
sic DLX is 56261 clock cycles. The total execution time
for the version using the FPGA is 16715, representing a
speed-up of approximately 3.3X for the whole algorithm.

6. Conclusions

In this paper we showed how a reconfigurable proces-
sor can be used to dramatically speed up the execution of
a highly data and control intensive task, the decoding of
turbo-codes. We used a design flow that enables a soft-
ware designer, who is mostly unaware of hardware design
subtleties, to quickly assess the costs and gains due to ex-
ecuting selected pieces of C code as single instructions on
an FPGA-based reconfigurable DLX functional unit.

The result is a factor of 3.3 speed-up on the whole de-
coding algorithm (not just on its inner kernel, where the
advantages are much bigger). It was achieved, simulta-
neously with the memory layout optimizations (packing
multiple data in a single memory access word, replacing
matrices with vectors), with only about 2 weeks of work
by software designers without any previous exposure to
hardware design, synthesis, or reconfigurable computing.

In the future we are planning to further automate the
design flow, especially in the direction of automated gen-
eration of the FPGA programming files from the extracted
C code. This would dramatically improve the accuracy of
the cost and performance estimation for a given FPGA in-
struction, with respect to the current technique, based on
quick synthesis and judicious estimation of how many fast
carry chains are being used.

We will also look at ways of automatically performing
an optimized extraction, based on profiling results, cost
and performance estimations, and limitations on the max-
imum number of register accesses.

1VLIW execution and DSP-like instructions were not used for this
particular example. Therefore, the speed-up is due only to the FPGA.

0 void Recursionbackward(unsigned intbetametric[40][8/2],
unsigned intbranchmetric[40][16/2]){

0 unsigned intbetaout, betain, beta[4], temp[4];
0 unsigned int i, j, br0, br1, sw0, sw1, minval;

12 beta[0] = 0x00008000; beta[1] = 0x80008000;
4 beta[2] = 0x80008000; beta[3] = 0x80008000;

410 for (j = (40-1); j >= 0; j−−) {
0 #pragma fpga maxtot 0x21 2 1 3 temp[0] beta[0]\

branchmetric[j][0] branchmetric[j][1] {
0 short int a, b, br00, br01, br10, br11;
0 short int betain0, betain1, betaout0, betaout1;

80 br00 = (0x0000ffff & branchmetric[j][0] >> 16);
80 br01 = (0x0000ffff & branchmetric[j][0]);
80 br10 = (0x0000ffff & branchmetric[j][1] >> 16);
80 br11 = (0x0000ffff & branchmetric[j][1]);
80 betain0 = (0x0000ffff & beta[0]>> 16);

240 betain1 = (0x0000ffff & beta[0]);
240 a = br00 + betain0;
240 b = br01 + betain1;
429 betaout0 = (a> b) ? a : b;
160 a = br11 + betain0;
240 b = br10 + betain1;
430 betaout1 = (a> b) ? a : b;
635 minmxstar = (minmxstar< betaout0)?minmxstar:betaout0;
475 minmxstar = (minmxstar< betaout1)?minmxstar:betaout1;
240 temp[0] = (betaout0<< 16) — (0x0000ffff & betaout1);

0 }
0 #pragma end
0 #pragma fpga maxtot 0x21 2 1 3 temp[1] beta[1]\

branchmetric[j][2] branchmetric[j][3] {
0 short int a ,b, br00, br01, br10, br11;
0 short int betain0, betain1, betaout0, betaout1;

80 br00 = (0x0000ffff & branchmetric[j][2] >> 16);
80 br01 = (0x0000ffff & branchmetric[j][2]);
80 br10 = (0x0000ffff & branchmetric[j][3] >> 16);
80 br11 = (0x0000ffff & branchmetric[j][3]);

. . .

Figure 1. A fragment of the original source code of the
backward reduction step

An interesting additional result of this research will be
a better understanding of possible architectural enhance-
ments for the target processor, e.g. in the direction of im-
proving the memory access bandwidth of the FPGA-based
functional unit. Of course we will not forget the key ad-
vantage of the architecture, its very user-friendly program-
mer’s model.

References

[1] E. Boutillon and J. Sanchez-Turon.
http://lester.univ-ubs.fr:8080/∼boutillon/
sanchezt/main.htm.

[2] T. Callahan, J. Hauser, and J. Wawrzynek. The Garp ar-
chitecture and C compiler.IEEE Computer, 33(4):62–69,
Apr. 2000.

[3] T. Callahan and J. Wawrzynek. Adapting software pipelin-
ing for reconfigurable computing. InProceedings of the
International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES), 2000.

[4] F. Campi, R. Canegallo, and R. Guerrieri. IP-reusable
32-bit VLIW Risc core. InProceedings of the European
Solid-State Circuits Conference, Sept. 2001.

0 void Recursionbackward(unsigned intbetametric[40][8/2],
unsigned intbranchmetric[40][16/2]){

0 unsigned intbetaout, betain, beta[4], temp[4];
0 unsigned int i, j, br0, br1, sw0, sw1, minval;

12 beta[0] = 0x00008000; beta[1] = 0x80008000;
4 beta[2] = 0x80008000; beta[3] = 0x80008000;

410 for (j = (40-1); j >= 0; j−−) {
480 asm(“ maxtot %0,%1,%2,%3” :“=r” (temp[0]) : “r” (beta[0]),

“r” (branch metric[j][0]), “r” (branch metric[j][1]));
480 asm(“ maxtot %0,%1,%2,%3” :“=r” (temp[1]) : “r” (beta[1]),

“r” (branch metric[j][2]), “r” (branch metric[j][3]));
480 asm(“ maxtot %0,%1,%2,%3” :“=r” (temp[2]) : “r” (beta[2]),

“r” (branch metric[j][4]), “r” (branch metric[j][5]));
480 asm(“ maxtot %0,%1,%2,%3” :“=r” (temp[3]) : “r” (beta[3]),

“r” (branch metric[j][6]), “r” (branch metric[j][7]));
. . .
maxstar 1680
butterfly1 1200
maxtot 640
butterfly0 400
sum3swap 320
sum3 320
swap1 160
reorder 160
computegamma 160

Figure 2. A fragment of the source code of the back-
ward reduction step using the new FPGA-based instruc-
tion called “maxtot”

[5] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa,
L. Nachtergaele, and A. Vandecapelle, editors.Custom
Memory Management Methodology: Exploration of Mem-
ory Organisation for Embedded Multimedia System De-
sign. Kluwer Academic Publishers, 1998.

[6] S. Hauck, T. Fry, M. Hosler, and J. Kao. The Chimaera
reconfigurable functional unit. InProceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines,
Apr. 1997.

[7] J. Jacob and P. Chow. Memory Interfacing and Instruc-
tion Specification for Reconfigurable Processors. InProc.
ACM Intl. Symp. on FPGAs, 1999.

[8] B. Kastrup, A. Bink, and J. Hoogerbrugge. ConCISe: A
compiler-driven CPLD-based instruction set accelerator.
In Proceedings of the Seventh Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, Apr.
1999.

[9] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr. LISA-
machine description language for cycle-accurate models
of programmable DSP architectures. InProceedings of
the Design Automation Conference, June 1999.

[10] R. Razdan and M. Smith. A high-performance microarchi-
tecture with hardware-programmable functional units. In
Proceedings of the 27th Annual International Symposium
on Microarchitecture, Nov. 1994.

[11] W. E. Ryan. A Turbo Code Tutorial. Tech-
nical report, New Mexico State University.
http://telsat.nmsu.edu/ wryan/turbo2c.ps.

[12] L. Yanbing, T. Callahan, R. Harr, and U. Kurkure.
Hardware-software co-design of embedded reconfigurable
architectures. InProceedings of the Design Automation
Conference, June 2000.

[13] Z. Ye, N. Shenoy, and P. Banerjee. A C compiler for a
processor with a reconfigurable functional unit. InPro-
ceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, Feb. 2000.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

