
Performance Improvement of Multi-Processor Systems Cosimulation based on SW Analysis

Jinyong Jungy Sungjoo Yooz Kiyoung Choiy

yDesign Automation Lab zSLS Group
Seoul National Univ., Korea TIMA/INPG, France

Abstract

In this paper, we propose a method for performance improvement
of multi-processor systems cosimulation by reducing synchroniza-
tion overhead between multiple simulators. To reduce the amount
of simulator synchronization, we predict synchronization time points
based on a static analysis of application software running on each
processor. In the experiments with real embedded systems, we ob-
tained up to orders of magnitude higher performance in cosimula-
tion runtimes.

1 Introduction

One of crucial problems that system designers currently face is val-
idating complex system software (SW) on a system-on-chip (SoC).
The difficulty comes from the fact that (1) the SW portion of com-
plex embedded systems begins to dominate system functionality
and resources and (2) multi-processor architectures are getting more
and more popular [1][2]. To validate the SW portion of an embed-
ded system, in current design practice, cycle-accurate cosimulation
with instruction set simulators (ISS’s) is widely adopted.

In cycle-accurate cosimulation of multi-processor embedded
systems, one of crucial problems is to reducesynchronization over-
head. It results from the fact that multiple ISS’s are involved in the
simulation and they should synchronize with each other to achieve
cycle accuracy. Especially wheninterrupt s are used for the pro-
cessor to communicate with other processors or other HW mod-
ules [3], which is popular in current multi-processor architectures,
the problem gets more severe. In such a case, each ISS should
exchange messages with other simulators at every instruction ex-
ecution to detect the occurrence of an interrupt sent to the pro-
cessor that the ISS is simulating. Such exchange of messages is
executed via time-consuming inter-process communication such as
Unix socket or shared memory [4]. Thus, the overhead of message
exchange can cause a significant degradation in the performance of
cycle-accurate cosimulation.

To reduce the synchronization overhead in cycle-accurate cosim-
ulation of multi-processor embedded systems, we propose a cosim-
ulation method based on the analysis of application SW. The pro-
posed method achieves the reduction from the prediction of the
time point when inter-process communication occurs thereby re-
ducing redundant message exchanges (that are required only to de-
tect the occurrence of interrupt) between simulators. The advantage
of the proposed method is improving the cosimulation performance
with negligent analysis overhead while preserving the simulation
accuracy. Since the proposed method is based on the analysis of
application SW, it is hard to be applied to HW simulators.

This paper is organized as follows. We review related work in
Section 2. We explain the synchronization overhead problem in de-

tail and give an overview of the proposed method in Section 3. We
propose a cosimulation method based on SW analysis in Section 4.
We present experimental results and conclusion in Section 5 and 6,
respectively.

2 Related Work

As a performance improvement method of cycle-accurate cosimu-
lation, Hines and Borriello present a concept calledselective focus
[5][6][7]. It enables the designer to trade off between performance
and accuracy by changing the abstraction levels of communication
models during cosimulation run. Liu et. al. present a method
that re-uses cycle-accurate simulation results (delay information)
of previous simulation runs [8]. For each run of cycle-accurate
simulation of SW program running on a processor, its timing delay
is stored in adelay cacheaccording to the execution path of the
simulated SW program. The stored delay information is re-used,
when the same execution path is to be simulated, and in that case,
functional simulation of the execution path is performed instead
of cycle-accurate simulation. Like the selective focus concept, the
method improves the simulation performance by sacrificing simu-
lation accuracy.

To improve the performance of cycle-accurate cosimulation while
preserving simulation accuracy, an effective concept calledmem-
ory image server is used in commercial cosimulation environ-
ments [9]. The basic idea of the concept is that the ISS accesses
the external memory model only when it accesses memory area
mapped to HW-SW communication. For accesses to the other mem-
ory area, the ISS accesses its internal memory model. By doing
that, the ISS can eliminate such external memory accesses as in-
struction fetching, accesses to local memory area, etc. However,
the memory image server concept cannot reduce the synchroniza-
tion overhead to detect the occurrence of interrupt. In commercial
tools, a practical solution is requesting the designer to provide them
with timing information such as the time interval of no interrupt
occurrence. However, outside of the time interval, ISS’s should
synchronize with other simulators at every system clock or every
instruction execution to detect the occurrence of interrupt.

To reduce synchronization overhead of interrupt detection, Yoo
and Choi present optimistic simulation approaches [10][11][12].
They are effective in reducing the synchronization overhead, es-
pecially in geographically distributed cosimulation. However, one
drawback of their approaches is a compatibility problem with com-
mercial simulators since few commercial simulators support opti-
mistic simulation features (i.e. state saving and restoration) [13][14].

In this paper, we present a method to reduce the synchroniza-
tion overhead without sacrificing simulation accuracy. Moreover
since the SW program analysis used in the method is based on con-
ventional SW program analysis [15] and graph theory [16], for the

ISS A ISS B

0

1

2

3

4

5

6

7 7

6

5

4

3

2

1

0

(b) Lock-step synchronization

communication network

Processor A Processor B

mem.
access intr

mem.
access intr

(a) An example of interupt-based
 inter-processor communication

0

1

2

3

4

5

6

7

Com

time

Figure 1: An example of synchronization overhead.

proposed method, we do not have to change the internal imple-
mentation of ISS’s, but have only to change their memory access
functions (in practice, the designer is allowed to modify memory
access functions of ISS’s to model their own memory models).

3 Problem and Solution Overview

3.1 Synchronization Overhead Problem

Figure 1 (a) shows an example of dual-processor target architec-
ture. We assume that inter-processor communication (IPC) from
one processor to the other is initiated by an access from one pro-
cessor to memory area mapped to IPC (we call itIPC memory
area). To notify the initiation of IPC, an interrupt is issued to the
other processor through the communication network (e.g. point-
to-point communication channel [17], shared bus communication
channel with dedicated interrupt logic [3], etc). Figure 1 (b) shows
an example of simulator synchronization. In cycle-accurate cosim-
ulation, three simulators (two ISS’s and one for the communication
network) are assumed to be involved. Since interrupt is used for
IPC, to detect the occurrence of interrupt, ISS’s exchange messages
(horizontal arrows in the figure) with the simulator of communica-
tion network (Com) at every system clock tick (vertical arrow in
the figure). Since synchronization is performed in a lock step man-
ner, we call such synchronizationlock-step synchronization. Such
multiple simulator synchronization causes frequent inter-process
communications each of which is very time-consuming, thereby
resulting in a significant degradation in cosimulation performance.

3.2 Solution Overview

One effective way of reducing the synchronization overhead is to
reduce the number of messages exchanged between simulators for
the synchronization. To do that, each ISS should know the time
points when interrupts arrive at the processor that it is simulating. If
it is possible, the ISS has only to synchronize with other simulators
at such time points and at the time points when it makes external
memory accesses. However, since interrupt is assumed to be trig-
gered by a memory access of another processor, an ISS cannot tell
exactly when such a memory access is executed by another proces-
sor. Thus, each ISS should notify other ISS’s of its (predicted) time
point of memory access for IPC. To do that, each simulator should
be able to predict the time points when it makes memory accesses
to IPC memory area.

In this paper, we present a prediction method based on instruction-
level analysis of application SW. The method gives pessimistic pre-
diction at every instruction, i.e.the minimum execution time
among those from the present instruction of application SW
to all memory instructions accessing IPC memory area.

For the prediction, we first calculate (1) minimum instruction
execution time of each instruction and (2) minimum basic block
execution times. Then we run Dijkstra’s algorithm to compute the
execution time from each instruction to the nearest memory instruc-
tions accessing IPC memory area. Those steps are done in each ISS
before cosimulation starts. During cosimulation, each ISS notifies
other simulators of the predicted execution times so that they can
predict the time point of interrupt arrival. For multiple simulator
synchronization, we modify an algorithm of conventional conser-
vative distributed simulation [18].

4 Cosimulation based on SW analysis

In this section, we present the prediction method and the algorithm
for multiple simulator synchronization.

4.1 Prediction based on SW analysis

4.1.1 Terminology and Assumptions

Before we describe the method, we define our terminology.

� IPC memory access instruction (IIMA): Assembly instruc-
tion that accesses IPC memory area.

� Minimum instruction execution time (MIET): The minimum
time delay of an instruction execution.

� Basic block: A sequence of instructions with single entry
point, single exit point, and no internal branch [15].

� B(I): The basic block to which instruction I belongs.

� Minimum basic block execution time (MBET): Sum of MIET’s
of all the instructions in the basic block.

� Basic block graph, BBG(BB, E, W): A directed graph with
nodes (basic blocks) and edges (dependency between basic
blocks).1 BB is the set of basic blocks and E is the set of
edges. The weight of each edge is the MBET of the source
node of the edge. That is,wi;j = MBET(ni) for ei;j, where
wi;j is the weight of the edgeei;j between source nodeni and
destination nodenj and MBET(ni) is MBET of nodeni. W
is the set of weights.

� IMA node (NIMA): A node (i.e. basic block) that contains
one or moreIIMA’s.

� TI2I(I): Minimum execution time from instruction I to the
nearestIIMA.

� TN2N(I): Minimum execution time from the entry point of
B(I) to the entry point of basic block of the nearestIIMA.

We have the following two assumptions. Assumption 4.1 is
already given in Section 3. We re-state it in this section for better
reference.

Assumption 4.1 Inter-processor communication (IPC) from one
processor to the other is initiated by an access (mostly, write oper-
ation) to IPC memory area.

Assumption 4.2 The time delay from the start to the completion of
IPC can be given in a time interval[NDmin;NDmax].

Assumption 4.2 can apply to most of multi-processor communi-
cation architectures such as point-to-point communication architec-
tures [17], shared bus architectures with dedicated interrupt logic
[3], and conventional multi-processor architectures [19]. For in-
stance, in the case of shared bus architecture,NDmax can be the
maximum delay of shared bus access considering bus contention
and interrupt logic operation.

1We use two terms, node and basic block, interchangeably.

A:
0x0 mov r2, #3
0x4 cmp r2,r1
0x8 ble D
B:
0xc ldr r0,[r13,#0x10]
0x10 ldr r1,[r13,#0xc]
0x14 add r0,r0,r1
0x18 cmp r0,r1
0x1c blt E
C:
0x20 b C
D:
0x24 add r2,r0,r1
0x28 str r2,[r13,#4]
E:
0x2c mov r0,#1
0x30 str r0,[r13,#8]
0x34 b C

A:
0x0 1
0x4 1
0x8 3
B:
0xc 3
0x10 3
0x14 1
0x18 1
0x1c 3
C:
0x20 3
D:
0x24 1
0x28 2
E:
0x2c 1
0x30 2
0x34 3

(a) An example of assembly code (b) An example of MIET�s

Figure 2: An example of MIET calculation.

4.1.2 Intra-Basic Block Analysis

First, MIET of each instruction is calculated. In modern pipeline ar-
chitectures of processor, MIET of single-cycle instruction is a sin-
gle cycle. For multi-cycle instructions, we can consider two types
of MIET estimation: static and dynamic. Static estimation of MIET
can be applied to multi-cycle instructions such as multiple data
transfer (multiple load, store, etc) instructions or instructions that
have the program counter as an operand [20], where the number of
execution cycles can be determined statically. For the instructions
(e.g. multiply instruction using a booth multiplier) whose execution
delay is determined dynamically (e.g. determined by the values of
operands during the program execution), we set MIET of such an
instruction to the minimum value (i.e. a single cycle).

Figure 2 (a) shows an example of assembly code of ARM7 pro-
cessor [20]. In Figure 2 (b), each instruction is given its MIET (a
number on the right of each instruction). In the figure, each label
corresponds to a basic block. MBET is the sum of MIET’s in the
basic block. For instance, basic block A has 5 as its MBET. In Fig-
ure 2 (a), we assume that the instruction located at0x30 , “str
r0, [r13,#8] ” is an IIMA.

4.1.3 Inter-Basic Block Analysis

After intra-basic block analysis, we build a basic block graph, BBG
(BB, E, W). Figure 3 (a) shows an example of basic block graph ob-
tained from the code example in Figure 2 (a). Note that the weight
on each edge corresponds to the MBET of the edge’s source node.
For instance, two edges going out of node A have 5 as their weights
since the MBET of node A is 5. In the figure, node E is anNIMA

since it has anIIMA.
To calculate the minimum execution time (TI2I(I)) from any

instruction I to the nearestIIMA, we first calculate the minimum
execution time (TN2N(I)) from the entry point of the basic block
(B(I)) of instruction I to all the entry points of IMA nodes.Calcu-
lation of TN2N(I) corresponds to the shortest path calculation
in the BBG. Since the number of destination nodes is usually much
less than that of source nodes, it is easier to compute the shortest
paths from the destination nodes to the source nodes. Therefore,
we construct another graph called rBBG(BB, rE, W) by reversing
the direction of each edge in the BBG. Figure 3 (b) shows an exam-
ple of rBBG obtained from the BBG in Figure 3 (a). To calculate
the shortest path from anNIMA to every nodes (the entry points) in
the rBBG, we apply Dijkstra’s algorithm [16].

Figure 4 (a) shows the result of applying Dijkstra’s algorithm
to the rBBG in Figure 3 (b). In the figure, each node is given the
length of shortest path, i.e.TN2N. Note that node C is given infinity
(1) since there is no execution path from node C to theNIMA

A

B

C

E

D

(b) rBBG(V, rE, W)

5

5

3

11

6
11

3

A

B

C

E

D

5

5

3
11

611

3

NIMA

(a) BBG(BB, E, W)

NIMA

Figure 3: Examples of BBG and rBBG.

A

B

C

E

D

5

5

3
11

611

3

(8)

(11)

(∞)

NIMA

(3)

A:
0x0 1, 8
0x4 1, 7
0x8 3, 4
B:
0xc 3, 9
0x10 3, 6
0x14 1, 5
0x18 1, 4
0x1c 3, 1
C:

0x20 3, ∞
D:
0x24 1, 3
0x28 2, 1
E:
0x2c 1, 1
0x30 2, 1
0x34 3, 1

(a) Result of Dijkstra algorithm (b) An example of TI2I `s

(0)

Figure 4: An example inter-basic block analysis result.

(node E).
Then, for each instruction I, we calculateTI2I(I) as follows.

TI2I(I) = TN2N(I)�
X

J2B(I);J�I

MIET(J)

+
X

J2NIMA;J>IIMA

MIET(J)

where the relationJ > I (J� I) represents a control dependency
between two instructions I and J, i.e. instruction J is executed ear-
lier than (or at the same time with) instruction I. Figure 4 (b) shows
the result of calculatingTI2I(I) for the example. In the figure, the
third column corresponds toTI2I(I)’s. For instance, instruction at
0x4 hasTI2I(I) = 8 - 2 + 1 = 7.

Dijkstra’s algorithm calculates the shortest path from a single
source node to each node in a directed graph. In our case, since
we have only to run Dijkstra’s algorithm with eachNIMA as the
source node, the complexity of applying Dijkstra’s algorithm is
O(N2) �M, where N and M are the number of basic blocks and
the number ofNIMA’s, respectively (depending on the implemen-
tation of the Dijkstra’s algorithm, the complexity can be slightly
different). As shown in our experiments, the runtime overhead of
static analysis is negligible.

4.2 Multiple simulator synchronization

A basic principle of multiple simulator synchronization is that the
next pessimistic synchronization time point (Tsync) is determined
to be the lower bound of the time when the nextIIMA starts its ex-
ecution. It is given by

ISS A ISS B

0 0
3

3

7

6

5

4

3

2

1

IMA

7

6

5

4

3

2

1

Com

0

7

6

5

4

3

2

1

6

3

6

time

55

8 88

999

lock-step
synchronization
interval
from time 5 to 7.

6 6

17 17

10 15
7 7

11

12 6

16

Figure 5: An example of multiple simulator synchronization.

Tsync = curr time +min8i2Set of ISS0s T
I2I(curr inst(i))

where currtime is the globally synchronized time and currinst(i)
is the instruction to be executed currently in ISSi. In terms of im-
plementing multiple simulator synchronization, there can be two
ways ofTsync calculation: centralized or distributed calculation.
In the centralized calculation, ISS’s send their prediction values
(TI2I(curr inst(i))) to the central synchronization server (in prac-
tice, the simulator of communication network can be the central
server) and the central server calculatesTsync and distributes it to
each ISS. In the distributed calculation, each ISS calculatesTsync

after receiving all the prediction values from the other ISS’s. In this
paper, we explain synchronization with the centralized calculation.

Figure 5 shows an example of multiple simulator synchroniza-
tion where ISS A and B are involved. We assume that the commu-
nication between the two processors takes between 2 (minimum de-
lay) and 4 (maximum delay) time units, i.e.NDmin = 2 andNDmax

= 4. We also assume that, at time 0, ISS A sendsTI2I(curr inst(A))
= 3 (already calculated during the static analysis) and ISS B sends
TI2I (curr inst(B)) = 6 to the simulator of communication network
(Com) which acts as the synchronization server.Com determines
time 3 asTsync and sends the value to the two ISS’s. They proceed
simulation without synchronization until time 3.

At time 3, ISS A executes anIIMA and sends toCom the infor-
mation that it starts executing anIIMA. Since ISS A starts execu-
tion of IIMA at time 3 and the minimum network delay (NDmin) is
2, ISS B can receive an interrupt at the earliest at time 5 (= 3+2).
Since ISS B still has 6, its previous prediction value,Com deter-
mines time 5 asTsync. Therefore, simulators do not synchronize
with each other until time 5.

Note that, during the time interval [5, 7], lock-step synchro-
nization should be performed betweenCom and each ISS since the
communication network is assumed to have minimum 2 time unit
and maximum 4 time unit delay of interrupt trigger operation and it
can trigger an interrupt to a processor during the time interval [3+2,
3+4]. We call such an intervallock-step synchronization inter-
val. Figure 5 shows a lock-step synchronization interval (dashed
rectangle). Note that eachIIMA execution is assigned a lock-step
synchronization interval. At the end of the time interval - at time 7
in our example - ISS A sendsTI2I(curr inst(A)) = 10 and ISS B
sendsTI2I(curr inst(B)) = 15 to Com. In this case,Com deter-
mines time 17 (=7+10< 7+15) asTsync. Until Tsync, simulators
proceed without synchronization. Simulation continues in this way.

1 time_advance() {
2 if T sync == time {
3 receive T I2I or IMA info. from each ISS;
4
5 if there is any I IMA to be executed {
6 T lock-step

min [i]= time + ND min

7 T lock-step
max [i++]= time + ND max;

8 }
9
10 if any j, such that T lock-step

min [j]<= time
11 & T lock-step

max [j]>= time
12 T sync ++; // during a lock-step synch. interval.
13 else
14 T sync = min{(time + T I2I)’s, T lock-step

min [j](> time)};
15
16 send T sync to each ISS;
17 }
18 time++;
19 }

Figure 6: Pseudo code of centralized calculation of next synchro-
nization point.

Table 1: Statistics of system examples.
ISS 1 ISS 2

No. BB’s Code size No. BB’s Code size
Config1 923 16 KB 443 11 KB
Config2 125 5 KB 170 5 KB
JPEG 426 10 KB 44 0.46 KB

In Figure 6, a pseudo code of centralized calculation ofTsync.
In the figure,Tlock�step

min [j] (Tlock�step
max [j]) is the start (finish) time

point of lock-step synchronization interval related with the j-thIIMA

execution. From line 5 to 8, if there is a newIIMA execution, a new
lock-step synchronization interval is assigned to theIIMA execu-
tion. At any time point, whether it is in a lock-step synchronization
interval or not can be determined by the conditionals in line 10 and
11. Note also thatTsync is determined by the minimum of (time +
TI2I)’s andTlock�step

min [j]’s (which are later than the current time)
as shown in line 14. Functiontime advance() is called at every
time tick in the synchronization server.

5 Experiments and Discussion

We apply the cosimulation method to two embedded systems: an
IS-95 CDMA cellular phone system [21][22] and a JPEG encoder
system [23]. As the ISS, we use a commercial ISS of ARM pro-
cessor called ARMulator [24]. As the simulator of communication
network (Com), we use our own cycle-based simulator. In our im-
plementation,Com plays the role of central synchronization server.

The IS-95 system consists of four modules: voice encoder and
decoder and CDMA modem transmitter and receiver. In our experi-
ments, we performed cosimulation for the voice receiving path, i.e.
CDMA modem receiver and voice decoder. We have three types of
simulator configuration for the IS-95 system. In the first simulator
configuration (Config1), we use two ISS’s (one for a part of voice
decoder and the other for the remaining part of voice decoder). In
the second configuration (Config2), we simulate the CDMA mo-
dem receiver with two ISS’s (one for a part of modem receiver and
the other for the remaining part of modem receiver). In the third
configuration (Config3), we run four ISS’s (each ISS runs one of
four parts used in Config1 and Config2). In the case of JPEG en-
coder system, we run two ISS’s (one for discrete cosine transfor-
mation and the other for the remaining part of JPEG system).

Table 1 shows the statistics of SW programs running on each
ISS. In the table, the case of Config3 is not shown since the four
SW programs in Config1 and Config2 are used in the case. Table
2 shows the simulation results in the case of uni-processor cosim-
ulation on a SUN UltraSPARC (167Mhz, 320MB). Table 3 shows

Table 2: Comparison of simulation results in the case of uni-processor cosimulation.
Lock-step Proposed method Overhead Reduction in Runtime

Runtime (sec) No. msg’s Runtime (sec) Overhead No. msg’s ratio no. msg’s speedup
Config1 405 3,439,518 81 0.7 558,596 0.9% 83.8% 5.0
Config2 692 5,495,650 45 0.2 108,770 0.5% 98.0% 15.4
Config3 1,509 12,613,600 180 0.2 1,259,480 0.1% 90.0% 8.4
JPEG 1,143 10,918,294 211 0.4 267,594 0.2% 97.6% 5.4

Table 3: Comparison of simulation results in the case of dual-processor cosimulation.
Lock-step Proposed method Overhead Reduction in Runtime

Runtime (sec) No. msg’s Runtime (sec) Overhead No. msg’s ratio no. msg’s speedup
Config1 2,786 3,439,518 457 0.4 558,596 0.09% 83.8% 6.1
Config2 4,390 5,495,650 111 0.1 108,770 0.1% 98.0% 39.6
Config3 3,932 12,613,600 403 0.2 1,259,480 0.05% 90.0% 9.8
JPEG 8,445 10,918,294 352 0.2 267,594 0.06% 97.6% 24.0

the simulation results in the case of dual-processor cosimulation on
two workstations (SUN UltraSPARC, 167Mhz, 320MB and SUN
UltraSPARC, 200Mhz, 1GB). In the experiments, we assumed that
the communication delay is one cycle (i.e. equivalent to the delay
of a fast point-to-point communication channel).

As the tables show, we obtained up to orders of magnitude
higher performance in cosimulation runtimes by reducing signifi-
cantly the number of inter-process messages (up to 98%) with neg-
ligible runtime overhead (� 0.9%). Note that for Config1, the re-
duction of the number of messages is relatively small. It is because
the vocoder consists of many small loops. In the proposed method,
we use the shortest path algorithm to estimate the minimum execu-
tion time to the IMA node and assume that loops are executed only
once for the estimation of the shortest execution time. Therefore,
in Config1, the estimated minimum execution times can fall short
of the real minimum execution times more frequently than in other
configurations.

In the case that network delay is difficult to be given as an in-
terval or another HW simulator(s) is involved in cosimulation, it
will be hard to obtain improvement by applying our method di-
rectly. One way to get around is (1) to apply the proposed method
to the synchronization in a cluster of simulators where ISS’s and
the communication network simulator satisfy the two assumptions
(Assumption 4.1 and 4.2) and (2) for the designer to specify regions
in the SW and HW where no interrupt occurs, which is the strategy
taken by commercial tools such as Seamless CVE [9]

6 Conclusion

In this paper, we proposed a method to improve the cosimulation
performance of multi-processor embedded systems. The method
achieves the performance improvement by reducing simulator syn-
chronization overhead. To do that, before cosimulation run, a static
analysis of application software is applied to predict simulator syn-
chronization time points. We applied the method to the cosimula-
tion of practical embedded systems and obtained up to orders of
magnitude higher performance in cosimulation runtimes.

References

[1] B. Clement, R. Hersemeule, E. Lantreibecq, P. Coulomb, B. Ramandin, and
F. Pogodalla, “Fast Prototyping: a System Design Flow Applied to a Complex
System-On-Chip Multiprocessor”,Proc. Design Automation Conf., pp. 420–
424, 1999.

[2] T. W. Albrecht, J. Notbauer, and S. Rohringer, “HW/SW CoVerification Perfor-
mance Estimation & Benchmark for a 24 Embedded RISC Core Design”,Proc.
Design Automation Conf., pp. 808–811, June 1998.

[3] J-Y. Brunel, W.M. Kruijtzer, H.J.H.N. Kenter, F. Petrot, and L. Pasquier, “COSY
Communication IP’s”,Proc. Design Automation Conf., pp. 406–409, June 2000.

[4] W. Richard Stevens,UNIX Network Programming, Prentice Hall, 1991.

[5] K. Hines and G. Borriello, “Optimizing Communication in Embedded System
Co-simulation”,Proc. Int. Workshop on Hardware-Software Codesign, pp. 121–
125, Mar. 1997.

[6] K. Hines and G. Borriello, “Selective Focus as a Means of Improving Geo-
graphically Distributed Embedded System Co-simulation”,Proc. Eighth IEEE
International Workshop on Rapid System Prototyping, pp. 58–62, June 1997.

[7] K. Hines and G. Borriello, “Dynamic Communication Models in Embedded
System Co-Simulation”,Proc. Design Automation Conf., pp. 395–400, June
1997.

[8] J. Liu, M. Lajolo, and A. Sangiovanni-Vincentelli, “Software Timing Analysis
Using HW/SW Cosimulation and Instruction Set Simulator”,Proc. Int. Work-
shop on Hardware-Software Codesign, pp. 65–69, Mar. 1998.

[9] Mentor Graphics, Inc., “Seamless CVE”, available at
http://www.mentorg.com/seamless/ .

[10] S. Yoo and K. Choi, “Optimistic Distributed Timed Cosimulation Based on
Thread Simulation Model”,Proc. Int. Workshop on Hardware-Software Code-
sign, pp. 71–75, Mar. 1998.

[11] S. Yoo and K. Choi, “Optimizing Geographically Distributed Timed Cosimula-
tion by Hierarchically Grouped Messages”,Proc. Int. Workshop on Hardware-
Software Codesign, pp. 100–104, May 1999.

[12] S. Yoo and K. Choi, “Optimizing Timed Cosimulation by Hybrid Synchroniza-
tion”, Design Automation for Embedded Systems, vol. 5, no. 2, June 2000.

[13] Synopsys, Inc.,Cyclone VHDL Reference Manual, Synopsys Online Documen-
tation, v1998.08.

[14] Quickturn, “PowerSuite”, available at
http://www.quickturn.com/products/psbroch.htm.

[15] A. V. Aho, R. Sethi, and J. D. Ullman,Compilers : Principles, Techniques, and
Tools, Addison-Wesley, 1988.

[16] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest,Introduction
to Algorithms, McGraw-Hill, Inc., New York, 1994.

[17] W. Wade, “Embedded chips diverge on multiprocessing path”,EE Times, Issue
1118, June 2000.

[18] R. Bagrodia, K. M. Chandy, and W. T. Liao, “A Unifying Framework for Dis-
tributed Simulation”,ACM Trans. on Modeling and Computer Simulation, vol.
1, no. 4, pp. 348–385, Oct. 1991.

[19] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Pro-
grammability, McGraw-Hill, Inc., New York, 1993.

[20] D. Jaggar,Advanced RISC Machines Architectural Reference Manual, Prentice
Hall, July 1996.

[21] TIA/EIA-95A, “Mobile Station-Base Station Compatibility Standard for Dual-
Mode Wideband Spread Spectrum Cellular Systems”, 1995.

[22] S. Yoo, J. Lee, J. Jung, K. Rha, Y. Cho, and K. Choi, “Fast Prototyping of an
IS-95 CDMA Cellular Phone: a Case Study”,Proc. the 6th Conference of Asia
Pacific Chip Design Languages, pp. 61–66, Oct. 1999.

[23] Portable Video Research Group, “PVRG-JPEG CODEC”,available at
ftp://havefun.stanford.edu/pub/jpeg/JPEGv1.2.1.tar.Z.

[24] ARM Ltd., “Software Development Toolkit”,available at http://www.arm.com
/products/SDT/.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

