
Two Approaches for Developing Generic Components in VHDL

Vytautas Stuikys, Giedrius Ziberkas, Robertas Damasevicius, Giedrius Majauskas
Kaunas University of Technology, Software Engineering Department

Studentu 50, 3031-Kaunas, Lithuania
{stuik,ziber,damarobe,giedmaja}@soften.ktu.lt

Abstract
We consider the one- and two-language approaches (1LA &

2LA) for developing generic components (GCs) for VHDL
generators. By 1LA & 2LA we mean a generalization using
“pure” VHDL, or using the VHDL abstractions mixed with Open
PROMOL, the external scripting language we have developed
for building GCs and generators, respectively. We present the
evaluation of both approaches.

The 1LA or 2LA is a methodology consisting of these
phases: 1) formulation of requirements; 2) domain analysis
(DA); 3) analysis and validation of requirements; 4)
mapping of requirements into the generalized
specification; 5) testing and certification; 6)
documentation of GCs.

Development of a GC (see Figure) either by the 1LA or
2LA is a procedure of mapping a given set of functional
requirements into two abstract descriptions: the
generalized interface and generalized functionality. We
usually generalize a component using its existing
instance(s) gained from DA. We measure the extent of the
generalization by wideness of requirements. Approaches
differ in the phases 4 & 5 only.

Entity

Architecture

VHDL Instance

PROMOL Interface
Program

2LA GC

Package as Interface
1LA GC

Interface

Functionality

GC

Figure. The GC model in our approaches

The 1LA requires one development environment only
(“pure” VHDL). A GC developed by the approach has a
simpler validation, no naming problem. However, the
approach suffers from the limitations of synthesis tools,
the overgeneralization and modifiability problems.

The 2LA is based on the experimental scripting
language Open PROMOL, which implements the open set
of external functions. The approach consists of: 1)
mapping of the functional requirements into a set of
external parameters; 2) specifying the feasible parameter
values; 3) coding of the GC interface; 4) developing of the
GC specification body using a functionality coded in
VHDL and promol-functions.

PROMOL has several advantages in comparison with
other scripting languages. The miscellaneous specific
functions give the power when implementing the proposed
GC model. The feature of using the target language (TL)
code mixed with promol-functions as an argument of a
promol-function allows a deep implicit nesting of the
functions and, therefore, provides the capabilities of the
flexible TL code modifications.

From the user’s viewpoint, the 2LA has no
overgeneralization problem (user always works with
instances). The 2LA is more adaptable to the synthesis
limitations and has a higher flexibility for modifications.
Additionally, the 2LA does not depend upon the TL.
Weaknesses of the 2LA are two development
environments (PROMOL & VHDL), the naming, pretty-
printing problems, and more complicated validation.

The 1LA & 2LA support the hierarchical
generalization, i.e., composing GCs from the smaller ones.
We illustrate the capabilities of the approaches by
developing GCs, which instances may be met either in the
typical or specific designs, e.g., using discrete
transformations.

We summarise the main benefits of the approaches as
follow:

• The 1LA is superior to the 2LA with respect to
black-box reuse. The 2LA is superior to the 1LA
with respect to white-box reuse.

• Both approaches ensure a significant reduction in
number of the library components, and lead to a
higher flexibility when combined together in the
VHDL generator model.

• We suggest the virtual component-based generator
model. It includes the GC library, PROMOL
processor, specification module, and VHDL
compiler.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

