
Managing Dynamic Reconfiguration Overhead in Systems-on-a-Chip
Design Using Reconfigurable Datapaths and Optimized

Interconnection Networks

Zhining Huang, Sharad Malik
Electrical Engineering Department

Princeton University

 Abstract

This research examines the role of dynamically
reconfigurable logic in systems-on-a-chip (SOC) design.
Specifically we study the overhead of storing and
downloading the configuration code bits for different
parts of an application in a dynamically reconfigurable
coprocessor environment. For SOC designs the different
configuration bit-streams will likely need to be stored on
chip, thus it becomes crucial to reduce the storage
overhead. In addition, reducing the reconfiguration time
overhead is crucial in realizing performance benefits.
This study provides insight into the granularity of the
reconfigurable logic that is appropriate for the SOC
context. Our initial study is in the domain of multimedia
and communication systems. We first present profiling
results for these using the MESCAL compiler
infrastructure. These results are used to derive an
architecture template that consists of dynamically
reconfigurable datapaths using coarse grain logic blocks
and a reconfigurable interconnection network. We justify
this template based on the constraints of SOC design. We
then describe a design flow where we start from an
application, derive the kernel loops via profiling and then
map the application using the dynamically reconfigurable
datapath and the simplest interconnection network. As
part of this flow we have developed a mapping algorithm
that minimizes the size of the interconnection network,
and thus the overhead of reconfiguration, which is key for
systems-on-a-chip. We provide some initial results that
validate our approach.

1. Introduction

Recent research on reconfigurable computing has
shown that a tightly coupled reconfigurable co-processor
with a general purpose CPU can achieve significant
speedup on a general class of applications [2]. However,
the hardware resource constraints associated with the

reconfigurable logic are a major barrier in applying this to
large applications.

One way to overcome the hardware resource
constraint limitation is to use dynamic reconfiguration
which can reconfigure the logic at run time. This
partitions the application temporally and time multiplexes
the programmable logic to meet the hardware resource
constraints[1,9,11]. However, dynamic reconfiguration
comes with its own problems. This is the reconfiguration
overhead, both in time and space. Since the
reconfiguration is done at run time, the reconfiguration
time is part of the run time overhead. Also, multiple
reconfiguration bitstreams need to be stored for the
different contexts being multiplexed onto the
programmable logic. This problem is exacerbated for
SOC implementations where the entire application needs
to be stored in on-chip memory. In this paper we propose
a solution to this overhead problem by providing a design
style, methodology and algorithm that minimizes the
configuration size overhead. This proposal uses the idea
of distributed caches [1] to reduce the configuration time
overhead.

2. Architectural Model

FU RG FU

FU FU RG

Reconfigurable Interconnection

Fine-
grained
FPGA

Embedded CPU
On chip SRAM/

Caches

Figure 1. Architecture template

The architecture template for our methodology is
shown in Figure 1. The key element of this is to use
coarse grain blocks such as functional units, register files
and memories, in a reconfigurable datapath constructed
using a programmable interconnection network. This is
similar to templates used in other reconfigurable
computing projects such as Pleiades [3,4]. The motivation
for using the coarser grained logic is to reduce the
configuration bit overhead, since now only the
interconnection network needs to be programmed.

For a given application, we partition the software into
two parts, one is to be executed as software on the
general-purpose processor, and the rest mapped to the
reconfigurable coprocessor. The general-purpose
processor consists of an embedded CPU and on-chip L1
cache. The coprocessor consists of fixed logic blocks
(Function Units, FU), Registers (RG) and fine grained
programmable logic (FPGA). The datapath of the kernel
loops is mapped onto the logic blocks and configurable
interconnections. The fine-grained FPGA is used to
implement control logic to generate the control signals for
the datapath. We would like to exploit the same logic
macros (FUs, RGs) across different parts (kernel loops) of
the application by just reconfiguring the interconnection
and control logic on fine grained FPGA.

3. Design Methodology Flow

The open elements of the design in the architectural
template described above are the logic blocks and design
of the interconnection network. This is designed specific
to an application family. The methodology flow for this is
shown in Figure 2. The input to the design is C source
code for an application or a set of applications from a
domain.

First we use the IMPACT [10,7] compiler , which is
part of the MESCAL compiler infrastructure, as the front
end to do some pre-processing, including performance
profiling and loop detection. The preprocessing is done on
scheduled and register allocated intermediate code
(IMPACT lcode). The performance profiling information
used includes loop invocation counts, loop iteration
counts, and loop execution time in clock cycles.

The performance profiling is used for kernel loop
extraction. The goal is to select kernel loops which have
the highest execution time. Profiling results on Media
Bench [6] in Figure 3 show that few kernel loops usually
occupy most of the execution time of an application.
Across these benchmark applications we see that no more
than eight kernel loops together account for more than
80% of the total execution time. This fact provides the
rationale for mapping only the top few (<9) kernel loops
onto the reconfigurable coprocessor. However, not all the
top execution count loops are selected as kernel loops to
be mapped to coprocessor. Those loops which are too
large in terms of total computation and will overflow the
reconfigurable logic hardware resource constraint during
the transformation and synthesis step are not used. Other
top loops are chosen to make up for those not included.

The loop transformation and high level synthesis step
generates the hardware version of the chosen kernel
loops. Currently we do not use any loop unrolling or other
inter-iteration parallelism transformations. We primarily

C code

Kernel loops
on hardware

Figure 2. Design methodology flow

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8

EPIC (44 loops) g721 (11 loops)
gsm (44 loops) JPEG (138 loops)
MPEG (67 loops)

Figure 3. Percentage execution time
vs. number of top kernel loops

Pre-processing (Impact Compiler)
1. performance profiling
2. loop detection

Kernel Loop
Extraction

Architecture
Descriptions /

Constraints

Loop Analysis,
Transformation & High

level Synthesis

Datapath Partitioning

Kernel loop datapath
mapping

Software
on CPU

Coprocessor FUs and
Interconnection design

use high-level synthesis to exploit intra-iteration
parallelism. This is used to get the best hardware with
least number of execution cycles within acceptable
hardware cost. Currently we use the NEC Cyber tool to
do the loop transformations and high level synthesis [5].
The input is C like source code. The output is VHDL code
of best hardware. The hardware constraint in this step
corresponds to the maximum number of function units
and registers we can have in the coprocessor.

Datapath partitioning partitions the hardware of each
kernel loop into the datapath and the control circuit. The
datapath contains all the function units and signals (wires,
registers) which have the bit-width of 32 bits or 64 bits.
The control signal usually is 1 bit wide. The control
circuits are configured using a fine-grained FPGA. The
datapath part is mapped to the logic blocks and
configurable interconnections.

4. Datapath Mapping

The design of the configurable datapath is done using
the hardware generated for each kernel loop using Cyber.
The mapping of the hardware to the coprocessor is done
using a graph formulation that minimizes the size of the
interconnection network.

The first step in this process is to generate a datapath
topology graph G, for each kernel loop hardware, as
shown in Figure 4. Vertices in the directed graph G
correspond to the hardware blocks, i.e. the function units
and registers in datapath. Each vertex is labeled with its
block type. The edges correspond to the interconnections
between the function units and registers.

For each kernel loop i for which we have generated a
hardware circuit, we generate a topology graph Gi. We
then generate the coprocessor design as well as the
mapping of the loops one by one. Let G1 and G2 be two
graphs generated. The design of the final coprocessor and
interconnection network is done by constructing a graph
G as follows:

• Create a graph G (with labeled vertices) such that,
G1⊆G, G2⊆G, and the cost of G is least;

• The cost of G is the total number of edges in G. Since
edges represent interconnections and we need to
minimize the number of interconnections in the final
interconnection network.

The above formulation results in a datapath corresponding
to G, which has the datapath for G1 and G2 embedded in
it. Also, the mapping of vertices of G1 and G2 to vertices
of G is done so as to minimize the number of
interconnections in G.

From the above we can see that the number of logic
macros chosen for a type is the maximum number among
all kernel loops for that type. That means the number of
each type vertices in graph G is decided by the maximum
number of that type vertices among all the graphs Gi. This
allows for the maximum parallelism for each kernel loop
in the final coprocessor, while still permitting sharing to
logic across the kernel loops. Clearly adding any more
vertices (blocks of any type) cannot increase parallelism
for any kernel loop. We further show that this cannot even
reduce the number of edges. This is proved as follows:

Assume n is the maximum number of A-type (adder)
vertices in all graphs Gi and we have n+1 A-type vertices
in G. For each graph Gi, if vertex n+1 is used, at least 1
A-type vertex in A-type vertices 1 to n has not been used.
If we re-map the A-type vertex n+1 to that free vertex, no
more edges are added and we can possibly reduce the
number of edges further. Thus, adding more vertices
cannot reduce the number of edges.

R3

N1

R3

R2

M1

R1

A2A1

N1
A2

R2

R1M1

A1

N2

R2

N1

M2

M1

R1

A2A1

N21
M22

M21R21

A21

N12
N11M11

R12

R11

A12A11

+

=>

G1
G2

G

Figure 4. A directed graph generate from
datapath circuit

Figure 5. Graph mapping

The problem of finding the least cost G and the
mapping of vertices of G1 and G2 to vertices of G is
solved using maximum bipartite mapping.

A short review of maximum bipartite matching is
provided here and illustrated in Figure 6 (a) [8].

A graph G=(V,E), is said to be bipartite if the vertex
set can be partitioned into V=L∪R, where L and R are
disjoint and all edges go between a vertex in L and a
vertex in R.

A matching is a subset of edges M⊆E such that for
all vertices v∈V, at most one edges of M is incident on v.
A maximum matching is the matching with maximum
total edge weight of the subset.

In our datapath mapping problem here we construct a
graph G12 as follows. (This is illustrated in Figure 6 (b)).
Vertices of subset L are from G1, vertices of subset R are
from G2. Edges only go between vertices from L and
vertices from R. Edges here mean mapping. An edge
connects vertex v1 from L and v2 from R, if V1 and V2
can be mapped onto the same vertex in G. Since the
function units and registers can only be mapped to the
same type, edges here only go between the same type of
vertices from G1 and G2.

The weight of edge (v1, v2) refers to the number of
edges that go into v1 in graph G1 and edges go into v2 in
G2 which come from the same type of vertices. If v1 and
v2 were mapped to the same vertex in G, then these edges
could be shared in G. The purpose of the edge definition
here is to search the maximum similarity between the two
graphs G1 and G2 in terms of interconnections between
logic blocks.

Maximum weight bipartite matching is used as a
heuristic here to reduce the number of connections in G.
If (v1, v2) is in the matching, then v1 in G1 and v2 in G2
are mapped to the same vertex in G.

For more than two graphs, we iteratively combine
them into a single graph, adding one new graph at a time.

5. Designing the Interconnection Network

There are two options for designing the
interconnections for a given coprocessor. One is to have
full crossbar between the function units we have chosen
enabling any logic block to be connected to any other.
The other is to select the interconnections that will
actually be used in the kernel loop hardware
reconfigurations. A full crossbar, while providing
flexibility for the future, has the problem of occupying too
large an area on the chip and more configuration bits and
control signals for the reconfigurable coprocessor.
Assume that the datapath width is 32bits and we have 40
function units and registers, we will have 40*40=1600 32-
bit width wires running on the chip, which is excessive.
The second option can be implemented using the datapath
mapping algorithm outlined in the previous section. That
technique already shows us how to minimize the datapath
connections (edges in graph G) for the chosen kernel
loops for the given set of applications. Given graph G, the
interconnections can be made at run time such that G
implements either G1 or G2.

Figure 7 shows the interconnection network between
function units and registers. If an edge exists in the graph
G, a hardware connection needs to connect the 2 vertices,
i.e, the function units or registers. Figure 7 shows part of
graph G and interconnection network as example.

Two n-type transmission gates (or complementary
gates) are used for each interconnection. One gate is for
configuration and another one is for mux control. So one
configuration bit is needed for each edge in graph G, as
well as a one-bit control signal. While the coprocessor is

Figure 6. Bipartite matching

L R Vertices
from G1

Vertices
from G2

(a) (b)

A-type

M-type

R-type

R1

Configuration Bit
stored

Control bit input

R2

A1

M1

M2

Gate A Gate B

Figure 7. Interconnection network

R1

R2

A1

M1

M2

Graph G

configured for kernel loop i, if the edge in graph G also
exists in graph Gi the configuration gate on the
interconnection according to this edge will be configured
on. Otherwise it is off. The mux control signals are from
the control circuit which is configured on fine grained
FPGA. The on or off of the mux control gate will be
changed during the kernel loop at run time while the
configuration gates remain fixed and will be only changed
while the coprocessor is configured for another kernel
loop.

As discussed above, the major reconfiguration
overhead is the time for downloading the reconfiguration
bits from memory to the coprocessor configuration gates.
One way to solve this problem is to use distributed cache
as suggested in some recent research. We now describe its
use in our context.

6. Distributed Cache for Reconfiguration

We can use distributed cache to pre-store the
configuration bits for use in dynamic re-configuration.
Figure 8 showed the architecture of the distributed cache
used for dynamic reconfiguration. For example, in the
NEC version of the distributed cache [1], up to 8
configuration contexts can be pre-stored in the cache,
with a single cycle context-switch. This minimizes the
reconfiguration time to its bare minimum. Thus, if we
choose to map no more that 8 kernel loops to the co-
processor, we need no more than 8 contexts for dynamic
reconfiguration. In Section 1 we showed how for the
MediaBench examples, 80% of the execution time was
spent in no more than 8 kernels. This enables us to load
the 8 contexts prior to the execution of the application,
with no subsequent overhead during run time.

7. ADPCM

Our initial study on this project involves examination
of multimedia and communication systems. ADPCM is
one of the benchmarks we began with. ADPCM stands for
Adaptive Differential Pulse Code Modulation. It is a
family of speech compression and decompression
algorithms.

After preprocessing using the IMPACT compiler as
front end and loop extraction, two kernel loops are
extracted from ADPCM source file, one for the ADPCM
coder and another one for the ADPCM decoder. The 2
kernel loops occupy 99% of the total running time of
ADPCM as determined from the profiling result. Two
graphs G1 and G2 are generated from the hardware
version of the kernel loops in VHDL files from the
CYBER behavioral synthesis tool. The mapping result of
graphs G1 and G2 are listed in Table 1.

Coder
(G1)

Decoder
(G2)

Mapping
result (G)

Vertices 45 32 46
Edges 133 79 165

From Table 1 we see that almost all of the vertices of
G1 can be reused in G2, only one additional vertex is
needed to map G2. Similarly, more than half of the
connections in G1 can be shared between G1 and G2.
Since there are 165 edges in graph G, we need 165
interconnections between those 46 logic macros, thus 165
configuration bits are need for interconnection, compared
with 46*46=2116 bits and 2116 interconnections for a full
crossbar interconnection between the logic macros.

The speed up gained from hardware execution can be
significant. In the ADPCM coder application, the kernel
loop of the coder is executed 1000*147 times as per the
profiling result. The software execution time of each
iteration is 66 cycles under the assumption of ideal
memory access (no cache miss). The hardware execution
time can be as fast as 20 cycles per iteration. Assuming
the use of the distributed cache for context switch, the
reconfiguration time and entry initialization take only a
few cycles, far less than the run time for each
configuration, i.e, 1000*66=66,000 cycles. Since the
kernel loops occupies 99% of the run time of ADPCM,
the total running time can be reduced from 10M cycles to
3M cycles in the best case. From the example of ADPCM,
it is obvious that maximum gain from hardware execution
can be achieved once the reconfiguration overhead has
been reduced significantly. Note that in the above we are
only utilizing intra-iteration concurrency in the kernel
loops. Inter-iteration concurrency can lead to further
speedup and is the subject of our current extensions.

Table 1. ADPCM datapath mapping result

R1

Control bit
input

R2

A1

M1

M2

RC

Reconfiguration
Controller

8 contexts storedConfiguration
address select

Figure 8. Distributed cache for reconfiguration

8. Conclusions

This paper describes an efficient approach for
dynamic reconfiguration to reduce the reconfiguration
overhead in both size and time for dynamic
reconfiguration. This is especially important in systems
on a chip where the reconfiguration bits are likely to be
stored on chip. We propose the use of a coarse-grained
reconfigurable coprocessor to reduce the size of the
configuration bit stream.

We then show how the programmable
interconnection network can be minimized using a
mapping algorithm that maps the hardware of individual
kernel loops onto a single coprocessor.

We then go on to show how a distributed cache with
a small number of contexts can be used to switch between
the different kernel loops with very low overhead. We use
profiling data to show that the small number of contexts is
sufficient in practice.

Finally, we illustrate our methodology using ADPCM
as a case study. The mapping results for ADPCM validate
the efficacy of our approach.

9. References

[1] K. Furuta, T. Fujii, M. Motomura, K. Wakabayashi, M.
Yamashina "Spatial-Temporal Mapping of Real
Applications on a Dynamically Reconfigurable Logic
Engine (DRLE) LSI", CICC 2000.

[2] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, J.
Stockwoo "Hardware-Software Co-Design of Embedded
Reconfigurable Architectures" in Proceedings, 37th Design
Automation Conference (DAC 2000), June 2000.

[3] M. Wan, H. Zhang, V. George, M. Benes, A. Abnous, V.
Prabhu, J. Rabaey "Design Methodology of a Low-Energy
Reconfigurable Single-Chip DSP System" Journal of VLSI
Signal Processing, 2000.

[4] Hui Zhang, Marlene Wan, Varghese George, Jan Rabaey
"Interconnect Architecture Exploration for Low Energy
Reconfigurable Single-Chip DSPs" Proceedings of the
WVLSI , Orlando, FL, USA, April 1999.

[5] K. Wakabayashi, “Cyber: High Level Synthesis System
from Software into ASIC,” in High Level VLSI Synthesis,
edited by R. Camposano and W. Wolf, Kluwer Academic
Publisher, pp.127-151, 1991.

[6] C. Lee, M. Potkonjak, W. Mangione-Smith, “MediaBench:
A Tool for Evaluating and Synthesizing Multimedia and
Communications Systems”, Micro 30, 1997.

[7] IMPACT research group, University of Illinois, at Urbana-
Champaign, http://www.crhc.uiuc.edu/IMPACT/.

[8] T. Cormen, C. Leiserson, R. Rivest, “Introduction to
Algorithms”, The MIT Press, 1990, pp. 600-603.

[9] D. C. Cronquist, P. Franklin, S. G. Berg, C. Ebeling
"Specifying and Compiling Applications for RaPiD"
FCCM 1998.

[10] P. Chang, S. Mahlke, W. W. Hwu “Using Profile
Information to Assist Classic Compiler Code Optimizations
“Software Practice and Experience, Dec. 1991, Vol. 21,
No. 12, pp. 1301-1321.

[11] Rahul Razdan, Karl Brace, and Michael D. Smith "PRISC
Software Acceleration Techniques" Proc. 1994 IEEE Intl.
Conf. on Computer Design, pp. 145-149, October 1994.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

