
A Hardware-Software Operating System
for Heterogeneous Designs∗

Jośe Manuel Moya, Francisco Moya, Juan Carlos López
University of Castilla–La Mancha
Escuela Superior de Inforḿatica

Paseo de la Universidad, 4. 13071 Ciudad Real, Spain
{jmmoya,fmoya,jclopez }@inf-cr.uclm.es

Abstract

Current embedded systems are made of multiple heterogeneous
devices interconnected. These devices present a great variation
of functionality, performance, and interfaces. Therefore, it is
difficult to build applications for these platforms.

In this paper we present some techniques to introduce
component-based methodologies into hardware-software code-
sign. We make special emphasis on the use of simple, homo-
geneous interfaces to hide the inherent complexity of current
designs. A key contribution is the definition of a HW-SW Op-
erating System that makes system resources available to appli-
cation developers in a clean, homogeneous way. This greatly
simplifies the task of designing complex heterogeneous embed-
ded systems.

As complexity increases, designing embedded systems is be-
coming too hard. A typical embedded system consist of an
heterogeneous network with many different devices. These
devices usually have very different interfaces (analog subsys-
tems, microprocessors, field programmable devices, ASICs,
etc.). With modern IP-based design strategies, the integration
of different IP blocks is becoming the key problem. This con-
firms that heterogeneity is bad and should be eliminated.

Thus, we are looking for a way to design really complex,
distributed, HW-SW embedded systems, hiding the multiple in-
terfaces of the different HW and SW resources through simple
and homogeneous interfaces. To the best of our knowledge,
no design system meets these requirements. Therefore, we are
working on FLECOS1 to build such a system.

Virtual processors We describe an embedded system as a set
of virtual processors. A virtual processor is an imaginary mi-
croprocessor containing not only the internal functional units
of the real microprocessor, but also other external hardware re-
sources. Thevirtual instruction setincludes also the operations
that these resources implement. And we use a GCC-based HW-
SW compiler to map the behavior specification, written in a
high-level programming language, into the available resources,
using the specified virtual processor as the target architecture.

∗This work has been supported by Spanish CICYT (grant TIC2000-0583-
C02-01).

1Seehttp://arco.inf-cr.uclm.es/flecos.html

Adding new hardware resources into the compiler does not
change the system interfaces from the user’s point of view.
However, when the new resource is too complex, this approach
does not work, because the compiler is not able to find very
complex behavior patterns in the specification.

HW system calls In software systems, the operating system
is the “software that securely abstracts and multiplexes phys-
ical resources”. This definition does not imply that these ab-
stractions should be implemented in software. Thus, we have
extended this idea also for hardware-software systems. The ad-
vantage is that system designers see these new resources as sim-
plesystem calls.

The implementation details of these system calls are con-
tained in the low-level synthesis tools for the corresponding
subsystem.

HW-SW Operating Systems Certainly, we can use the
method described above to provide easy-to-use interfaces for
all the possible resources we can add to our system, butmany
easy-to-use interfaces are not so easy to use. We have to pro-
vide uniform interfaces for all the available resources to really
simplify the design process.

Thus, we have created a HW-SW operating system follow-
ing the simple interface of theOff++ microkernel2. There is
only one abstraction for all the resources: the Box. Everything
is represented as a box: a display, an A/D converter, a TCP/IP
stack. A box is typed, but can be implicitly converted to other
types in a similar spirit to objects in most object-oriented pro-
gramming languages.

It contains only three methods:copy copies data from a
source to a target location,share allows to share resources,
andselect provides a way to access to the low-level details
of a particular resource.

Not to impose any extra overhead that might limit the effec-
tiveness of this approach, the operating system does not specify
the exact semantics of these operations. The details (links, pro-
tocols, timing, etc.) are only defined for concrete box types.
Copy and share operations can only be used between compat-
ible boxes, but it is always possible to definehardware type
converters.

2See Off++ web site:http://gsyc.escet.urjc.es/off

Page 1


	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index


