
Property-Specific Witness Graph Generation for Guided Simulation
A. Casavant, A. Gupta, S. Liu, A. Mukaiyama, K. Wakabayashi, and P. Ashar

NEC Corp. {ashar@ccrl.nj.nec.com}

A practical solution to the complexity of design validation is
semi-formal verification, where the specification of correctness
criteria is done formally, as in model checking, but checking is
done using simulation, which is guided by directed vector
sequences derived from knowledge of the design and/or the
property being checked. Simulation vectors must be effective in
targeting the types of bugs designers expect to find rather than
some generic coverage metrics. The focus of our work is to
generate property-specific testbenches for guided simulation,
that are targeted either at proving the correctness of a full CTL
property or at finding a bug. This is facilitated by generation of a
property-specific model, called a “Witness Graph”, which
captures interesting paths in the design. Starting from an initial
abstract model of the design, symbolic model checking, pruning,
and refinement steps are applied in an iterative manner, until
either a conclusive result is obtained or computing resources are
exhausted. The witness graph is annotated with, e.g., state or
transition priorities before testbench generation. The overall
testbench generation flow, and the iterative flow for witness
graph generation are shown in Figures 1 and 2.

Automatic
Constraint
Generation

Simulator

Design
Description

in HDL

Correctness
Criteria

Vector
Generation
Constraints

Simulation
Report

Testbench

Vector
Generator

+
Checker

Figure 1: Smart Testbench Generation
To generate the abstract model, m, we first use cone-of-
influence abstraction, whereby any part of the design, d, that
does not affect the property is removed. Since the number of
control states is small, explicit traversal is used to identify
irrelevant datapath operations. Next, we identify datapath
variables that do not directly appear as atomic propositions in
the CTL property, and are therefore suitable for abstraction as
pseudo-primary inputs. Again, we use explicit traversal over the
control states to identify datapath dependencies for ranking these
candidates and abstracting them. The resulting model constitutes
an upper bound approximation. The next step is to perform
deterministic analysis using model checking on the abstract
model in order to identify states that contribute to any witness or
counter-example (CE) for the property of interest. The input
CTL formula f is in negation normal form, i.e. where all
negations appear only at the atomic level. For E-type sub-
formulas, we look for all witnesses; while for A-type sub-
formulas, we look for all CEs. This state set is used for guidance
during simulation over d, in order to demonstrate a concrete
witness/CE. In particular, we target over-approximate sets
(upper) of satisfying states during model checking, so that we
can search through an over-approximate set of witnesses/CEs

during simulation. For sub-formulas with an E- operator (EX,
EF, EU, EG), standard model checking over m ensures an over-
approximation over d. For sub-formulas with an A- operator
(AX, AF, AU, AG), we compute upper by considering the
corresponding E- (e.g. AG becomes EG). Since the over-
approximation for the A- operators is coarse, we also compute a
set of abstract states called negative corresponding to the
intersection of set upper with a set which is recursively
computed for the negation of the A- sub-formula. We show that
the set computation has the same complexity as standard
symbolic model checking. In some cases, a conclusive proof
may be obtained during this upper/negative identification.

CDFG

Correctness
Property

CTL
Formula

No

Abstract
Model

Refinement

Analysis + Pruning

Abstraction

Yes

Witness
Graph

Annotated
WG

User HintsDesign

Testbench

Conclusive
Result?

Add More
Detail?

No

Property
True / False Yes

Figure 2: Flow for Witness Graph Generation

When the result is inconclusive, we fall back upon simulation.
An abstract state s which belongs to upper, but not to negative,
is a very desirable state to target as a witness for the A- sub-
formula because the proof of the A- sub-formula is complete for
state s due to model checking itself, i.e., as soon as state s is
reached during simulation, there is no further proof obligation. If
a state t belongs to negative also, our task during simulation is to
check whether there is a concrete path starting from t that shows
the CE for the A- sub-formula. If such a CE is found, state t is
not a true witness state, and can be eliminated from further
consideration. The contribution of our work is the choice of over
approximation and how it is used to guide the simulation. Using
the upper/negative sets we prune the abstract model by
removing states that do not start a witness/CE and are not
needed for demonstrating it fully. Once pruning is done, it may
be possible to refine the model by bringing back some of the
datapath variables abstracted out earlier and performing the
analysis again. Sets derived from upper/negative during
pruning/marking are used in the backtrack-search procedure of
the testbench during simulation for proving the property or its
negation. Apart from using a Witness Graph for generating a
testbench, it can also be used as a coverage metric for evaluating
the effectiveness of a given set of simulation vectors.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

