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Abstract

In this paper, we propose a method of mixed-level cosim-
ulation that enables gradual refinement of SoC communi-
cation from protocol-neutral communication to protocol-
fixed communication. For fine granularity in refinement,
the method enables the designer to performchannel refine-
ment andmodule refinement. Thus, the designer can per-
form more extensive design space exploration in commu-
nication refinement. We show the effectiveness of the pro-
posed method in a case study of communication refinement
in an IS-95 CDMA cellular phone system design.

1 Introduction

One of benefits from the separation between behavior
and communication in SoC design [10][6][3] is the fact that
the designer can design the system in a modular way. The
module interfaces and communication channels can be re-
fined separately from the refinement of module behavior.
Together with recently introduced high abstraction levels
of communication (e.g. Functional Interface (FI) [6], Re-
mote Procedural Call (RPC), (Abstract) Channels [12][4],
and Virtual Component Interface (VCI) [6], etc.), the sepa-
ration enablesgradual communication refinement.

In gradual communication refinement, system commu-
nication can be refined from a high abstraction level (e.g.
FI or RPC) to a low level (e.g. VCI or cycle-accurate
models) separately from the system behavior [6]. For the
validation of each refinement step in gradual refinement,
mixed-abstraction-level cosimulation (in short,mixed-level
cosimulation) plays a key role. In this paper, we fo-
cus on mixed-level cosimulation in communication refine-
ment from protocol-neutral communication to protocol-
fixed communication.

Refining communication protocols is one of crucial tasks
in system design since they can have significant impact on

system runtime, power consumption and resource usage.
Related to the refinement, there is a huge design space with
candidate communication protocol types (FIFO, handshake,
etc) [4], protocol-specific parameters (FIFO size, blocking
or non-blocking read/write, etc) [2], and different imple-
mentation styles of module interface behavior [7][8]. Thus,
for extensive design space exploration, fine granularity is
very important in gradual communication refinement.

To achieve communication refinement, the two follow-
ing types of refinement are crucial.

� Module refinement

� Channel refinement

In module refinement, the designer can refine the module
interface and the communication channel, separately. One
case of module refinement is integrating, IP blocks that have
fixed module interfaces, i.e. fixed communication protocols
(we call such IP blocksprotocol-fixed IP blocks). There
is another case that a system testbench at a high abstrac-
tion level (i.e. without a specific communication protocol)
is connected with a communication channel having a fixed
protocol. Channel refinement can be performed incremen-
tally. Thus, the designer can focus on the communication
refinement of the sub-systems, and evaluate the partial com-
munication refinement before refining all the communica-
tion channels.

In this paper, we propose a mixed-level cosimulation
method that supports the two above-mentioned types of
granularity in communication refinement. This paper is or-
ganized as follows. We give a short overview of related
work in Section 2. As a preliminary, in Section 3, we ex-
plain communication refinement from protocol-neutral to
protocol-fixed communication. We propose a mixed-level
cosimulation method in Section 4. In Section 5, we present
a case study of applying the proposed method. In Section 6,
we give the conclusion.



2 Related Work

For the abstraction levels of communication, Virtual
Socket Interface Alliance (VSIA) presents Functional In-
terface (FI) and Virtual Component Interface (VCI) [6]. FI
provides a limited and well-defined set of transactions such
as read, write, sense, and emit to define a common interface
between behavior and communication. FI does not assume
any specific communication protocol. VCI provides a set of
logical signals with a flexible and extendable protocol at the
cycle accurate level. To integrate modules with VCI into a
specific bus protocol, a bus protocol specific wrapper should
be designed. In [5], based on a system design language,
SpecC, a methodology of communication refinement from
protocol-neutral (channel), protocol-fixed (virtual bus), to
cycle-accurate communication is presented.

The concept ofabstract channel is based on protocol-
fixed communication [4][12]. In [4], communication and
behavior are separated by the channel services provided
by protocol-fixed communication channels. In [12], FIFO
channels and their services can be simulated by a cycle-
based simulation engine. In [3][12], Remote procedure call
(RPC) is also introduced. It can be used as one of high level
communication protocols or as a primitive function to im-
plement a specific communication protocol.

In [9], several mixed-level cosimulation methods are in-
troduced. Among them, bus functional models (BFM’s)
are widely used in most cosimulation environments [11].
BFM transforms a functional memory access (e.g. reading
a variable named A or located at a specific address, for in-
stance, at0x1000 ) into cycle-accurate memory accesses
(e.g. cycle-accurate events on processor pins). For mixed-
level cosimulation between RPC and cycle-accurate level,
a bus cycle accurate shell (BCASH) is proposed in [12][3].
In [13], a case study of mixed-level cosimulation between
abstract channel and cycle-accurate model is presented.

In most of previous methods of communication refine-
ment, (1) validation of refined communication is done af-
ter the whole communication refinement from one level to
another level has been finished (e.g. after obtaining all
the cycle-accurate models of the communication part or
after fixing the communication protocols of all the com-
munication channels) [5][2] or (2) mixed-level cosimula-
tion is performed only between cycle-accurate communica-
tion level and a high abstraction level [3][12]. Compared
with previous mixed-level cosimulation methods, the pro-
posed method has a significant contribution in that (1) it
enables much finer incremental communication refinement
by supporting mixed-level cosimulation during module re-
finement and channel refinement and (2) it supports mixed-
level cosimulation between protocol-neutral and protocol-
fixed communication levels.

3 Preliminary: Refinement from Protocol-
Neutral to Protocol-Fixed Communication

For communication refinement, we use three abstrac-
tion levels of communication:message level(protocol-
neutral communication level, in short ML),driver level
(protocol-fixed communication level, in short DL), andreg-
ister transfer level (cycle-accurate level). Figure 1 exem-
plifies the three abstraction levels of communication ap-
plied to the communication refinement of an IS-95 CDMA
cellular phone system [14][16]. The system consists of
voice encoder/decoder modules and CDMA modem trans-
mitter/receiver (Tx/Rx) modules. In the figure, as the sys-
tem testbench, a user interface model (for speaker and mi-
crophone) and a base station simulation model are also
shown.

At each abstraction level, we represent the system with
a hierarchical network ofmodulesas shown in Figure 1. A
module consists ofbehavior andport(s). Modules are con-
nected with each other by connecting their ports viacom-
munication channels. The behavioral part of the module
calls port functions to communicate with other modules.
In the viewpoint of behavior, ports encapsulate communi-
cation details (i.e. communication protocols). In this paper,
we focus on communication refinement from ML to DL.

At ML, modules communicate with each other exchang-
ing messagesover ML channels. Note that the message
does not have any specific data type, i.e. it has a generic
data type. There is no specific communication protocol for
the channel. Thus, the channel provides two kinds ofchan-
nel access function(in short,channel function), sendand
receive for ML ports to exchange messages via the ML
channel. At DL, each channel has its own communication
protocol (e.g. FIFO, handshake, etc) and the parameters
(e.g. FIFO size) of the communication protocol are deter-
mined. The data transferred via the DL channel have fixed
data types (e.g.int , float , etc).

We definemodule interfaceas the ports set and the com-
munication behavior (in the behavioral part of module) re-
lated to the ports (by calling the port functions). Figure 2 (a)
shows an example of module interface at ML. In the figure,
the module has an ML port calledMP. In the behavioral
part of the module (Behavior()), a blank oval, where the
ML port function (MP.send(msg)) is called, corresponds to
the communication behavior in the behavioral part. In this
case, the module interface corresponds to the communica-
tion behavior in the behavioral part and the port,MP.

In communication refinement from ML to DL, the ML
channel and module can be refined, separately. We call the
two kinds of refinement,channel refinementandmodule
refinement, respectively.

In channel refinement, the ML channel can be split into
several DL channels (channel partitioning). A commu-
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Figure 1. Examples of abstraction levels of communication model.

Behavior( ) {
...
MP.send(msg);
…
}

Behavior( ) {
…
DP1.wr_hs(d1);

for(i=0; i<p_size;i++)
   DP2.b_wr_fifo(d2[i]);
…
}

DPort::b_wr_fifo(int data) {
     while(DCH.available()==false);
     DCH.write(data);
}

(a)

Module at message level

Module at driver level

Port function at driver level

(c) (d)

MPort::send(struct message msg) {
     MCH.send(msg);
}

Port function at message level

(b)

MP

DP2
INT

DP1
INT MPEXT

Figure 2. An example of module refinement.

nication protocol is assigned to each of DL channels and
its protocol parameters are fixed. By channel partitioning,
a single message can be transferred over several DL chan-
nels. The channel partitioning is up to the designer (prob-
ably from the trade-off between system performance and
resource usage with performance/cost models of channel
implementation [2]). In the case of integrating protocol-
fixed IP blocks, channel refinement may require the im-
plementation of a protocol converter(s) since the protocol-
fixed IP blocks connected with each other can have al-
ready different communication protocols. We call the proto-
col converter thecommunication controller. Figure 1 (b)

shows an example of communication controller assuming
that voice encoder/decoder and modem transmitter/receiver
are protocol-fixed IP blocks.

In module refinement, depending on the channel parti-
tioning or the interface of protocol-fixed IP blocks, an ML
port can be refined to several DL ports. Protocol-specific
functions (e.g. blocking write operation to a FIFO channel)
are assigned to each DL port. Figure 2 shows an example of
module refinement. Figure 2 (c) shows a result of module
refinement from an ML module interface in Figure 2 (a).
In this case, the ML port is refined to two DL ports and the
message (msg, in Figure 2 (a)) is split into two types of data,
d1 (a single data item ofint type) and d2 (a data array of
int type). We denote the DL communication behavior in
the behavioral part of module with shaded ovals as shown
in Figure 2 (c).

In Figure 2 (c), assume that only the module is refined
while the connected ML channel is not yet refined. In this
case, from the viewpoint of the connected ML channel, the
module should have an ML port for the channel to be con-
nected to the module. From the viewpoint of the DL mod-
ule interface, the module should have two DL ports. To
compromise two conflicting requirements, we introduce a
concept calledinternal and external ports. In Figure 2
(c), the dashed rectangle includes twointernal ports (in
this case, two DL ports,DPINT

1
andDPINT

2
) and oneex-

ternal port (one ML port,MPEXT). In this case, internal
ports provide the behavior of module with DL port func-
tions. The external port accesses the ML channel via ML



channel functions. For mixed-level cosimulation, we insert
a mixed-level cosimulation adapterbetween internal and
external ports (to be explained in Section 4).

Examples of an ML port function (MPort::send()) and a
DL port function (DPort::bwr fifo(), a blocking write func-
tion to the FIFO) are shown in Figure 2 (b) and (d). Com-
pared with the ML port function, the DL port function has
arguments of fixed data type (in this case,int type). Note
that the ML/DL port function accesses the ML/DL channel
(MCH/DCH) via ML/DL channel functions (in this case,
MCH.send() for ML and DCH.available() and DCH.write()
for DL). In Figure 2 (in Figure 1 also), we denote ML ports
(channels) with blank rectangles (thin arrows) and DL ports
(channels) with shaded rectangles (thick arrows).

4 Mixed-level Cosimulation between Mes-
sage Level and Driver Level

In this section, we explain mixed-level cosimulation. In
practice, to our knowledge, when writing the paper, since
there is no simulation environment that supports both ab-
straction levels of communication (ML and DL) simultane-
ously, a hybrid cosimulation environment that consists of
two different simulation environments is required. In our
case study in Section 5, we present our implementation with
SDL [15] (for ML) and SystemC [12] (for DL) simulation
environments.

In general, channel refinement has two cases: (1) the
module interface is refined first before the ML channel is
refined (e.g. integrating protocol-fixed IP blocks) or (2)
the channel is refined first before the module interface (e.g.
connecting a simulation testbench without a specific proto-
col to a DL channel).

4.1 Case of module refinement first

Figure 3 shows an example of module refinement and the
implementation of mixed-level cosimulation. An ML port
of module B is assumed to be refined into two DL ports
(DP1 andDP2) together with the related communication
behavior (two shaded ovals) while module A and an ML
channel (MCH) are still at ML. In the figure, the refined
DL ports (two shaded rectangles) are internal ports (in the
figure, Int. ports) and an external port (i.e. an ML port,
MP2) is used for the connection with the ML channel.

Figure 3 (b) shows the details of the mixed-level cosimu-
lation adapter between the external port and the two internal
ports. Between external and internal ports, as the adapter,
there are two blocks: one forchannel resolutionanddata
conversion(Ch. Res. & Data Conv., in short, CRDC) and
the other forDL channel interface(DL Ch. I/F). The split-
ting of ML channels/ports into several DL channels/ports
may be required in order to introduce explicit control re-
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Figure 3. Mixed-level cosimulation in the case
of module refinement.
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Figure 4. A case of channel refinement.

finement by DL protocols or splitting generic ML messages
into several DL fixed data types.

4.2 Case of channel refinement first

Figure 4 (a) shows an example where an ML channel is
refined to DL channels. In the figure, we assume that the
MCH in Figure 3 has been refined to two DL channels. The
example can also represent a case that only the ML channel
is refined but one (or both) of the module interfaces (con-
nected to the channel) has not been refined. Figure 4 (b)
shows the details of the mixed-level cosimulation adapter
between the internal port (ML port) and the external ports
(DL ports) of module A. In the figure, the internal port,
MP1 (that has not been refined) provides the behavioral
part of module A with ML port functions. Two external
ports access the two DL channels via DL channel functions
(e.g. chavailable, nbwrite, b read, etc, in the case of FIFO
channel).

Between internal and external ports, the CRDC block



Table 1. Characteristics of communication in
the communication refinement of IS-95 sys-
tem.

Message Level Driver Level

Ch. behavior infinite FIFO finite FIFO
Ch. functions send/receive full/empty/write/read
Port functions send/receive b rd fifo/b wr fifo

Data types generic fixed (short andint )

performs channel resolution and data conversion operations
as in the case of the module interface refinement shown in
Figure 3. In the case of channel refinement, a block called
DL communication behavior (DL ComBeh) is used to call
DL port functions of external ports (i.e. DL ports). The DL
ComBeh blocks are equivalent to the communication be-
havior of the behavioral part when the module interface is
refined.

5 A Case Study

For communication specification with two abstraction
levels, we used SDL [1] for ML and SystemC [12] (specif-
ically, channels provided by SystemC) for DL. Table 1
shows communication characteristics of two abstraction
levels in our case study. Note that the ML channel acts as
an infinite FIFO that providessendandreceivefunctions to
transfer messages of generic type. In our case study, as a
communication protocol at DL, we use finite FIFO’s.

In our case study, we applied the mixed-level cosimula-
tion method to the communication refinement of an IS-95
CDMA cellular phone system exemplified in Figure 1. The
system is re-drawn in Figure 5. For simplicity of explana-
tion, the base station model is not shown in the figure but
it is also simulated in our experiments. In the figure, each
channel is given a number that represents the number of data
transferred over the channel at every frame of voice data.1

Each ML channel carries a single message (denoted with a
pair of parentheses in the figure) at each frame. In the fig-
ure, on each ML channel, the number in the pair of paren-
theses represents the number and type (b:bool , i: int , s:
short ) of data contained in each message. In Figure 5 (c)
and (d), the refined DL channels (thick arrows) have fixed
data types,short or int .

We performed communication refinement from all ML
communications (Figure 5 (a)) to all DL communications
(Figure 5 (d)), i.e. channel partitioning, protocol selection,
fixing the protocol parameters, and module interface refine-
ment have been performed.

Figure 5 (b) shows a case of module interface refinement
where the interfaces of two modules, encoder and decoder

1In the IS-95 system, voice is encoded/decoded/transmitted/received on
a frame basis. One frame corresponds to 20 ms in reality.
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of IS-95 system.
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Figure 6. An example of mixed-level cosim-
ulation implementation: module refinement
case.

are refined to DL. Figure 5 (c) shows a case of channel re-
finement where the ML channel between encoder (decoder)
and CDMA modem Tx (Rx) is refined to two DL channels.
The two cases require mixed-level cosimulation between
ML and DL.

Channel refinement
In the two cases of Figure 5 (b) and (c), two modules,

encoder and decoder have two abstraction levels in their
ports since we perform channel-by-channel refinement. For
instance, in the case of the encoder, in Figure 5 (c), it has an
ML port for communication with the user interface model
and two DL ports for communication with module Tx. In
this case, the encoder module should be simulated in one of
the two simulation environments, SDL simulation environ-
ment [15] and SystemC simulation environment [12]. In
our implementation, we simulate the behavioral parts of the
two modules, encoder and decoder in SystemC simulation
environment and implement inter-process communication
(IPC) with the SDL simulation environment inside of ML
port functions.
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Figure 8. A snapshot of mixed-level cosimu-
lation of the IS-95 system.

Module refinement
Figure 6 shows the details of mixed-level cosimulation

adapter for the case of module interface refinement of the
decoder in Figure 5 (b). As shown in the figure, the ML
channel (MCH) from Rx, the external port of decoder mod-
ule, and the CRDC block are simulated in SDL simulation
environment. The internal ports and DCIF blocks are simu-
lated together with the decoder behavior in SystemC simu-
lation environment. The communication between SDL and
SystemC environments is executed via IPC using shared
memory on Unix. Figure 7 shows the details of mixed-
level cosimulation adapter for the case of channel refine-
ment from the example of Figure 6.

Figure 8 shows a snapshot of mixed-level cosimulation
of the IS-95 system. In the figure, schematics and codes
of SDL and SystemC representations are exemplified. The
voice input waveform is sent from the user interface model
to the encoder and the voice output waveform is received
by the user interface model after the voice input has made a
round-trip over encoder, Tx, base station, Rx, and decoder
as shown in Figure 1 (a).

6 Conclusion

We proposed a method of mixed-level cosimulation be-
tween protocol-neutral and protocol-fixed communication
levels. Since the proposed method enables mixed-level
cosimulation in both channel refinement and module refine-
ment, it provides the designer with fine granularity in refine-
ment. In our case study, we applied the proposed method to
the refinement of an IS-95 CDMA cellular phone system.
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