
Heuristic Datapath Allocation for Multiple Wordlength Systems

George A. Constantinides, Peter Y.K. Cheung
Electrical and Electronic Engineering Department

Imperial College
London SW7 2BT

Wayne Luk
Department of Computing

Imperial College
London SW7 2AZ

Abstract

This paper introduces a heuristic to solve the combined
scheduling, resource binding, and wordlength selection
problem for multiple wordlength systems. The algorithm in-
volves an iterative refinement of operator wordlength infor-
mation, leading to a scheduled and bound data-flow graph.
Scheduling is performed with incomplete wordlength infor-
mation during the intermediate stages of this refinement
process. Results show significant area savings over known
alternative approaches.

1 Introduction

This paper presents a heuristic solution to the com-
bined scheduling, resource binding, and wordlength selec-
tion problem for multiple-wordlength systems, introduced
as an ILP formulation in [5].

Traditionally the wordlength problem for DSP applica-
tions has been to find a single uniform system wordlength,
which satisfies both the conflicting requirements of de-
sign area/speed/power and acceptable rounding and trun-
cation signal distortion. The idea of a single uniform
wordlength is consistent with the DSP processor model
of computation where a single, or multiple, pre-designed
fixed-wordlength computational units are responsible for
all operations. When synthesizing custom hardware imple-
mentations, we are freed from such constraints. It is pos-
sible to use different wordlength functional units for dif-
ferent operations, in order to minimize the area require-
ments [3, 14] or power consumption [9].

Recent research into multiple-wordlength systems has
concentrated on deriving fixed-point implementations from
floating-point or infinite-precision descriptions, and in-
cludes [2, 3, 14, 16]. However there has been lit-
tle research [4, 14] on high-level synthesis for multiple-
wordlength systems. The use of multiple wordlengths has a
significant impact on the traditional problems of high-level
synthesis: scheduling, resource binding, and module selec-

tion. This arises from two factors. Firstly, each computa-
tional unit of a specific type, for example ‘multiplier’, can-
not be assumed to have equal cost in a multiple precision
system since area and power consumption scale with op-
erator wordlength [4]. Secondly, the choice of wordlength
for an operation can impact on the latency of that opera-
tion. Larger bit-parallel multipliers may have longer la-
tency, or need to be pipelined to a greater extent than smaller
bit-parallel multipliers in order to maintain the same clock
frequency. The existence of multiple wordlengths there-
fore complicates the resource binding problem, and also in-
creases the interaction between binding and scheduling of
operations.

One approach to high-level synthesis for multiple-
wordlength systems is to modify the resource-binding stage,
by altering a standard clique partitioning algorithm on the
compatibility graph [14] to select cliques by sorting nodes
in descending order of wordlength. Another approach to
resource-binding for multiple-wordlength systems has been
to perform a constructive ‘wordlength-blind’ colouring on
the conflict graph (the complement of the compatibility
graph) and then refine this colouring using pairwise opera-
tions based on wordlength information [4]. Neither of these
approaches consider adequately the effect of wordlength on
operation latency, and therefore on scheduling. This prob-
lem was first examined in [5], where a formal description
the problem was proposed, and an ILP model was derived.
However it was also noted in [5] that the size of this ILP
grows rapidly with the number of operations. This is the
motivation for the polynomial-complexityheuristic solution
proposed in the present paper. It should also be noted that
the scheduling, resource binding and wordlength selection
problem can be recast as a scheduling, resource binding and
module selection problem [7], where different module types
correspond to different wordlengths. However this is a very
general expression of the problem, where the number of dif-
ferent operation types can be as large as the number of dif-
ferent operations. Also the common assumption [13] that
in a module library area inversely scales with latency, is
not true in our case, as latency and area both scale with
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Figure 1. (a) A multiple wordlength sequenc-
ing graph and (b) its scheduling, resource
binding, and wordlength selection

wordlength.
A motivational example sequencing graph [7], repre-

senting data-dependencies, together with an area-optimal
scheduling, binding and wordlength selection is illustrated
in Fig. 1. The latency of all adders is two cycles, whereas
the latency of an n�m-bit multiplier is given by the em-
pirical formula d(n+m)=8e derived for implementation at
a fixed clock-rate on the SONIC reconfigurable computing
platform [12]. Note that in Fig. 1(b) resources can execute
operations up to the wordlength of the resource, even if im-
plementation in a larger resource leads to a longer latency.

Section 2 of this paper introduces the proposed heuris-
tic, section 3 illustrates solution quality and execution time
results compared to alternative approaches in the literature,
and section 4 concludes this paper. A table of the notation
introduced and used in this paper is shown in Table 1.

2 Proposed heuristic

The proposed heuristic operates by exploiting the re-
lationship between wordlength information and latency of
each operation. The latency of each operation is refined
downwards as the algorithm progresses, until the overall
user-specified iteration latency constraint is satisfied. A
pseudo-code overview of the heuristic is shown below. The
intuition is that using the largest possible range of laten-
cies at the start allows the greatest possible resource shar-
ing. Latency information is only refined if the result vio-
lates the overall latency constraint. Upper-bounds are used
in scheduling as the resulting bindings will then never vi-

Table 1. Selected mathematical notation
O set of operations
R set of resource wordlengths
C compatibility (directed) edges
H wordlength (undirected) edges
P(O;S) sequencing graph (data-dependencies)
G(V;E) wordlength compatibility graph
G0(O;C) compatibility subgraph
Y set of operation types
Ny resource constraint on type y 2 Y operations
`(o) the latency of the resource to which

operation o 2 O is bound
Lo the upper-bound on the latency of operation

o 2 O (from G(V;E))
λ user-specified overall latency constraint

olate the schedule. The resource set R, introduced in sec-
tion 2.1, is calculated from the set of operations O.

Algorithm DPAlloc
Input: Sequencing graph P(O;S), constraint λ
Output: Scheduling, binding, and wordlength information

for each operation

while( no feasible solution ) do
calculate resource set covering each operation;
find upper-bounds Lo on latency of each

operation o 2 O;
schedule P(O;S) using latency upper-bounds Lo;
perform binding and wordlength selection;
if( solution violates latency constraint )

refine wordlength information;
else

record this as a feasible solution;
end while;

2.1 Wordlength compatibility graph

The model underlying our heuristic algorithm is the
wordlength compatibility graph G(V;E). This graph rep-
resents information on wordlength sizes, resource types,
and schedule-derived information on time-compatibility be-
tween operation pairs.

The vertex set can be partitioned into two subsets V =
O[R, where O represents the set of operations, and R rep-
resents the set of resource-wordlength types, for example
‘16� 16-bit multiplier’, ‘12-bit adder’. An algorithm for
extracting all possible resource types from the set of opera-
tions is given in [5].

The edge set can also be partitioned into two subsets
E = C [H. H is a set of undirected edges fo;rg, where
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o 2 O and r 2 R, indicating that operation o can be per-
formed by resource-wordlength type r. Initially, this simply
corresponds to the resource being of sufficient wordlength
to cover the operation and of the same type, i.e. ‘multi-
plier’, or ‘adder’. Later, the edges reflect the refinement of
wordlength information in Algorithm DPAlloc. C is a set
of directed edges (o1;o2), where o1;o2 2 O, indicating that
o1 is scheduled to complete execution before o2 is sched-
uled to start execution. This is a transitive orientation on
the subgraph G0(O;C) [11], which will become important
in section 2.3. A simple wordlength compatibility graph is
shown in Fig. 2(c), corresponding to the simple sequencing
graph and schedule shown in Figs. 2(a,b).

2.2 Scheduling with incomplete wordlengths

Standard resource-constrained scheduling typically uses
specified upper limits on the number of resources of each re-
source type. In list scheduling [7], this constraint is checked
at each control step before deciding whether to schedule a
new operation. Our scheduling algorithm is introduced by
comparison with this standard approach. Let eo;t be defined
as in (Eqn. 1). Then given a set of control steps T , a set of
operations Oy � O of type y 2 Y , and the maximum num-
ber of resources Ny of type y, we can formally express this
standard constraint in (Eqn. 2).

eo;t =

�
1; if operation o executes during control step t
0; otherwise

(1)

max
t2T

∑
o2Oy

eo;t � Ny (2)

In the case of multiple wordlength systems, this con-
straint is too relaxed to guarantee that no more than Ny

resources of type y will be used. As an example, con-
sider an iteration of the wordlength refinement process on
Fig. 2, where due to latency constraints the undirected edge
fo1; ‘20�18 mult’g has been deleted. Under these circum-
stances, we cannot schedule the graph using one multiplier
even though (Eqn. 2) can be satisfied for Nmult = 1. We pro-
pose the following alternative resource constraint calcula-
tion, which utilizes the incomplete wordlength information,
inherent in any wordlength compatibility graph where there
is at least one o 2 O with more than one edge fo;rg 2 H.

Before any scheduling, a minimum cardinality subset
S � R is found such that 8o 2 O : 9s 2 S : fo;sg 2 H. We
refer to the set S as the scheduling set. Define O(r) =
fo 2 Oj9fo;rg 2 Hg and similarly S(o) = fs 2 Sj9fo;sg 2
Hg. Then our proposed scheduling constraint is given in
(Eqn. 3).

∑
r2S

max
t2T

(
∑

o2O(r)

eo;t

jS(o)j

)
� Ny (3)

Note that (Eqn. 3) is at least as strict as (Eqn. 2), which
is a degenerate case of the former under the condition jSj=
jY j, the smallest possible scheduling set. This corresponds
to the case when each operation of type y 2 Y could be per-
formed by a single resource of type y with large enough
wordlength. Under these conditions, (Eqn. 3) gives an ex-
act bound on the number of resources. Similarly if there is
a single edge in H from each operation, representing full
wordlength information, then 8o 2 O : jS(o)j = 1, and the
bound is exact.

As the possibilities for the wordlengths are refined dur-
ing algorithm execution, so the ‘balance’ on the left-hand-
side of (Eqn. 3) shifts from the ‘max’ operator to the outer
‘∑’ operator, to reflect this tighter constraint. Operations
belonging to more than one scheduling-set member, i.e.
those o 2 O with jS(o)j > 1 are accounted for by ‘sharing’
their usage equally between each of the elements of S(o),
hence the division in (Eqn. 3).

2.3 Combined binding and wordlength selection

Once a start control step has been assigned for each oper-
ation, resource binding and complete wordlength selection
can go ahead. Any derived resource binding will not violate
scheduling latency constraints, since the upper bounds were
used in performing the scheduling.

The problem is therefore to choose a set of resources,
and a mapping from operations to resources that covers all
operations o 2 O while incurring minimum cost. We ap-
proach this problem by partitioning the subgraph G 0(O;C)
into a set of cliques K, where each clique k 2 K satisfies the
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constraint given in (Eqn. 4). This constraint captures the in-
formation that there must be a single resource-wordlength
capable of performing all operations in the clique. The cost
of this resource binding binding is given in (Eqn. 5).

9r 2 R : 8o 2 k : 9fo;rg 2 H (4)

∑
k2K

min
r2R:8o2k:9fo;rg2H

cost(r) (5)

This is a special case of the well known set-covering or
weighted unate covering problem [10], defined by (Eqn. 6).
In our case there is one row of A= fakog for each o2O, and
one column for each possible clique k 2 K+, K+ = fO1 �

Oj9r 2 R : 8o 2 O1 : 9fo;rg 2 Hg. An entry ako = 1, o 2
k, and the cost ck defined is as the corresponding summation
term in (Eqn. 5).

minimize cT x
subject to Ax� 1

(6)

We therefore extend a known heuristic for solving the
unate covering problem in polynomial time [1]. We do
not explicitly construct the matrix A, since the number of
columns can be exponential in jOj. Instead, we use an im-
plicit approach, polynomial in jOj shown below.

Algorithm BindSelect
Input: A scheduled wordlength compatibility graph
Output: A set of cliques fkig with their associated

resource types ri

i 1;
while( still uncovered nodes ) do

Find a maximum clique pr of uncovered nodes
satisfying (Eqn. 4) for each r 2 R;

Choose r 2 R such that jprj=cost(r) is maximum;
Set ki := pr;
Determine whether ki can be ‘grown’ to cover ki0 ,

i0 = 1; :::; i�1
If so, delete ki0 from the set of cliques;

i i+1;
end while;

At each iteration, the choice of clique is restricted to only
those that are of maximum size with respect to (Eqn. 4).
These can be found in linear time [11], since the subgraph
of G0(O;C) induced by the vertex set O(r) � O is a tran-
sitively oriented graph for all r 2 R. Since all cliques of
a given r 2 R are of equal cost, only those with maximum
size are candidates for selection in Algorithm Bindselect.
The other modification to the heuristic presented in [1] is a
compensation for the greedy nature of the selections. After
each selection is made, it is checked whether the selected
clique could be grown to cover any other cliques previously

selected, in which case those superfluous cliques are now
deleted.

2.4 Refining wordlength information

If the scheduling described in section 2.2 results viola-
tion of the user-specified latency constraints, then the next
phase of Algorithm DPAlloc is to refine the wordlength in-
formation in order to meet the violated constraint. The first
step of this process is to find a subset of nodes for which
reducing their latency may lead to a reduction of the overall
latency. This subset is determined by both scheduling and
binding information, hence we refer to this subset as the
bound critical path, Qb to distinguish it from the standard
critical path which is determined completely by sequencing
precedence [7].

In order to determine the bound critical path, we aug-
ment the edge set S of the sequencing graph P(O;S) with
an additional set of edges Sb, as defined in (Eqn. 7), where
start(o) represents the scheduled start step of operation
o 2 O and `(o) represents the latency of the resource to
which o is bound. The bound critical path is then defined to
be the subset Qb of operations with equal ALAP and ASAP
times with respect to the augmented sequencing graph.

Sb = f f(o1;o2)g : start(o1)+ `(o1) = start(o2) and
o1 and o2 are bound to the same resource g

(7)
Once the bound critical path Qb is established, we find

the candidate subset of the bound critical path W = fo 2
Qbjstart(o) + Lo � λg which finishes before the iteration
constraint λ. At least one operation in this set must have
its upper-bound latency reduced in order to schedule within
the iteration period constraint. Reducing the latency of op-
erations that are not members of this set but are members of
Qb may be necessary, but will not be sufficient to schedule
the entire sequencing graph within the time required.

If there is more than one operation within this candidate
set W , the operation o is chosen which would, on reduction
of its latency upper-bound, lose the smallest proportion of
edges in the set ffo1;rg 2 Hj9fo;rg 2 Hg. Ties are broken
by favouring those operations currently bound to a resource
with latency less than the operation’s upper-bound latency
Lo.

Once an operation o is selected for refinement, all edges
ffo;rg 2 Hj`(r) = Log are deleted from the edge set H,
before rescheduling.

3 Results

To our knowledge, this is the first heuristic in the lit-
erature to address the combined scheduling, binding, and
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Figure 3. Variation of area penalty for [4] (over
our heuristic) with number of operations and
latency constraint

wordlength selection problem. In this section, we compare
the quality of results obtained and execution times to the
optimum solution achieved by [5]. We also compare solu-
tion quality to the optimal branch-and-bound approach for
resource binding and wordlength selection presented in [4].
This is a two-stage scheduling/binding approach based on
sharing only resources that can be grouped together without
increasing the latency of the operation.

For comparison of solution quality, we have generated
200 random sequencing graphs for each problem size jOj
between 1 and 24 using an adaptation of the TGFF al-
gorithm [8]. The minimum possible latency λmin, was
found for each graph, from which various latency con-
straints were created, corresponding to a 0% to 30% re-
laxation of λmin. A datapath was then generated for each
of these graph/constraint combinations. The increase in
implementation area of using the two-stage approach [4]
solution over the heuristic presented in the present paper
was found for each graph/constraint combination, assum-
ing the area model presented in [5]. These data are plot-
ted in Fig. 3. Each point represents the mean of the two
hundred representative designs. These results illustrate that
for designs with even a small ‘slack’ in terms of latency
constraints, significant improvements can be made by per-
forming the scheduling, binding, and wordlength selection
in an intertwined manner. The area improvements come
from increased resource sharing due to implementing small
wordlength operations in larger wordlength resources with
longer latency. Even for relatively small graphs, area im-
provements of tens of percent are possible.

Fig. 4 illustrates the increase in implementation area of
using the heuristic presented in this paper over the optimum
combined problem [5]. This is shown only for small prob-
lem size and minimum latency constraint λ = λmin, as the
ILP solution execution time scales rapidly as the latency
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our heuristic (over optimum [5]) with number
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Table 2. Variation of execution time for 200
graphs with λ=λmin for heuristic and ILP solu-
tion

λ=λmin heuristic (secs) ILP (mins:secs)
1.00 3.02 2:07.09
1.05 3.51 4:05.21
1.10 3.73 15:55.56
1.15 3.52 >30:00.00

constraint is relaxed (see Table 2 and below).

The variation of execution time with problem size
for 200 graphs using the ILP model (executing on ‘LP
Solve’ [15]) and the heuristic algorithm is shown in Fig. 5,
illustrating the polynomial complexity of the heuristic
against the exponential complexity of the ILP. All execution
times are measured on a Pentium III 450 running Linux.
Over the range of 1 to 10 operations, the relative increase
in area ranges from 0% to 16% whereas the ILP solution
takes between one and two orders of magnitude greater
time to execute. An important point not brought out by
these results is the scaling of execution time with overall la-
tency constraint. The number of variables in the ILP model
scales with the latency constraint, making the execution
time highly dependent on this parameter [5]. This is illus-
trated in Table 2 for 200 9-operation sequencing graphs. For
the heuristic presented in this paper, execution time does not
scale with the latency constraint. Thus the one to two orders
of magnitude illustrated in Fig. 5 are under conditions most
favourable to the ILP-based solution.
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4 Conclusion

A heuristic has been presented for combined schedul-
ing, resource binding and wordlength selection of multiple
wordlength systems. This heuristic addresses the current
lack of algorithms for high-level synthesis of operations
with multiple precisions. We have demonstrated algorithms
for scheduling using incomplete wordlength information,
combined resource binding and wordlength selection, and
refining wordlength information. These algorithms provide
a powerful framework for datapath allocation, resulting in
significant area savings over more traditional approaches.

In this work, the wordlength of each operation has been
specified a-priori, either by hand or from output-error spec-
ification by a further design automation tool such as Syn-
optix [3, 6]. Future work should include investigation
of the interaction between high-level synthesis of multiple
wordlength systems and the derivation of wordlength infor-
mation from output-error specifications.

Our current work on multiple-wordlength systems in-
volves the extraction of wordlength information automati-
cally from certain classes of nonlinear system.
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