
Transaction-Level Models for AMBA Bus Architecture Using SystemC 2.0

M. Caldari*, M. Conti*, M. Coppola**, S. Curaba**, L. Pieralisi*, C. Turchetti*

* University of Ancona, via Brecce Bianche, I-60131, Ancona, Italy
** STMicroelectronics, Grenoble, France

Abstract

The concept of a SOC platform architecture introduces
the concept of a communication infrastructure. In the
transaction-level a finite set of architecture components
(memories, arithmetic units, address generators, caches,
etc) communicate among each other over shared
resources (buses). Until recently, modeling architectures
required pin-level hardware descriptions, typically coded
in RTL. Great effort is required to design and verify the
models, and simulation at this level of detail is tediously
slow. Transaction level modeling is the solution.
Transaction level models (TLMs) effectively create an
executable platform model that simulates orders of
magnitude faster than a RTL model.

In this paper, we present a SystemC 2.0 TLM of the
AMBA architecture developed by ARM, oriented to SOC
platform architectures.

1. Introduction

 Evidently, system-on-chip era is creating many new
challenges to the current design flow. Increased demand
for complexity captures and consistency in hardware
modeling, especially for SOC design, has led to the
development of new modeling methodologies and
corresponding simulation engines. To specify, design, and
implement such complex systems, incorporating
functionality implemented in both hardware and software
forms, we are compelled to move on from HDLs of old.
We must also move beyond the RT level of abstraction
used with these HDLs. We need to move to what has been
termed the “system level” of design with a modeling
language that can support this level. Several modeling
methodologies have been proposed in the past years for
increasing the level of abstraction and enabling hardware-
software co-design [6,8,9]. Specification at higher levels
of abstraction is possible in environments such as
SystemC 2.0 [8,10]. SystemC 2.0 is an emerging standard
modeling platform based on C++ that supports design
abstraction at the RTL, behavioral and system level.

 Apart from the modeling benefits of C++ [2] such as
data abstraction, modularity, and object orientation,
advantages of SystemC 2.0 include the establishment of a
common design environment consisting of C++ libraries,
models and tools providing the ability to exchange and
reuse IP easily and efficiently across different levels of
abstraction. In this paper, we show how the
communication classes available in SystemC 2.0 can be
used in order to produce very fast transaction-level bus
models suitable for SOC platform architectures. The key
in efficient bus modeling is to create code in a way that
allows simulation to run very fast. The only way to
achieve this goal is to write code completely detached
from hardware block implementations, raising the
abstraction level [9] and opening a new scenario in model
development. In particular, we created a SystemC 2.0
Bus-cycle-accurate (BCA) model of AMBA specification
developed by Arm. The model that we wrote supports the
full AMBA rev2.0 specification and the Arm Multi-layer
AHB. The remainder of this paper is organized as follows.
In Section 2, we explain the transaction level modeling
style. In Section 3, we describe the AMBA model, with
C++ class descriptions and implementation methodology.
In Section 4, we show the test environments. In Section 5,
we report the performance evaluation and test results.
Finally, Section 6 draws the conclusion.

2. Transaction-level modeling

SystemC 2.0 introduces a new set of features for
generalized modeling of communication and
synchronization [9,10]. These are: channels, interfaces
and events. An interface defines a set of methods, but does
not implement these methods. It is a pure functional object
without any data in order not to anticipate implementation
details. A channel implements one or more interfaces. A
port enables a module and hence its processes, accessing a
channel’s interface. A port is defined in terms of an
interface type, which means that the port can be used only
with channels implementing that interface type. With
channels, there is a distinction between so-called primitive
channels and hierarchical channels.

Primitive channels do not exhibit any visible structure,
do not contain processes, and cannot directly access other
primitive channels. Hierarchical channels, on the other
hand, are modules, which means they can have structure,
they can contain other modules and processes, and they
can directly access other channels. The use of interfaces
enables a very powerful scheme called interface-method-
call (IMC). IMC refers to a process calling an interface
method of a channel. The interface method is
implemented in the channel, but it is executed in the
context of the process. At Transaction-Level,
communication mechanisms such as buses or FIFOs are
modeled as channels, and are presented to modules using
SystemC 2.0 interface classes. Transaction requests take
place by calling interface functions of these channels
models, which encapsulate low-level details of the
information exchange. In other words, at the transaction-
level, the emphasis is more on the functionality of the data
transfers-what data are transferred to and from what
locations- and less on their actual implementation (that is,
on the actual protocol used for data transfer). In
transaction level modeling, synchronization details are
typically abstracted into the categories of blocking and
non-blocking I/O, and in the case of buses, priorities may
be assigned to clients, and arbitration can be modeled in a
centralized way. Transaction-level modeling also enables
higher simulation speed than pin-based interfaces [3],
through the suppression of “uninteresting” details [7]. For
example, in the real world a large burst-mode transfer may
take many actual clock cycles to complete. In most of
these clock cycles, the bus is merely doing routine work
and those clients that have pending bus requests are just
waiting. If we view the burst-mode transfer as a single
operation, there is no need to devote simulation time to
these “uninteresting” clock cycles. Depending on whether
the model needs to be bus-cycle-accurate (BCA) or not,
different strategies can be applied to take advantage of
this, resulting in significant savings in simulation time. As
we will demonstrate in the next sections, even when a
transactional-level model needs to be cycle accurate, it
still may simulate much faster than a typical cycle-
accurate RTL model.

3. AMBA model overview

The AMBA specification defines an on-chip
communication standard for designing high performance
embedded micro controllers [1]. Three different bus
specifications are defined within AMBA architecture:
• the advanced high-performance bus AHB;
• the advanced peripheral bus APB;
• the advanced system bus ASB.

Our goal was to create cycle-accurate TLMs for the
AHB and the APB buses. This would allow effective

incorporation of buses into SOC modeling platforms, with
appropriate communication interfaces and correct timing.
Moreover, we had wanted to build models that execute
faster than others in usual simulation environments. Our
AMBA model shows how to obtain a clock-accurate
simulation without using RTL [7] specific hardware
signals and components; that is to say, we developed a
model with a high-level of abstraction [11] that does not
need to describe all hardware details that the real
architecture needs.

The model, as we will explain later, uses the dynamic
sensitivity implemented by SystemC 2.0 in order to avoid
useless function calls when it is not useful, at simulation
level, holding the model running. Being a transaction-
level model, it can be used to simulate the AHB and APB
bus protocols in a correct way, keeping the right control
options, but masking them in a layer whose
implementation is completely hidden to the user. This is
very important, since the composition of a high level
behavioral model for an embedded system must be based
[4] on protocol refinement. AMBA TLMs are built using
all necessary building blocks for modeling standard
channels available in SystemC 2.0, that is, interfaces,
ports and channels.

3.1 Classes’ structure

In this Section, we describe the C++ classes’ structure
to build on-chip bus models. The classes’ structure is
based on SC_interface, SC_channel (SC_Module) and
SC_port (SystemC 2.0) classes but it does not use
SC_primary_channel. In Fig. 1, we show the APB
classes’ structure expressed using OMT notation. Notice
that for the AHB we kept the same structure.

The vertical line with a triangle denotes class
inheritance. An arrowhead line is used to represent
aggregate dependency between classes, i.e. one class is
composed in part from another class. This aggregation can
be further redefined. Reference aggregation, graphically
denoted as a black rhombus, means the whole object
maintains a pointer or a reference to its part, while value
aggregation, graphically denoted as a white rhombus,
means the whole object is included. Starting from the high
level, we declared a bus like a template class that uses
template arguments as the ones used for the related
interface. The user defines such arguments, and adds
further attributes that can be used by higher-level
communications, in order to implement custom transfer
over the physical AMBA protocol. Notice that the
programmer cannot use a completely user-defined class
for the attributes, because at least the controls of protocol
must be declared inside it (with a particular attention to
hready signal, as we will explain later, when we will
describe this important feature of our model).

Figure 1: AMBA model classes’ structure

The Bus class (see Fig. 1) is at the top level of the
hierarchy and is used as interface with the ports that
connect the user’s test bench with the Bus Class.

The Bus class provides all the constructs that make the
communication between behaviors possible. In particular,
we use dynamic instantiation that creates a new class
X_channel (where X represents bus protocol) for every
master or slave port instantiated into the model. That is,
we create a Bus as an object that contains several channels
(X_channel is not a SC_channel, it is a normal C++
object), just to respect the modularity of an object oriented
reuse specification. The Bus class inherits the class Bus
Base Channel (see Fig. 1), where we perform several
activities, first of all a mechanism of data transfer totally
hidden to the user, which is used just to simulate the data
transfer in a clock-accurate manner. Finally, the class Bus
base channel inherits the (SystemC 2.0) SC_channel that
is a base class for all the SystemC 2.0 hierarchical
channels, and is where the data transfer is really
performed. The Bus Class is used also to declare the
X_process() function (inside Bus class, where X
represents bus protocol), implemented as a SC_method.

The X_process() method, that is, the bus core,
performs the bus operations and manages the complete
protocol. For the AMBA model development, we used the
two-phase synchronization scheme, so, the X_process()
method is sensible to negative edge of the clock. This
because certain modules (masters and slaves) are active on
the rising edge of the clock, while other modules (bus) are
active on the falling edge. Because the Bus now executes
on the falling edge of the clock, we can be sure that by the
time the bus executes it has gathered all of the requests for
this bus cycle, since all masters execute on the rising edge,
assuring deterministic design.

3.2 A state-oriented model

 A state-oriented model is one that represents the
system as a set of states and a set of transitions between
them, which are triggered by external events. A finite-
state machine (FSM) is an example of a state-oriented
model.

 Basically, the FSM model consists of a set of states, a
set of transitions between states, and a set of actions
associated with these states or transitions.
 In our model, we concentrated exclusively in the
program-state machine (PSM)[5], that is, an instance of
a heterogeneous model that integrates a hierarchical
concurrent finite-state-machine (HCFSM) with a
programming language paradigm. The HCFSM is
essentially an extension of the FSM model, which adds
support for hierarchy and concurrency, thus eliminating
the potential for state and arc explosion that occurred
when describing hierarchical arc concurrent system with
FSM models. Like the FSM, the HCFSM model consists
of a set of states and a set of transitions. Unlike the FSM,
however, in the HCFSM each state can be further
decomposed into concurrent sub states, which execute in
parallel and communicate through global variables. As
already say, we focused on the PSM model.
 This model consists of a hierarchy of program-states,
in which each program state represents a distinct mode of
computation [5]. At any given time, only a subset of
program-states will be active, that is, actively carrying out
their computation. Both the APB and AHB X_process()
methods have been implemented using PSM model, as we
are going to explain.

3.3 The APB bus core

 The X_process() method present in every bus class, is,
as already described in Section 3.1, the real core of the
bus model. We chose for the apb_process()
implementation the Program State Machine model (see
section 3.2).
 We can explain the PSM implementation of the APB
Bus apb_process() method as follows. The APB IDLE
state mapped in our model [1] is just used to check the
opcode pwrite signal and the pselx signal (selected slave
port), so the transaction continues taking into
consideration these initial conditions. Hereinafter we
show the pseudo-code of PSM in the apb_process()
method (IDLE state):

template <class MasterAttr,class SlaveAttr>
void ApbBus<MasterAttr,SlaveAttr>::apb_process()
{
 ...
 case IDLE:
 if (opctmp) {
 current=TX_WRITE;
 //(Sequence of operations)
 return;
 }
 else {
 current=TX_READ;
 //(Sequence of operations)
 return;
 }
 return;
}

 Every single state performs different operations,
depending on the past state and the future state. In this
way, we manage the Bus protocol in every clock cycle
without having to implement any system that describes
protocol signals (e.g. the penable signal does not exist in
our model that remains clock accurate). This avoids an
enormous computation burden, so simulation is very fast
as shown in our results. Using a PSM, it is quite simple to
simulate a given communication protocol without the
concept, costly in terms of performance, of hardware
signal (SystemC 2.0 RTL style), reaching a higher level of
abstraction and consequently a faster simulation.
 Moreover, there is a further option that permits the
simulation to run faster. Our system is composed by
different components (System C 2.0 modules) that run in
parallel each performing its task. But when a Module (e.g.
a Bus module) during a determined period of time has
nothing to do, it is useless and costly in terms of CPU
time to continue to call it by the system scheduler, that is,
the class that manages the simulation. Thus, we
implemented the so-called “de-scheduling“ function by
dynamic sensitivity, that avoids useless calls to the
apb_process() method when it has nothing to perform and
permits to “re-schedule” (notify) it when a determined
event comes. With the bus control in the form of a PSM, it
was easy to manage the de-scheduling option since in
every state we have enough information that permit us to
know the bus status, and the need of computation.
 In the APB Bus we adopted the choice of to “de-
schedule “ the bus when the Master Interface is not ready
to send the data; that is, the bus class is waiting for an
event (next_trigger (event)) coming from master’s
module. When the master starts communication, in the
same time it notifies the event associated to the bus, so,
static sensibility of the bus (negative edge of the clock) re-
becomes active. We would like to note that if we had used
a hardware-like implementation, correct use of the de-
scheduling option, if accomplishable, would have been
more tedious and difficult.

3.4 The AHB bus core

 We have already described the PSM model of
X_process() method in a bus class with the APB example.
We now consider implementation of the ahb_process()
method within AHB Bus. We described the Bus as a PSM
where each state represents in the same time the transfer
that we have just performed and the transfer that we have
to perform in the current cycle. We made this choice
taking into consideration the pipelined nature of AHB Bus
that implies the transfer of the current control signals and
at the same time the transfer of the data referring to the
previous cycle.
 In this way, the ahb_process() method can be
considered as a table where we describe all the possible
transactions that the AHB Bus can perform.

 Looking at this table in a fixed clock-cycle we know
exactly what we must do and who must do it, e.g. a read
transfer to slave port 3. The user must only supply the
correct control signals, respecting the protocol
implementation, but it is important to notice that at bus
level we do not simulate the hardware RTL signals
transfer to keep the correct timing. Instead, we use the
blocking methods just to set several classes that manage
the addresses and compute the right state for the PSM,
that must only perform the code relative at the actual state,
resulting in a very low computational burden. We would
notify that an effort was made to manage the PSM when a
bus handover occurs, because with the pipelined nature of
the data and address bus we must continue the data
transfer of the old master while charging the new control
signals for the new master.
 This results in different PSM states to be written on
purpose for the bus handover. We would like to notice
that our model is quite detached from the hardware level.
In fact, just as example, the classes that we used to
describe the AHB Bus do not reflect any hardware block
that anyone can find in the Arm AMBA specification. We
have just described the AHB like a so-called black box
within which we mask the hardware implementation with
a high-level abstract implementation.
 Obviously, the de-scheduling problem in a bus like
AHB holds a lot of interest, because in a so complex
object we looked a lot for a method that avoids useless
function calls, improving the simulation speed.
 Our choice was de-scheduling (or masking) the bus
work with respect to hready signal, the signal used by the
slave ports to manage a correct transfer, by dynamic
sensitivity of ahb_process() method. By the AMBA
protocol [1] we know (see Fig. 2) that when a slave port
sets hready low and hresp equal to okay, the transfer is in
a so-called “sleepy state”.

Figure 2: HREADY signal example

 That is to say, the bus has nothing to perform in a
determined clock cycle. If we do not use a de-scheduling
option the scheduler every cycle would call the bus
ahb_process() method (Bus core) waiting on a response
different from okay or a hready= high, resulting in a
considerable performance reduction.

 We resolved the de-scheduling problem by mapping
the hready and hresp signals (declared as Boolean and
enumerated values) as an event: the event that has the
capability to supersede static sensitivity in ahb_process()
method when no transfer is needed and that in the same
time can reschedule (hready rises or hresp differs from
okay) the bus when a transfer must be performed.
 In this elegant way, the Bus class avoids useless
routine work during the time hready is held low, lowing
computational burden and improving simulation speed.

4. Test environment

 The following section shows the test bench
environment that we chose to test the AMBA Model. We
used CThread objects, in order to simulate every Master
and Slave port, triggered by the positive edge of the clock.
A CThread consists of a function that is executed in an
infinite loop, obviously with blocking conditions inside
(conditions that are waiting a time-dependent event to
restart the block of code, typical transactions at TL). We
chose two different types of test bench for the APB Bus
and the AHB Bus. In the APB Bus we chose a single
CThread in both sides (Master, Slave), because the
protocol is quite simple and for a correct simulation we do
not need to split write and read operations in two separate
CThreads. On the contrary, with AHB specification, we
chose to split read and write operations in Slave Side with
two CThreads (Fig. 3). In the AHB Master side we used
also two CThread processes (Fig. 3), the first performing
all the transfers (Main), the second used just to receive the
data coming from slave ports during read transfer.

Figure 3: AHB testbench configuration

5. Performance

 The following section describes improvement on the
simulation speed of the AMBA model. Before it was
implemented, we examined the SystemC 2.0 TLM of
STBus, ST proprietary standard on-chip bus. It was a
static C model providing clock cycle-accurate simulation.
Next, it has been integrated by ST designers in SystemC
2.0 environment directly at TL.

 STBus TLM simulated slow due to an extremely
accurate hardware modeling concerning all signals
(modeled by variables, not by SystemC 2.0 signals) and
blocks, closer to a RTL model than a TLM. Each
hardware block had its class representation, with all
output signals and input signals, e.g. the class arbiter
reflects perfectly the arbiter hardware block, and each
block was simulated cycle per cycle (STBus SystemC 2.0
TLM does not implement dynamic sensitivity). Every
effort made in order to construct an abstract simulation
engine, quite detached from HDLs was wasted in a
communication channel that simulated the exact hardware
structure. We realized that this was not the correct way to
operate, and thus we examined methods to define a bus
implementation in a more abstract way based on PSM and
de-scheduling (dynamic sensitivity) concepts as already
described. Our implementation does not reflect any
hardware block in AMBA specification; that is, we wrote
a model that executes in the same manner as hardware but
it does not use any hardware concept. At the end of code
writing, we were faced with the evaluation and test of our
TLMs. In Fig. 4, we report the results of several
comparisons between SystemC 2.0 TLMs of STBus,
APBBus, AHBBus. We ran several simulations using two
kinds of bus traffic and two types of Sun workstation:
Ultra 60 and Blade 1000.

Figure 4: Simulation efficiency for various
architectures and model delay options

 The first test simulates full rate traffic with alternative
write and read transfers; that is, the bus performs a
transfer every cycle. The second simulates the same
transfers, but with a read cycle performed with five cycles
delay. Simulation results were as expected. The models of
APB and AHB Bus run at same speed in both cases,
whereas the model of STBus is much slower. This shows
that new design methodologies achieved our goal.
 The second comparison is between two models of
AHB Bus written at different levels of abstraction, our
SystemC 2.0 TLM and a proprietary model used by ST
designers written in SystemC 2.0 at RTL.
 Both models have been tested with same traffic
architecture: a DMA controller alternatively drives write
and read transfers to RAM memory (see Fig. 5).

Figure 5: Testbench used to test performance

 The following model assumptions are made. The delay
time for a write transfer is 0, while the delay for a read
transfer is one clock cycle; that is to say, the slave module
holds low the signal hready with hresp=okay during the
first read cycle. The DMA needs four clock cycles in
order to pass to next write and read operations. There is no
delay state between write and read operations. The
simulation has run on Ultra 60 machine. The results that
we obtained were as expected: both methodologies that
we implemented (PSM and dynamic sensitivity) gained a
lot in comparison to a hardware level design (Tab. 1).

 AHB SystemC 2.0
RTL Model

AHB SystemC 2.0
TLM

Kcycles/sec 3 300

Table 1: Comparison between SystemC 2.0 TLM
and RTL model (Sun Ultra 60)

 Moreover, the choice of de-scheduling becomes
effective when in the bus there is merely routine work,
yielding faster simulation since RTL model continues to
perform operations in these clock cycles. In Table 1, we
report the results that give a correct and objective
dimension of the gain-factor magnitude. We must also
keep in mind that a TLM is also more effective for IP
reuse [4], so, with an eye to the future, it will gain more
avoiding the need of test bench rewriting.

6. Conclusion

 The TLMs of AMBA Architecture provide some
important results for SOC modeling. First, we showed that
with a higher level of abstraction than RTL, we gain two
orders of magnitude in simulation speed. Assuming the
same simulation is performed on the same machine, if
SystemC 2.0 TLM requires a day to run, the SystemC 2.0
RTL model requires almost one hundred days. This very
important result removes any residual doubt in TL
modeling effectiveness. Second, in a bus implementation,
the de-scheduling feature, implemented by dynamic
sensitivity, allows the simulation to run faster, avoiding
useless function calls, showing that it can become a must
in bus modeling.

 Finally, the PSM implementation opens a new
scenario in bus modeling, providing the user with a robust
method in order to create models in a simple way,
avoiding useless computational burden. In this way,
several other buses can be developed keeping the idea of a
single central unit that manages communication in a faster
manner, especially without waste of precious CPU time.
 Further works are in progress in order to integrate the
AMBA TLMs within a SOC platform, oriented to power
estimation at system level. We expect that these works
will produce further improvements in the modeling
concept and implementation.

Acknowledgments

This research has been sponsored in part by EU Medea+.

References

[1] AMBA Specification (rev2.0) and Multi layer AHB

specification, Arm: http://www.arm.com, 2001.

[2] M. Caldari, M. Conti, M. Coppola, M. Giuliodori, C.
Turchetti: “C++ based System-on-chip Design” IEEE
Canadian Journal of Electrical and computer Engineering,
vol. 26, no. 3/4, July/Oct. 2001, pp. 115-123.

[3] CoCentric System Studio Data Sheet, Synopsys
http://www.synopsys.com, 2002.

[4] R. Domer, Daniel D. Gajski: “Reuse and protection of
Intellectual Property in the SpecC system”, University of
California, Irvine, http://www.ics.uci.edu.

[5] Daniel D.Gajski, Jianwen Zhu, Rainer Domer “Essential
issues in co-design” University of California, Irvine
Technical report June 1997, http://www.ics.uci.edu.

[6] J. Gerlach, W. Rosenstiel “System level design using
SystemC modeling platform “ University of Tubingen,
Germany, www-ti.informatik.uni-tuebingen.de/~systemc.

[7] A.Gerstlauer, S.Zhao, D.Gajski, A.Horak: “SpecC System-
level design methodology applied to design of a GSM
Vocoder” University of California, Irvine and Motorola
Semiconductor products sector, http://www.ics.uci.edu.

[8] T. Grotker, S. Liao, G. Martin, S. Swan: “System design
with SystemC” Kluwer Academic Publishers, 2002.

[9] Preeti Ranjan Panda: “SystemC – A modeling platform
supporting multiple design abstractions”, Synopsys Inc,
http://www.synopsys.com.

[10] Open SystemC Iniative (OSCI), SystemC documentation:
http://www.systemc.org, 2001.

[11] Kjetil Svarstad, Gabriela Nicolescu, Ahmed A. Jerraya: “A
model for Describing Communication between Aggregate
Objects in the Specification and Design of Embedded
systems” SINTEF Telecom and Informatics, TIMA
Laboratory, SLS group, http://www.systemc.org.

http://www.arm.com/
http://www.synopsys.com/
http://www.ics.uci.edu/
http://www.ics.uci.edu/
http://www.ics.uci.edu/
http://www.synopsys.com/
http://www.systemc.org/
http://www.systemc.org/

	Main Page
	DF'03
	Front Matter
	Table of Contents
	Author Index

