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Abstract
We present a new hardware-software co-simulation

framework enablingfastprototypingin system-on-chip de-
signs. On the software side, the machine description
language LISA allows the generation of bit-true models
of programmablearchitectures on various levels – from
instruction-setto phaseaccuracy. Basedon thesemodels,
a completetool-suiteconsistingof fastcompiledprocessor
simulator, assembler, linker, HLL-compileras well as co-
simulationinterfacecan be generated automatically. On
the hardware side, the SystemCsimulationclasslibrary is
employedandenhancedwith our genericco-simulationin-
terfacethat enablesthecouplingof hardwareandsoftware
modelsspecifiedat various levelsof abstraction. Besides
that, a hardware modelingstrategy usingabstract macro-
cyclebasedC++ processesto increasehardware modeling
efficiencyandsimulationspeedis presented.

1 Introduction

Today, typical singlechip electronicsystemimplemen-
tations include a mixture of microcontrollers,digital sig-
nalprocessors(DSPs)aswell assharedmemory, dedicated
logic (ASICs)andinterconnectcomponents.Drivenby the
ever increasinghardwareandsoftwaredesigncomplexity,
componentsfrom variousdesignteamsandthird parties(in-
tellectualpropertyblocks)areemployed.Dueto thehetero-
geneityof thesecomponentsand the drasticallyincreased
numberof gatesperchip, verificationof thecompletesys-
temhasbecomethecritical bottleneckin thedesignprocess
[14]. Hardware-softwareco-simulationintegrateshardware
and software designtechniqueswhich are typically using
variouslanguages,formalismsand tools into a single de-
sign methodology. Using a singleframework for this task
acceleratesthedesignprocess,enablinghardware-software
trade-offs to bemadedynamicallyasthedesignprogresses,
and easesverification significantly. For verification and
evaluationof hardware-softwaretrade-offs of thecomplete
system,large test-vectorsetsareneeded.Consideringthat
theamountof test-vectorsneededfor verificationrisesby a

factorof 100every six years[2], which is tentimesthein-
creaseof thenumberof gatesonachipasstatedby Moore’s
law, it becomesclear that simulationspeedof the overall
systemis crucialwhendesigninga complex system.

Figure 1. Vir tual prototype system

To increasetheproductivity andshortentimeto marketit
is importantto beableto verify aheterogeneoussystem-on-
chip(SOC)designatanearlystageof thedevelopmentpro-
cessto prevent expensive re-designs.Here,heterogeneity
is not only referringto hardwareandsoftwaremodelsbut
alsoto modelsspecifiedon eithersideon differentabstrac-
tion levelsthathaveto becoupled.For examplepartsof the
system‘shardwaretaken asintellectualproperty(IP) from
previous designsmight be specifiedon a low abstraction
level asregister-transferor gate-level VHDL/Verilog code,
whereasnew functionalityaddedto thesystemis specified
ona highabstractionlevel in theprogramminglanguageC.
Onthesoftwaresidethemodelaccuracy canalsovaryfrom
phaseaccuracy overinstruction-setaccuracy to functionally
correctC-codespecifyingthe behavior of the application
runningon the target architecture.So it is compulsoryto
have onesimulationenvironmentthat understandsthe se-
manticsof all modelsand settlesthe interfacesto enable
communicationamongthem.Couplingandverifying of the
differentpartsof thetargetsystemat any timeof thedesign
processis whatwe call building a virtual prototype(VP) of



thesystemin software(seefigure1).
The approachpresentedin this paperof using the ma-

chine description languageLISA [11] for the software
side anda C++ framework basedon the SystemCclassli-
brary [9] for high simulationspeedon the hardware side
andfor integratingdifferenthardware-softwaremodelsinto
onesimulationenvironmentfulfills theposedrequirements.
LISA allows the specificationof programmablearchitec-
turesonvariousabstractionlevelsandtheautomaticgenera-
tion of fastprocessorsimulators,assemblers,linkers,HLL-
compilersas well as co-simulationinterfaces. The enor-
mousspeedupachievedby employing thecompiledsimula-
tion technique[17] over the commonlyusedinterpretative
simulationtechniqueof morethantwo ordersof magnitude
even makesthe usageof phaseaccurateprocessormodels
permissible. This degree of model accuracy is required
when using architectureswith complex pipelineskeeping
upsimulationspeedon thesoftwareside.

On the hardware side the proposedmethodology is
basedon the SystemCsimulationlibrary that is extended
by the results of our GRACE++ project [12]. This in-
troducesabstractionfrom the hardware by using macro-
cycle basedfunctional C++ processesandacceleratessim-
ulationspeedsignificantly. In additionto thattheGRACE++

co-simulationinterfaceallows integrationof varioushard-
ware and software simulation environmentsinto one co-
simulationframework. Moreover, it is possibleto couple
processor, ASIC and FPGA prototypesvia the RAVEN-
board[8] to thesimulationenvironment.

2 Related Work
Several researchershave proposedmethodologiesfor

hardware-software co-verification and fast prototyping
of digital systems but primarily aiming at automated
hardware-softwarepartitioningandco-design.Simulation
speedof theoverall systemis not in theprimaryfocusthus
leadingto a significantbottleneckin theSOCdesign.

In [4] and [5] a systemlevel designenvironmentaim-
ing at system-on-chipdesignsincluding real-timeembed-
dedsoftwareis proposed.Here,softwarecanbe function-
ally testedin combinationwith hardwareandsuccessively
refinedfrom thesystemlevel modelto thesoftwaresource-
codeimplementation.

TheCOSMOSco-designenvironment[3], which is now
commerciallyavailablefrom AREXSYS [1] takesan SDL
systemspecificationto performautomateddesignspaceex-
ploration,partitioninginto hardwareandsoftwarepartsand
codegeneration.Theapproachof CoWare[16] usesC/C++as
the baselanguagefor the systemspecificationandallows
besidessynthesisand interfacegenerationthe mappingof
the softwareonto variousoff-the-shelftarget architectures
to explore differenthardware/softwarecombinations.The
COSYMAsystem[10] specifiesthe systemin the C
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lan-

guagewhich is similar to C andaimsprimarily at theparti-
tioningof thesystemfunctionalityin hardwareandsoftware
parts.

Moreover, co-simulation/verification tools are offered
commerciallyby companiessuchasMentor Graphics[7]
andSYNOPSYS[15] which coupleVHDL/Verilog simu-
latorswith softwaresimulatorsvia well definedinterfaces.
All approacheshavein commonthattheinstructionsetsim-
ulators integratedinto the systemenvironmentsare com-
mercialinterpretivesimulatorsandthustooslow for aneffi-
cientprocessof verificationandperformancemeasurement.
Onthehardwareside,theC++ modelsarebasedonclockcy-
cleswhich ruinsmodelingefficiency andsimulationspeed
in earlydesignstages.

3 LISA Language and Tools
ThelanguageLISA is aimingat theformalizeddescrip-

tion of programmablearchitectures,their peripheralsand
interfaces.It wasdevelopedfor cycle/phase-accuratesim-
ulationpurposesof a wide rangeof modernprogrammable
architectures(DSPsandmicrocontrollers).

The developmentof LISA was motivated by the fact
that the taskof building a customsimulatorfor a new ar-
chitectureis extremely tediousand error-prone. It is a
very lengthy processof matchingthe simulatorto an ab-
stractmodelof theprocessorarchitecture.Theseeffortscan
be significantly reducedby using a retargetablesimulator
which is generatedfrom machinedescriptions.At thesame
time,simulationspeedis critical andthusimportantin sim-
ulatordesign.Theprincipleof compiledsimulation[17] is
to take advantageof a priori knowledgeandmove frequent
operationsfrom simulationrun-timeto compile-timewith
thegoalof providing thehighestpossiblesimulationspeed.
In contrastto interpretivesimulators,thisapproachrequires
atransformationstepto beperformedbeforesimulationcan
berun.

3.1 Model requirements
Indeed,dependingon the complexity of the employed

architecture,either instruction-setor cycle/phaseaccurate
modelsare neededto enableco-simulationwith the sur-
roundinghardware.For relatively simplearchitectureshav-
ing either very rudimentaryor no pipelinesat all, an in-
structionset model of the architectureis sufficient. This
model is thencoupledvia a bus interfacemodel(BIM) to
thehardwareenvironment.TheBIM therebyinterpretsex-
ternaleventsandgeneratescycle/phaseaccuratesimulation
tracesat thecomponent’spins.For morecomplex architec-
tures, though,employing heavy pipelining and interlock-
ing mechanismsasrecentlyseenin both the DSPandmi-
crocontrollerarea, this methodologyis no more applica-
ble [6]. Here,cycle andphaseaccuratesimulatorsfor co-
simulationpurposesare neededto copewith the problem
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of instructionsbeing split into smallerpiecesand the as-
sociatedinteractionsbetweentheprocessorandothercom-
ponentsacrossmultiple cycles. Moreover, phaseaccurate
modelsfor any architectureon the softwaresideenableto
keepco-simulationinterfacessimple,sincereadsandwrites
aremadedirectly on processorresources(busesandpins).
ThusBIMs becomeredundant(seefigure2).

Figure 2. BIM comple xity vs. speed

Thesimulationslowdown dueto theincreasedmodelac-
curacy canbe completelycompensatedby employing fast
compiledprocessorsimulatorsgeneratedfrom a LISA de-
scription of the target architecture. Typical speedupsof
compiledprocessorsimulatorsversusinterpretive simula-
torsrangein theareaof two ordersof magnitude.

4 The SystemC platform
The SystemCclasslibrary enablesthe building of syn-

thesizableC++ hardware models on the behavioral- and
register-transfer-level. This sectionproposesa methodol-
ogy to employ SystemCfrom thebeginningof thespecifi-
cationphasein orderto performhighlevel systemmodeling
andsuccessive refinementto synthesizablemodelswithin
onesingleframework. The objectiveswe pursuewith this
methodologyaretwofold: at first to improvemodelingeffi-
ciency by exploiting theobjectorientedfeaturesof C++ for
abstracthardwaremodelingandsuccessive refinementand
at secondto increasesimulationspeedto copewith theris-
ing numberof test-vectorsneededfor systemverification
andperformanceevaluation.For couplingmodelsspecified
at variousabstractionlevels of both the hardwareand the
softwareside,weenhancedtheSystemCsimulationlibrary
with a genericsimulationinterfacewhich enablesthe inte-
grationof externalsimulators.

4.1 Hardware Simulation with SystemC
The SystemCclasslibrary providesa synthesizableC++

subsetin order to establisha unitary implementationlan-
guagefor bothhardwareandsoftwareparts.Thereforethe
SystemClibrary is furnishedwith asetof classesto express
thebehavior of hardwareblocksby meansof C++ processes
andcommunicationhappensby exchangingdatavia signal
routes. Of courseany synthesizableSystemCdescription

hasto copewith the demandsof the subsequentarchitec-
tureandlogic synthesistools,hencethepropagatedmodel-
ing stylecorrespondsto thebehavioral- or register-transfer-
level of purehardwaredescriptionlanguages(HDLs) like
VHDL or Verilog . However by just applying HDL se-
manticsto the C++ syntax,the methodicalgapbetweenal-
gorithmic systemspecificationandhardware implementa-
tion is not resolved,neitheris simulationspeedperceptibly
improved.

Our methodologytargetsto fill the gap betweenhard-
warespecificationandimplementation.Therebyhardware
is first modeledat a higher level of abstractionandwithin
theSystemCframework successively refinedto thesynthe-
sizablesubset.In our approachabstractionappliesto struc-
ture,dataandtime. Thesystemspecificationis first struc-
turedinto coursegrain functionalblocksthatexchangeab-
stractdatatypes.Thisspecificationis subsequentlydivided
into subcomponentsandtheabstractdatatypesarerefined
towardstheirbit-level representationmanually.

Key conceptfor raising the abstractionlevel is the in-
troductionof a hierarchicaltime scale. Of coursesystem
performancevalidation needsa time basefor latency an-
notationandthroughputmeasurement,but thehigh resolu-
tion to hardwareclock cycles is a significantdrawbackin
modelingefficiency and simulationspeed. Indeed,many
applicationsin theareaof highspeednetworkingandwire-
lesscommunicationare packet basedwith a fixed length
of datapackets(e.g. ATM cells,SDH frames,GSM pack-
ets,UMTS slots). On a high level of abstractiononly the
statechangesatpacketarrival timesneedto bemodeledand
the identificationof a macro-cycle is straightforward. The
introductionof a logical macro-cycle enablesperformance
profiling by usinglargetest-vectorsetsandhidessuperflu-
oustiming details.

Figure 3. Co-verification of C++ vs. imple-
mentation model

The choiceof an appropriatemacro-cycle dependson
theconsideredapplication.In typical SOCdesignsseveral
programmablecoresandperipheralhardwarecomponents
communicatevia oneor more asynchronousbusesat dif-
ferentdatarates. Herethe designercantrade-off between
modelingaccuracy on the onehandandsimulationspeed
andmodelingefficiency on theotherhandto determinethe
idealtimedivision into macro-cycles.

Within our design methodologysystem specification
startswith an untimed description,where all operations
are performedwithin one macro-cycle. Accuracy of sys-
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temperformancemeasurementis thensubsequentlyrefined
by back-annotatedlatency informationextractedfrom later
synthesisresults.Thesynthesizableimplementationmodel
canbe verified at any time againstthe executablemacro-
cycle basedmodelasdepictedin figure3 usingC++ stimuli
derived from the systemcontext andthe abstractioninter-
facedescribedin thefollowing subsection.

4.2 Virtual Prototyping of the System
For integration of various hardware-software models

jointly with themacro-cycle basedC++ processesanadapt-
ableco-simulationinterfaceis employed. CouplingLISA
software simulators, independentfrom their underlying
modelaccuracy (i.e. phase,cycle or instructionaccuracy),
to VHDL/Verilog simulatorsis straightforward,sincethey
bothemploy a similar interfacethat readsandwriteshard-
ware resources.Coupling modelswith different underly-
ing time scalesthoughneedssomeeffort. An abstraction
interfacefulfills the task to adjustdifferent time anddata
abstractionlevelsof SystemC,VHDL/Verilogandsoftware
simulationenvironments.

Figure 4. Abstraction interface

To achieve a flexible and genericCo-simulationinter-
facewe incorporateda two-stepapproachas depictedin
figure4. Theabstractdatatypesof theC++environmentare
first mappedto a binary representationby the bitmapping
layer. Theresultingbit-streamsaretransferredto theproto-
col layer, cut into slicesaccordingto therespectivedatabus
width andforwardedinto the externalsimulator. The pro-
tocol layer addsall the requiredcontrol signals(e.g. data-
valid, sync,enable)to performthe specifiedbus protocol.
Changesin theinterfacespecificationcanbeeasilyapplied
to theC++protocolclasses.

This approachprovides greatflexibility sincebit-level
communicationcanbe easilyestablishedon the onehand
to refinedsynthesizableSystemCmodelsandon the other
handto any externalsimulatorprovidingaC languageinter-
face:e.g. towardsVHDL/Verilog hardwaresimulatorsvia
the foreign languageinterface(FLI) or towardsthe com-
piledsimulatorsgeneratedfrom LISA processormodelsvia
theco-simulationinterface(API).

5 A case study
In a casestudy we successfullyapplied the proposed

methodologyto the port-processorof an ATM switch de-
sign. The port-processoridentifies incoming ATM cells,
performslocal cell schedulingandcell flow-controlby run-
ning thecontroldynamictransferprotocol(CDT)[13]. The
functionality of the port-processorcan be divided into a
high speedcell processingpart realizedin dedicatedhard-
wareanda low speedpart for signaling,configurationand
maintenanceimplementedin softwareonanARM 7 micro-
controller.

Firstly, we realizeda phaseaccuratemodelof theARM
71 with LISA. Dueto thehighmodelingefficiency of LISA
thedescriptionandverificationof theARM 7 took lessthen
four weeks.It comprisesapprox.1500linesof codeinclud-
ing commentsandemptylines.Basedon thatthecomplete
LISA tool-suitewas generatedautomatically. The LISA
simulatorof theARM 7 runsat a speedof 4.5megacycles
perseconds(seetable1).

Table 1. ATM por t-pr ocessor sim ulation
Model Speed[kCycles/sec]

VHDL (VSScompiled) 0,27
phaseaccurate

SystemC 98,5
marco-cyclebased

LISA simulator(ARM 7) 4500
phaseaccurate

Virtual prototype(system) 52,5
SystemC+ LISA

On the hardwareside,the functionality waspartitioned
into several communicatingblocks that were at first all
modeledas abstractSystemCprocesses. The underly-
ing macro-cycle was straightforward chosento ATM cell
boundaries.TheabstractC++ modelswerethensuccessively
refinedto VHDL models,sincesynthesistoolsfor SystemC
were not availableat that time. Thesemodelswere inte-
gratedinto our simulationenvironmentand co-simulated
with the restof the systemto ensuretheir correctness(see
figure 5). By this approach,37 implementationerrorson
the hardwaresideand12 errorsin the embeddedsoftware
codeweredetectedwithin 3 weeksuntil the virtual proto-
typepassedall tests.Theexternalstimuli usedfor verifica-
tion (arriving ATM cellsandconfiguration)werespecified
in C++ eliminatingthetediousanderror-pronetaskof writ-
ing VHDL/Verilog test-benches.

By integrating the LISA simulatorof the ARM 7 into
theSystemCsimulation,functionalverificationandperfor-
manceassessmentof thecompleteport-processorwaspos-

1The authorswould like to thankTim Hopes,Ian Phillips andMark
Burtonof ARM Ltd. for their organizationalandtechnicalsupportin the
project.
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Figure 5. Verification of a por t-pr ocessor

sible at an early stageof the designprocess. Due to the
high simulationspeedof the heterogeneoussystem,large
test-vectorsetscouldbeprocessedresultingin a high state
coveragein verification.Simulatingthecompletehardware
asabstractC++ processesleadto aspeedupof 365compared
to simulationof event-drivencompiledVHDL modelswith
VSS(thehardwarepartscomprisedapprox.50k logic gates
plus0.5MBit memory).All resultswereobtainedona 300
MHz SunUltra 10 with 2 GBytesof RAM.

The proposedmethodologyof using LISA processor
simulatorsfor thesoftwaresideandmacro-cycle basedre-
active C++ modelsfor thehardwaresideleadsto simulation
speedupsof morethantwo ordersof magnitudecompared
to the commonlyusedverificationtechniques,interpretive
softwaresimulatorsandevent-drivenhardwaresimulators.

6 Conclusion and Future Work
In this paperwe presenteda new methodologyfor early

hardware-softwareco-verificationby fastprototypingcop-
ing with the enormousdesigncomplexity. The machine
descriptionlanguageLISA allows thebit-truespecification
of programmablearchitecturesonvariousabstractionlevels
andthe automaticgenerationof fastprocessorsimulators.
A C++ simulationframework basedon theSystemCclassli-
brary integratesvarioushardware/softwaremodelsanden-
hancessimulationspeedby employing functional macro-
cyclebasedC++ processeson thehardwareside.

In anATM switchdesignwe successfullyemployedthe
introducedmethodology. Therebywe modeledthe hard-
waresideof theport-processorwith SystemCprocessesby
abstractingthetime to thegranularityof ATM cells.Onthe
softwareside, the ARM 7 microcontrollerwasemployed.
The programmablearchitecturewas describedwith LISA
and a LISA simulatorwas generated.Due to early veri-
fication of the completesystemthe total systemdevelop-
ment time went down by a factor of four comparedto a
similar designrealizedbeforeusingtraditionalverification
techniques.

Our future work will focus on applying the proposed
techniqueto furtherSOCdesignsaswell asenablinghard-
waresynthesisfrom LISA architecturedescriptions,which

is mainlytargetingatthegenerationof thecontrol-path.Be-
sides,wewill investigatetheautomaticderivationof stimuli
for bothhardwareandsoftwarepartsfrom anSDL descrip-
tion to improve the coverageof our verificationmethodol-
ogy.
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