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Abstract 
 

The concept of a SOC platform architecture introduces 
the concept of a communication infrastructure. In the 
transaction-level a finite set of architecture components 
(memories, arithmetic units, address generators, caches, 
etc) communicate among each other over shared 
resources (buses). Until recently, modeling architectures 
required pin-level hardware descriptions, typically coded 
in RTL. Great effort is required to design and verify the 
models, and simulation at this level of detail is tediously 
slow. Transaction level modeling is the solution. 
Transaction level models (TLMs) effectively create an 
executable platform model that simulates orders of 
magnitude faster than a RTL model.  

In this paper, we present a SystemC 2.0 TLM of the 
AMBA architecture developed by ARM, oriented to SOC 
platform architectures. 
 

1. Introduction 
 
 Evidently, system-on-chip era is creating many new 
challenges to the current design flow. Increased demand 
for complexity captures and consistency in hardware 
modeling, especially for SOC design, has led to the 
development of new modeling methodologies and 
corresponding simulation engines. To specify, design, and 
implement such complex systems, incorporating 
functionality implemented in both hardware and software 
forms, we are compelled to move on from HDLs of old. 
We must also move beyond the RT level of abstraction 
used with these HDLs. We need to move to what has been 
termed the “system level” of design with a modeling 
language that can support this level. Several modeling 
methodologies have been proposed in the past years for 
increasing the level of abstraction and enabling hardware-
software co-design [6,8,9]. Specification at higher levels 
of abstraction is possible in environments such as 
SystemC 2.0 [8,10]. SystemC 2.0 is an emerging standard 
modeling platform based on C++ that supports design 
abstraction at the RTL, behavioral and system level.  

 Apart from the modeling benefits of C++ [2] such as 
data abstraction, modularity, and object orientation, 
advantages of SystemC 2.0 include the establishment of a 
common design environment consisting of C++ libraries, 
models and tools providing the ability to exchange and 
reuse IP easily and efficiently across different levels of 
abstraction. In this paper, we show how the 
communication classes available in SystemC 2.0 can be 
used in order to produce very fast transaction-level bus 
models suitable for SOC platform architectures. The key 
in efficient bus modeling is to create code in a way that 
allows simulation to run very fast. The only way to 
achieve this goal is to write code completely detached 
from hardware block implementations, raising the 
abstraction level [9] and opening a new scenario in model 
development. In particular, we created a SystemC 2.0 
Bus-cycle-accurate (BCA) model of AMBA specification 
developed by Arm. The model that we wrote supports the 
full AMBA rev2.0 specification and the Arm Multi-layer 
AHB. The remainder of this paper is organized as follows. 
In Section 2, we explain the transaction level modeling 
style. In Section 3, we describe the AMBA model, with 
C++ class descriptions and implementation methodology. 
In Section 4, we show the test environments. In Section 5, 
we report the performance evaluation and test results. 
Finally, Section 6 draws the conclusion. 
 

2. Transaction-level modeling 
 

SystemC 2.0 introduces a new set of features for 
generalized modeling of communication and 
synchronization [9,10]. These are: channels, interfaces 
and events. An interface defines a set of methods, but does 
not implement these methods. It is a pure functional object 
without any data in order not to anticipate implementation 
details. A channel implements one or more interfaces. A 
port enables a module and hence its processes, accessing a 
channel’s interface. A port is defined in terms of an 
interface type, which means that the port can be used only 
with channels implementing that interface type. With 
channels, there is a distinction between so-called primitive 
channels and hierarchical channels.  



Primitive channels do not exhibit any visible structure, 
do not contain processes, and cannot directly access other 
primitive channels. Hierarchical channels, on the other 
hand, are modules, which means they can have structure, 
they can contain other modules and processes, and they 
can directly access other channels. The use of interfaces 
enables a very powerful scheme called interface-method-
call (IMC). IMC refers to a process calling an interface 
method of a channel. The interface method is 
implemented in the channel, but it is executed in the 
context of the process. At Transaction-Level, 
communication mechanisms such as buses or FIFOs are 
modeled as channels, and are presented to modules using 
SystemC 2.0 interface classes. Transaction requests take 
place by calling interface functions of these channels 
models, which encapsulate low-level details of the 
information exchange. In other words, at the transaction-
level, the emphasis is more on the functionality of the data 
transfers-what data are transferred to and from what 
locations- and less on their actual implementation (that is, 
on the actual protocol used for data transfer). In 
transaction level modeling, synchronization details are 
typically abstracted into the categories of blocking and 
non-blocking I/O, and in the case of buses, priorities may 
be assigned to clients, and arbitration can be modeled in a 
centralized way. Transaction-level modeling also enables 
higher simulation speed than pin-based interfaces [3], 
through the suppression of “uninteresting” details [7]. For 
example, in the real world a large burst-mode transfer may 
take many actual clock cycles to complete. In most of 
these clock cycles, the bus is merely doing routine work 
and those clients that have pending bus requests are just 
waiting. If we view the burst-mode transfer as a single 
operation, there is no need to devote simulation time to 
these “uninteresting” clock cycles. Depending on whether 
the model needs to be bus-cycle-accurate (BCA) or not, 
different strategies can be applied to take advantage of 
this, resulting in significant savings in simulation time. As 
we will demonstrate in the next sections, even when a 
transactional-level model needs to be cycle accurate, it 
still may simulate much faster than a typical cycle-
accurate RTL model. 
 

3. AMBA model overview 
 

The AMBA specification defines an on-chip 
communication standard for designing high performance 
embedded micro controllers [1]. Three different bus 
specifications are defined within AMBA architecture: 
• the advanced high-performance bus AHB; 
• the advanced peripheral bus APB; 
• the advanced system bus ASB. 

Our goal was to create cycle-accurate TLMs for the 
AHB and the APB buses. This would allow effective 

incorporation of buses into SOC modeling platforms, with 
appropriate communication interfaces and correct timing.  
Moreover, we had wanted to build models that execute 
faster than others in usual simulation environments. Our 
AMBA model shows how to obtain a clock-accurate 
simulation without using RTL [7] specific hardware 
signals and components; that is to say, we developed a 
model with a high-level of abstraction [11] that does not 
need to describe all hardware details that the real 
architecture needs.  

The model, as we will explain later, uses the dynamic 
sensitivity implemented by SystemC 2.0 in order to avoid 
useless function calls when it is not useful, at simulation 
level, holding the model running. Being a transaction-
level model, it can be used to simulate the AHB and APB 
bus protocols in a correct way, keeping the right control 
options, but masking them in a layer whose 
implementation is completely hidden to the user. This is 
very important, since the composition of a high level 
behavioral model for an embedded system must be based 
[4] on protocol refinement. AMBA TLMs are built using 
all necessary building blocks for modeling standard 
channels available in SystemC 2.0, that is, interfaces, 
ports and channels.   
 
3.1 Classes’ structure 
 

In this Section, we describe the C++ classes’ structure 
to build on-chip bus models. The classes’ structure is 
based on SC_interface, SC_channel (SC_Module) and 
SC_port (SystemC 2.0) classes but it does not use 
SC_primary_channel. In Fig. 1, we show the APB 
classes’ structure expressed using OMT notation. Notice 
that for the AHB we kept the same structure. 

The vertical line with a triangle denotes class 
inheritance. An arrowhead line is used to represent 
aggregate dependency between classes, i.e. one class is 
composed in part from another class. This aggregation can 
be further redefined. Reference aggregation, graphically 
denoted as a black rhombus, means the whole object 
maintains a pointer or a reference to its part, while value 
aggregation, graphically denoted as a white rhombus, 
means the whole object is included. Starting from the high 
level, we declared a bus like a template class that uses 
template arguments as the ones used for the related 
interface. The user defines such arguments, and adds 
further attributes that can be used by higher-level 
communications, in order to implement custom transfer 
over the physical AMBA protocol. Notice that the 
programmer cannot use a completely user-defined class 
for the attributes, because at least the controls of protocol 
must be declared inside it (with a particular attention to 
hready signal, as we will explain later, when we will 
describe this important feature of our model).  
 



 
 

Figure 1: AMBA model classes’ structure 
 

The Bus class (see Fig. 1) is at the top level of the 
hierarchy and is used as interface with the ports that 
connect the user’s test bench with the Bus Class.  

The Bus class provides all the constructs that make the 
communication between behaviors possible. In particular, 
we use dynamic instantiation that creates a new class 
X_channel (where X represents bus protocol) for every 
master or slave port instantiated into the model. That is, 
we create a Bus as an object that contains several channels 
(X_channel is not a SC_channel, it is a normal C++ 
object), just to respect the modularity of an object oriented 
reuse specification. The Bus class inherits the class Bus 
Base Channel (see Fig. 1), where we perform several 
activities, first of all a mechanism of data transfer totally 
hidden to the user, which is used just to simulate the data 
transfer in a clock-accurate manner. Finally, the class Bus 
base channel inherits the (SystemC 2.0) SC_channel that 
is a base class for all the SystemC 2.0 hierarchical 
channels, and is where the data transfer is really 
performed.  The Bus Class is used also to declare the 
X_process() function  (inside Bus class, where X 
represents bus protocol), implemented as a SC_method.  

The X_process() method, that is, the bus core, 
performs the bus operations and manages the complete 
protocol. For the AMBA model development, we used the 
two-phase synchronization scheme, so, the X_process() 
method is sensible to negative edge of the clock. This 
because certain modules (masters and slaves) are active on 
the rising edge of the clock, while other modules (bus) are 
active on the falling edge. Because the Bus now executes 
on the falling edge of the clock, we can be sure that by the 
time the bus executes it has gathered all of the requests for 
this bus cycle, since all masters execute on the rising edge, 
assuring deterministic design. 
 

3.2 A state-oriented model 
 

 A state-oriented model is one that represents the 
system as a set of states and a set of transitions between 
them, which are triggered by external events. A finite-
state machine (FSM) is an example of a state-oriented 
model.  

 Basically, the FSM model consists of a set of states, a 
set of transitions between states, and a set of actions 
associated with these states or transitions. 
 In our model, we concentrated exclusively in the 
program-state machine (PSM)[5], that is, an instance of 
a heterogeneous model that integrates a hierarchical 
concurrent finite-state-machine (HCFSM) with a 
programming language paradigm. The HCFSM is 
essentially an extension of the FSM model, which adds 
support for hierarchy and concurrency, thus eliminating 
the potential for state and arc explosion that occurred 
when describing hierarchical arc concurrent system with 
FSM models. Like the FSM, the HCFSM model consists 
of a set of states and a set of transitions. Unlike the FSM, 
however, in the HCFSM each state can be further 
decomposed into concurrent sub states, which execute in 
parallel and communicate through global variables. As 
already say, we focused on the PSM model. 
 This model consists of a hierarchy of program-states, 
in which each program state represents a distinct mode of 
computation [5]. At any given time, only a subset of 
program-states will be active, that is, actively carrying out 
their computation. Both the APB and AHB X_process() 
methods have been implemented using PSM model, as we 
are going to explain. 
 

3.3 The APB bus core 
 
 The X_process() method present in every bus class, is, 
as already described in Section 3.1, the real core of the 
bus model. We chose for the apb_process() 
implementation the Program State Machine model (see 
section 3.2).  
 We can explain the PSM implementation of the APB 
Bus apb_process() method as follows. The APB IDLE 
state mapped in our model [1] is just used to check the 
opcode pwrite signal and the pselx signal (selected slave 
port), so the transaction continues taking into 
consideration these initial conditions. Hereinafter we 
show the pseudo-code of PSM in the apb_process() 
method (IDLE state): 
 
template <class MasterAttr,class SlaveAttr> 
void ApbBus<MasterAttr,SlaveAttr>::apb_process() 
{ 
 ... 
 case IDLE: 
  if (opctmp) { 
        current=TX_WRITE; 
        //(Sequence of operations) 
        return; 
             } 
  else { 
        current=TX_READ; 
        //(Sequence of operations) 
        return; 
       } 
 return; 
} 



 Every single state performs different operations, 
depending on the past state and the future state. In this 
way, we manage the Bus protocol in every clock cycle 
without having to implement any system that describes 
protocol signals (e.g. the penable signal does not exist in 
our model that remains clock accurate). This avoids an 
enormous computation burden, so simulation is very fast 
as shown in our results. Using a PSM, it is quite simple to 
simulate a given communication protocol without the 
concept, costly in terms of performance, of hardware 
signal (SystemC 2.0 RTL style), reaching a higher level of 
abstraction and consequently a faster simulation.  
 Moreover, there is a further option that permits the 
simulation to run faster. Our system is composed by 
different components (System C 2.0 modules) that run in 
parallel each performing its task. But when a Module (e.g. 
a Bus module) during a determined period of time has 
nothing to do, it is useless and costly in terms of CPU 
time to continue to call it by the system scheduler, that is, 
the class that manages the simulation. Thus, we 
implemented the so-called “de-scheduling“ function by 
dynamic sensitivity, that avoids useless calls to the 
apb_process() method when it has nothing to perform and 
permits to “re-schedule” (notify) it when a determined 
event comes. With the bus control in the form of a PSM, it 
was easy to manage the de-scheduling option since in 
every state we have enough information that permit us to 
know the bus status, and the need of computation.  
 In the APB Bus we adopted the choice of to “de-
schedule “ the bus when the Master Interface is not ready 
to send the data; that is, the bus class is waiting for an 
event (next_trigger (event)) coming from master’s 
module. When the master starts communication, in the 
same time it notifies the event associated to the bus, so, 
static sensibility of the bus (negative edge of the clock) re-
becomes active. We would like to note that if we had used 
a hardware-like implementation, correct use of the de-
scheduling option, if accomplishable, would have been 
more tedious and difficult.   
 

3.4 The AHB bus core 
 
 We have already described the PSM model of 
X_process() method in a bus class with the APB example. 
We now consider implementation of the ahb_process() 
method within AHB Bus. We described the Bus as a PSM 
where each state represents in the same time the transfer 
that we have just performed and the transfer that we have 
to perform in the current cycle. We made this choice 
taking into consideration the pipelined nature of AHB Bus 
that implies the transfer of the current control signals and 
at the same time the transfer of the data referring to the 
previous cycle.  
 In this way, the ahb_process() method can be 
considered as a table where we describe all the possible 
transactions that the AHB Bus can perform.  

 Looking at this table in a fixed clock-cycle we know 
exactly what we must do and who must do it, e.g. a read 
transfer to slave port 3.  The user must only supply the 
correct control signals, respecting the protocol 
implementation, but it is important to notice that at bus 
level we do not simulate the hardware RTL signals 
transfer to keep the correct timing. Instead, we use the 
blocking methods just to set several classes that manage 
the addresses and compute the right state for the PSM, 
that must only perform the code relative at the actual state, 
resulting in a very low computational burden. We would 
notify that an effort was made to manage the PSM when a 
bus handover occurs, because with the pipelined nature of 
the data and address bus we must continue the data 
transfer of the old master while charging the new control 
signals for the new master.  
 This results in different PSM states to be written on 
purpose for the bus handover. We would like to notice 
that our model is quite detached from the hardware level. 
In fact, just as example, the classes that we used to 
describe the AHB Bus do not reflect any hardware block 
that anyone can find in the Arm AMBA specification. We 
have just described the AHB like a so-called black box 
within which we mask the hardware implementation with 
a high-level abstract implementation.  
 Obviously, the de-scheduling problem in a bus like 
AHB holds a lot of interest, because in a so complex 
object we looked a lot for a method that avoids useless 
function calls, improving the simulation speed. 
 Our choice was de-scheduling (or masking) the bus 
work with respect to hready signal, the signal used by the 
slave ports to manage a correct transfer, by dynamic 
sensitivity of ahb_process() method. By the AMBA 
protocol [1] we know (see Fig. 2) that when a slave port 
sets hready low and hresp equal to okay, the transfer is in 
a so-called “sleepy state”.  
 

 
 

Figure 2: HREADY signal example 
 

 That is to say, the bus has nothing to perform in a 
determined clock cycle. If we do not use a de-scheduling 
option the scheduler every cycle would call the bus 
ahb_process() method (Bus core) waiting on a response 
different from okay or a hready= high, resulting in a 
considerable performance reduction. 



 We resolved the de-scheduling problem by mapping 
the hready and hresp signals (declared as Boolean and 
enumerated values) as an event: the event that has the 
capability to supersede static sensitivity in ahb_process() 
method when no transfer is needed and that in the same 
time can reschedule (hready rises or hresp differs from 
okay) the bus when a transfer must be performed.  
 In this elegant way, the Bus class avoids useless 
routine work during the time hready is held low, lowing 
computational burden and improving simulation speed. 
 

4. Test environment 
 

 The following section shows the test bench 
environment that we chose to test the AMBA Model. We 
used CThread objects, in order to simulate every Master 
and Slave port, triggered by the positive edge of the clock. 
A CThread consists of a function that is executed in an 
infinite loop, obviously with blocking conditions inside 
(conditions that are waiting a time-dependent event to 
restart the block of code, typical transactions at TL). We 
chose two different types of test bench for the APB Bus 
and the AHB Bus. In the APB Bus we chose a single 
CThread in both sides (Master, Slave), because the 
protocol is quite simple and for a correct simulation we do 
not need to split write and read operations in two separate 
CThreads. On the contrary, with AHB specification, we 
chose to split read and write operations in Slave Side with 
two CThreads (Fig. 3). In the AHB Master side we used 
also two CThread processes (Fig. 3), the first performing 
all the transfers (Main), the second used just to receive the 
data coming from slave ports during read transfer. 
 

 
 

Figure 3: AHB testbench configuration 
 

5. Performance 
 

 The following section describes improvement on the 
simulation speed of the AMBA model. Before it was 
implemented, we examined the SystemC 2.0 TLM of 
STBus, ST proprietary standard on-chip bus. It was a 
static C model providing clock cycle-accurate simulation.  
Next, it has been integrated by ST designers in SystemC 
2.0 environment directly at TL. 

 STBus TLM simulated slow due to an extremely 
accurate hardware modeling concerning all signals 
(modeled by variables, not by SystemC 2.0 signals) and 
blocks, closer to a RTL model than a TLM. Each 
hardware block had its class representation, with all 
output signals and input signals, e.g. the class arbiter 
reflects perfectly the arbiter hardware block, and each 
block was simulated cycle per cycle (STBus SystemC 2.0 
TLM does not implement dynamic sensitivity). Every 
effort made in order to construct an abstract simulation 
engine, quite detached from HDLs was wasted in a 
communication channel that simulated the exact hardware 
structure. We realized that this was not the correct way to 
operate, and thus we examined methods to define a bus 
implementation in a more abstract way based on PSM and 
de-scheduling (dynamic sensitivity) concepts as already 
described. Our implementation does not reflect any 
hardware block in AMBA specification; that is, we wrote 
a model that executes in the same manner as hardware but 
it does not use any hardware concept. At the end of code 
writing, we were faced with the evaluation and test of our 
TLMs. In Fig. 4, we report the results of several 
comparisons between SystemC 2.0 TLMs of STBus, 
APBBus, AHBBus. We ran several simulations using two 
kinds of bus traffic and two types of Sun workstation: 
Ultra 60 and Blade 1000. 
 

 
 

Figure 4: Simulation efficiency for various 
architectures and model delay options 

 

 The first test simulates full rate traffic with alternative 
write and read transfers; that is, the bus performs a 
transfer every cycle. The second simulates the same 
transfers, but with a read cycle performed with five cycles 
delay. Simulation results were as expected. The models of 
APB and AHB Bus run at same speed in both cases, 
whereas the model of STBus is much slower. This shows 
that new design methodologies achieved our goal.  
 The second comparison is between two models of 
AHB Bus written at different levels of abstraction, our 
SystemC 2.0 TLM and a proprietary model used by ST 
designers written in SystemC 2.0 at RTL. 
 Both models have been tested with same traffic 
architecture: a DMA controller alternatively drives write 
and read transfers to RAM memory (see Fig. 5). 



           
 

Figure 5: Testbench used to test performance 
 

 The following model assumptions are made. The delay 
time for a write transfer is 0, while the delay for a read 
transfer is one clock cycle; that is to say, the slave module 
holds low the signal hready with hresp=okay during the 
first read cycle. The DMA needs four clock cycles in 
order to pass to next write and read operations. There is no 
delay state between write and read operations. The 
simulation has run on Ultra 60 machine. The results that 
we obtained were as expected: both methodologies that 
we implemented (PSM and dynamic sensitivity) gained a 
lot in comparison to a hardware level design  (Tab. 1).  
 

 AHB SystemC 2.0 
RTL Model 

AHB SystemC 2.0 
TLM 

Kcycles/sec    3                             300 
 

Table 1: Comparison between SystemC 2.0 TLM 
and RTL model (Sun Ultra 60) 

 

 Moreover, the choice of de-scheduling becomes 
effective when in the bus there is merely routine work, 
yielding faster simulation since RTL model continues to 
perform operations in these clock cycles. In Table 1, we 
report the results that give a correct and objective 
dimension of the gain-factor magnitude. We must also 
keep in mind that a TLM is also more effective for IP 
reuse [4], so, with an eye to the future, it will gain more 
avoiding the need of test bench rewriting. 
 

6. Conclusion 
 

 The TLMs of AMBA Architecture provide some 
important results for SOC modeling. First, we showed that 
with a higher level of abstraction than RTL, we gain two 
orders of magnitude in simulation speed. Assuming the 
same simulation is performed on the same machine, if 
SystemC 2.0 TLM requires a day to run, the SystemC 2.0 
RTL model requires almost one hundred days. This very 
important result removes any residual doubt in TL 
modeling effectiveness. Second, in a bus implementation, 
the de-scheduling feature, implemented by dynamic 
sensitivity, allows the simulation to run faster, avoiding 
useless function calls, showing that it can become a must 
in bus modeling.  

 Finally, the PSM implementation opens a new 
scenario in bus modeling, providing the user with a robust 
method in order to create models in a simple way, 
avoiding useless computational burden. In this way, 
several other buses can be developed keeping the idea of a 
single central unit that manages communication in a faster 
manner, especially without waste of precious CPU time. 
 Further works are in progress in order to integrate the 
AMBA TLMs within a SOC platform, oriented to power 
estimation at system level. We expect that these works 
will produce further improvements in the modeling 
concept and implementation.  
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