
Streaming BDD Manipulation for Large-Scale Combinatorial Problems

Shin-ichi Minato and Shinya Ishihara

NTT Network Innovation Laboratories

1-1, Hikarinooka, Yokosuka-shi, 239-0847 Japan.

fminato,shinyag@exa.onlab.ntt.co.jp

Abstract

We propose a new BDD manipulation method that never
causes memory overow or swap out. In our method,
BDD data are accessed through the I/O stream ports.
We can read unlimited length of BDD data streams us-
ing a limited size of the memory, and the result of BDD
data streams are concurrently produced. Our streaming
method features that (1) it gives a continuous trade-o�
between the memory usage and the streaming data length,
(2) a valid partial result can be obtained before complet-
ing process, and (3) easily accelerated by pipelined multi-
processing.

Experimental result shows that our new method is
especially useful for the cases where conventional BDD
packages are ine�ective. For example, we succeeded in
�nding a number of solutions to a SAT problem using a
commodity PC with a 64 MB memory, where the conven-
tional method will require a 100 GB memory to compute
it.

BDD manipulation has been considered as an inten-
sively memory-consuming procedure, but now we can also
utilize the hard disk and network resources as well. Our
method will lead a new style of BDD applications.

1 Introduction
Boolean function manipulation is one of the most im-
portant techniques in digital system design and testing.
Binary Decision Diagrams (BDDs)[4] are now commonly
used for handling Boolean functions because of e�ciency
in terms of time and space. A number of BDD packages
(e.g. [3, 10, 14]) have been implemented and successfully
applied to many real-life problems.

In conventional BDD packages, BDD data are con-
structed in the main memory. As repeating logic op-
erations, the number of BDD nodes grows and grows,
and sometimes abortion (or terrible performance down)
occurs due to memory overow. In general, we cannot
know the peak BDD size beforehand, so we always have
to be afraid of memory overow. This is a common draw
back of BDD-based applications.

The cause of memory overow is that the BDD ma-
nipulation is based on the hash table technique to keep
the uniqueness of each BDD node. The hash table works
under the bene�t of the random access memory, and
thus, the performance falls down impractically when the
memory capacity is insu�cient.

In this paper, we propose a new BDD manipulation
method for processing unlimited BDD nodes with a lim-
ited size of hash table. It never causes memory overow

or swap out. BDD data are accessed through the I/O
stream ports. We use the main memory only for tem-
porary working space, while conventional method con-
structs the whole BDD data in the memory.

Some of existing BDD packages (e.g.[14]) also have a
function to save internal BDD data to a sequential �le on
the hard disk, however, they cannot load the BDD �le be-
yond the main memory capacity. In our new method, we
can read unlimited length of BDD data streams without
memory overow, and the result of BDD data streams
are concurrently produced. Our streaming method fea-
tures that (1) gives a continuous trade-o� between the
memory usage and the streaming data length, (2) a valid
partial result can be obtained before completing process,
and (3) easily accelerated by pipelined multi-processing.

This paper is organized as follows: First we review
the conventional BDD manipulation method in Section
2. We then describe our new BDD manipulation method
in Section 3. We present implementation issues and ex-
perimental results in Section 4. Finally we describe re-
lated works and concluding remarks in Section 5 and 6.

2 Conventional BDDManipulation
In general, BDDs are constructed by a sequence of logic
operations, starting from trivial, single-node BDDs. The
binary operation algorithm[4] to generate a BDD h for
the operation (f �g) is based on the following expansion:

f � g = v � (f(v=0) � g(v=0)) + v � (f(v=1) � g(v=1));

where v is the highest ordered variable in f and g. This
formula represents a new node with the variable v and
two sub-graphs generated by sub-operations (f(v=0) �

g(v=0)) and (f(v=1) � g(v=1)). Repeating this expansion
recursively for all the input variables, eventually trivial
operations appear (e.g. f �0 = 0, f�f = 0, etc.), and the
results are obtained. In this recursive procedure, a num-
ber of equivalent sub-operations may appear. To avoid
those redundant operations, the following two techniques
are used.

� Unique table: a hash table to identify all existing
nodes, so as not to create duplicated nodes.

� Operation cache: a hash-based cache to store re-
cent sub-operations and the results. If this cache
hits, further recursive calls are pruned.

Using these techniques, the logic operation can be carried
out in a time almost linear to the number of BDD nodes.



A typical BDD package is implemented as a set of
library calls in C or C++. BDD nodes are basically de-
�ned as an array of pointers in the program. The package
is linked with application programs in the compilation
process, and the memory block for the BDD nodes is al-
located at the run time. As repeating logic operations,
the BDDs grow in the memory, and sometimes fail to
compute (or terrible performance down) due to mem-
ory overow. BDD manipulation is very e�cient if the
memory size is su�cient, but otherwise not so.

A number of e�orts have been devoted to handle
large-scale BDDs beyond the memory limitation. Breadth-
�rst algorithm[11] is one of the solutions to this prob-
lem. This algorithm slices the BDD nodes for each input
variables, and manipulate them slice-by-slice. It reduces
random accesses to the hard disk. In addition, there is
a hybrid method[16] of breadth-�rst and the depth-�rst
manners to improve performance. However, the breadth-
�rst algorithm has a limitation that at least one slice of
the BDDs must be stored in the same hash table to keep
the uniqueness. If the \width of BDD" is too large, the
memory overow problem still remains.

There are some other works to distribute the BDD
data to the networked parallel machines[6, 15, 8]. In
these methods, we can handle the large-scale BDDs be-
yond the memory limitation of a single machine; how-
ever, they still need the total memory capacity to store
all the BDD nodes.

Consequently, the existing BDD packages commonly
have a limit of BDD nodes according to the memory
capacity, and they cannot avoid abortion due to memory
overow.

3 Streaming BDD Manipulation
In this section, we present a new algorithm of BDD ma-
nipulation based on the streaming data model.

3.1 Streaming Data Model

First, suppose the bit-stream data of the truth tables for
Boolean functions, as shown in Fig. 1. In this model, we
can compute a logic operation bit by bit serially using
no internal memory. However, the truth table represen-
tation always requires an exponential data length for an
n-input function.

We then consider the streaming BDD data model,
as shown in Fig. 2. The serial operation of a truth ta-
ble means a scanning of Boolean space in a �xed order.
This scanning corresponds to a depth-�rst traversal of
a BDD. If we serialize the BDD data into a stream �le
with a depth-�rst traversal, we can compute a logic op-
eration using no internal memory, as well as the truth
table computation.

Figure 3 illustrates the way of serialization. If we tra-
verse a shared sub graph every times repeatedly, the data
length also become exponential as well as the truth ta-
ble. However, such a duplicated traversal can be avoided
in the following way: if we �nd a node Nk already have
visited, the following traversal can be canceled just by

Figure 1: Streaming truth-table computation.

Figure 2: Streaming BDD computation.

Figure 3: Serialization of a BDD.

saying \Refer to N
k
" in the streaming data. To im-

plement this idea, we need a hash table to identify all
visiting nodes. In addition, if the same node appears
successively twice in the traversal, we can suppress the
second appearance. This is the similar idea to delete a
BDD node with the same destination of 0- and 1-edge.

If the hash table size is su�cient (i.e. all the nodes
can be identi�ed), the BDD data streams are just a se-
rialization of BDDs. The important di�erence is seen in
the case of memory shortage. If a part of BDD nodes are
missing from the hash table because of the memory limi-
tation, we sometimes fail to know the repeated visit of a
node, and a duplicated node may appear in the stream-
ing data. This means a drop of data compression rate.
More memory shortage will cause more falling down of
the compression rate. Notice that, even if we have no
memory for the hash table, the BDD data streams can
be computed robustly as well as the truth tables. This is
a great di�erence from the conventional BDD packages.

3.2 Data Format

Here we describe the streaming data format in our im-
plementation. First, we specify the hash table size at
the top. A BDD data stream must start with an integer
MaxID to specify the table size, and the BDD manipu-
lator knows the table size to see it. Each BDD node is
identi�ed by an integer ID from 1 to MaxID. The special
ID 0 represents the 0-terminal nodes. As we use comple-



Stream ::= MaxID Inv Node
Inv ::= '~' | /* empty */
Node ::= SavedNode | TempNode
SavedNode ::= '0' | ID

| '(' SavedNode ')'
| '(' SavedNode Inv SavedNode '):' ID

TempNode ::= '(' Node Inv Node ')'
MaxID ::= [1-9][0-9]*
ID ::= [1-9][0-9]*

Figure 4: Syntax of BDD data format.

0 0

1 ~0

a (0~0):1

b ((0~0):1)

c ~(((0~0):1))

ab+ c ~(((0~0):1)(1 0):2):3

a� b � c (((0~0):1~1):2~2):3.

ab+ ac (((0~0):1)(0~0):2):3.

ab+ bc + ac ((0(0~0):1):2(1~0):3):4.

Figure 5: Simple examples of BDD data streams.

ment edges[10], the 1-terminal is expressed as ~0.
Figure 4 shows the syntax of the data format in a

BNF-like description1. In this format, we describe a
node by a pair of parentheses enclosing the two child
nodes (0-child 1-child). The nested parentheses repre-
sent the structure of the graph. `�' is the inverter to
the following node. `:' de�nes an ID to the latest node
and registers it to the node table. SavedNode expresses
a node already stored in the table, and TempNode is a
temporary node to be lost immediately. A SavedNode

cannot have a TempNode in its child. An ID must be
referred after its registration. If a pair of parentheses
encloses only one node, it indicates that the two children
are equivalent. In our format, we do not need an explicit
notation of the input variable for each node because the
context of parentheses indicates the corresponding vari-
able2. Figure 5 shows some simple examples of BDD
data streams.

If the original BDD nodes are no more than MaxID,
the streaming BDD data uniquely represent Boolean func-
tions under a �xed variable ordering. If the table size
is insu�cient, the streaming data may become di�erent
representations for the same BDD. For example, Fig. 6
show the streaming BDD data for the same function in
di�erent MaxIDs: 30, 20, and 10. The original BDD re-
quires 24 nodes, so the table overow occurs when MaxID

= 20 or 10. In such cases, our format allows the recycle
use of a \orphan" node ID, which is not referred from
other nodes. For example, when MaxID = 10, the node
`1' to the `10' are stored in the table normally, but there
is no space to save the 11th node. We then erase the
orphan node `9' and recycle the ID for the latest node.
Consequently, the node `6' newly becomes orphaned, so
it can be recycled on the next time. If there are multiple

1Here we show a plain text format for easy debugging. A binary

format will be more compact.
2Our implementation employs run-length compaction for suc-

cessive parentheses: e.g. `((((((' into `(*6'.

30
(((((((0(0(0~0):1):2):3(2(1~0):4):5):6(5(4~0):7)
:8):9(8(7~0):10):11):12(11(10~(0 3):13):14):15)
:16(15(14~(13 6):17):18):19):20(19(18~(17 9):21)
:22):23):24.

20
(((((((0(0(0~0):1):2):3(2(1~0):4):5):6(5(4~0):7)
:8):9(8(7~0):10):11):12(11(10~(0 3):13):14):15)
:16(15(14~(13 6):17):18):19):20(19(18~(17 9):20)
:16):12).

10
(((((((0(0(0~0):1):2):3(2(1~0):4):5):6(5(4~0):7)
:8):9(8(7~0):10):9)(9(10~(0 3):6):9))(((8 10):9
(10~6):9)(9~(6(3 5):8):9)))(((((5 7):10(7~0):9)
:6(9~(0 3):8):6)(6~(8(3 5):10):6))(((9~8):6~(8
10):6)~(6(10(5 7):9):6)))).

Figure 6: Streaming data for \9sym".

Figure 7: Internal structure of the program.

candidates to be recycled, we choose one waiting for the
longest time. In this way, we can use the limited memory
space e�ciently.

3.3 Logic Operation

Figure 7 shows the internal structure of our implemen-
tation for binary logic operation. It has two BDD tables
for the input parts and one BDD table for the output
part. The table size of each input part is automatically
decided to see the top of the data stream (i.e. MaxID).
The table size of the output part can be set up by hand
(speci�ed in the command option).

The output part has a hash-based unique table and a
recycle queue to control memory usage. The input part
does not have such devices and simply reconstruct BDD
data sent from the upper-stream operation. At �rst, we
start parsing of the input data and store the BDD struc-
ture into the internal table. When a stored node ID reap-
pears in the input data, we suspend parsing and switch
the traversal to the internal table. After traversal of the
sub graph in the table, we resume parsing of the input
data.

The main part applies the logic operation for each
pair of corresponding BDD nodes of the two input parts,
and sends the result to the output part. As well as the
conventional BDD manipulation, we skip the redundant
sub-operations by using an operation cache. This enables
us to compute a logic operation in a time almost linear
to the I/O data length.

In the output part, we must consider the following



case: when creating a new node, the data may be in-
consistent since a child node might have been recycled.
To detect such a case, we attach a time-stamp to each
node to check the recycled use. If we detect incon-
sistency of a child node, we produce a TempNode in-
stead of SavedNode. When the BDD table size is much
more insu�cient, the node recycling occurs more fre-
quently, more TempNodes are produced, and the out-
put data grows longer. This method gives a continu-
ous trade-o� curve between the memory usage and the
streaming data compression rate.

Here we have discussed on the binary logic opera-
tions, but it is easily extended to the ternary (3-input)
operations by adding one more input part. The use of a
ternary operation will reduce computation time compar-
ing to twice of binary operations, although we need an
additional memory space for the extra input part. The
4-input (and more) operations are also possible in the
same way.

4 Experimental Results
We implemented a logic operation program to manipu-
late BDD data streams on the UNIX environment. The
program, named BDDstrm, is written in 2,000 lines of C
code. At �rst we write some trivial BDD stream �les,
and we then repeatedly execute BDDstrm to construct
the objective BDD streams. In the UNIX environment,
we can conveniently use the pipe connection of the two
or more processes in a command line.

BDDstrm has an option to limit the output data length.
The program automatically aborts at the speci�ed limit
to prevent hard disk overow. In this case, or whenever
we quit the process halfway, the incomplete output data
represents a valid result for partial Boolean space. We
can continue to apply the next operation to the incom-
plete output data stream. This is another feature of our
streaming manipulation method.

In addition, we implemented a program to save or
load our BDD data streams from/to a conventional BDD
manipulator. This enables us to link our new method to
the existing BDD-based programs.

4.1 Basic Performances

Here we summarize the basic performances of BDDstrm.

� Memory requirement:
12 Byte/node for each input BDD table.
31 Byte/node for the output BDD table.
(about a million BDD nodes in a 64MB memory.)

� Streaming data length:
5 to 15 Byte/node.
(about a million BDD nodes in a 10MB �le)

� Computation performance (I/O throughput):
0.3 to 0.5 MB/sec .
(about a million BDD nodes in 30 sec.)
on a Celeron 300A, 64MB, FreeBSD 2.6.

Figure 8: Trade-o� between memory vs. data length.

4.2 Trade-o�: Memory vs. Data Length

As discussed in Section 3, the output BDD data grows
longer when the hash table size is insu�cient. To show
the trade-o� curve of the data length for the table size
shortage, we conducted the following experiment. First
we provide a su�cient size of the hash table and count
the number of BDD nodes written in the output data.
We then gradually decrease the hash table size to observe
how the output data grows.

The results are shown in Fig. 8. \adder10" and \mult10"
are the 10 bit adder and multiplier. \8queens" is the so-
lution function of 8-Queens problem. The others are cho-
sen from MCNC'91 benchmark set. Since our program
only handles single-output functions, we picked up the
most (likely) complicated primary output in the circuit.
In the memory su�ciency notation, 100% ratio means
just enough to save the original BDD size.

In this experiment, we can see di�erent trade-o� curves
depending on the functions. For example, \mult10",
\8queens", and \cm150a" are not so sensitive to the
memory shortage up to only 10% or less. This means
that we can e�ciently handle more than ten times larger
BDDs beyond the memory capacity. On the other hand,
\parity", \c432", and \too large" are very sensitive. In
general, more shared BDDs are more sensitive to the
memory shortage.

Here we emphasize that the conventional BDD ma-
nipulation is anyway faced with memory overow prob-
lem even if the su�ciency ratio was 99%. Although
our method has some overhead in terms of data length
or computation time, it enables us to avoid the unpre-
dictable memory overow.

4.3 Solving SAT Problems

Many problems in LSI CAD and other �elds of Computer
Science can be formulated as a combinatorial problem to
satisfy a set of Boolean constraints. For instance, graph
coloring, the minimum ow, unate and binate covering,
and 0-1 linear programming are the popular examples.
SAT-based design veri�cation/validation is also a new
topic[13, 2] in recent years.



Table 1: Experimental results for solving N-Queens Problem.

N #Var Prev. Our method(No File Limit) (Lim:10MB) (Lim:1MB)
CPU(s) Peak Node Final Node #Sol. CPU(s) #Sol. CPU #Sol. CPU

8 64 14.3 4,928 2,450 92 33.1 92 33.1 92 33.1
9 81 22.6 15,389 9,556 352 50.6 352 50.6 352 50.6
10 100 37.2 76,882 25,944 724 85.7 724 85.7 724 85.7
11 121 97.2 331,331 94,821 2,680 278.9 2,680 278.9 (513) 161.3
12 144 395.1 1,503,336 435,169 14,200 1,214.8 (9,085) 971.6 (349) 218.3
13 169 MemOut 9,225,382 2,213,507 73,712 7,857.7 (4,892) 1,511.3 (210) 282.8
14 196 MemOut 51,638,490 12,884,133 365,596 59,479.7 (2,354) 1,968.8 (126) 365.9
15 225 MemOut - - - TimeOut (2,189) 2,551.1 (91) 449.3
16 256 MemOut - - - TimeOut (1,307) 3,038.2 (46) 517.5
17 289 MemOut - - - TimeOut (996) 3,598.1 (25) 651.2

(Ultra SPARC 30, 128MB Mem, 2.5GB free HD, SunOS 5.6)

Table 2: Pipelined multi-processing.

Solving 14-Queens
PCs Elapse(s) Ratio

1 72,991 1.00
5 14,716 4.96
10 9,652 7.56
25 5,414 13.48
50 3,996 18.27
100 2,547 28.66
(Each PC: Celeron 300A
64MB Mem, 1GB free HD,
FreeBSD 2.6, 100BaseT LAN)

Figure 9: Solving a SAT problem.

There are several works (e.g. [9, 12]) to solve SAT
problems using BDD manipulation. In the method, we
�rst generate BDDs for the respective Boolean constraints,
and then try to compute conjunction (AND operation)
of all the BDDs. The �nal BDD represents the set of so-
lutions to satisfy all the constraints. Unfortunately, we
are sometimes faced with memory overow for large-scale
problems.

We implemented a SAT-problem solver based on the
streaming BDD manipulation. As shown in Fig.9, we
prepare a BDD stream �le for each constraint, and com-
pute the conjunction by a cascade of streaming BDD
processors. In this system, an intermediate BDD stream
represents the \candidates" of solutions satisfying the
constraints have processed in the upper stream. In other
words, each processor �lters the candidates by a con-
straint, and �nally the solutions are extracted.

In this system, some of processors may produce dupli-
cated nodes when the memories are not su�cient, how-
ever, those redundant nodes can be eliminated in the
lower stream if the �nal result of BDD is not very compli-
cated. For example, if the problem is not satis�able, the
simple result \0" is produced from the �nal processor af-
ter the whole data have been processed. In other words,
when the �rst BDD node appears at the �nal output, im-
mediately we know the satis�ability. For a complicated
problem, the intermediate streams may grow unlimitedly
long, and we cannot know when it will be completed. If
we quit the process halfway, the incomplete output data
contains a partial set of solutions. This is a great dif-
ference from the conventional BDD manipulation, which
gives no solutions in the case of overow.

To evaluate the e�ect of our streaming manipulation,
we conducted experiments of solving N-Queens prob-

lems, as shown in Table 1. An N-Queens problem has
N2 places on the chessboard, so we preparedN2 Boolean
variables and N2 constraints to specify the problem. We
then compute the conjunction of all the Boolean con-
straints. The column \Prev." shows the CPU time to
solve the same problems using conventional BDD ma-
nipulation. They are a few times faster than our stream-
ing method for small N 's, but for N > 12, they cannot
�nd any solution due to memory overow. On the other
hand, our streaming method succeeded in generating all
the solutions up to 14-Queens beyond the memory lim-
itation. In addition, with the limited length of BDD
stream �les, we could generate a partial set of solutions
for larger N 's in a feasible computation time. This is
another great bene�t of our method.

If we use a single processor, we have to save a BDD
streaming �le into the hard disk on each logic operation.
Using multiple PCs, we can deploy the logic operations
to the PCs and directly connect their I/O ports. In this
way, the computation can greatly be accelerated accord-
ing to the number of PCs. Table 2 shows the results
of pipelined multi-processing on a networked PCs. In
this pipelining approach, we do not need shared mem-
ories or special devices for parallel computing. In our
experiment, we only used \rsh" and \mk�fo", which are
commonly supported in UNIX systems.

5 Related Works
Our method is deeply related to the universal data com-
pression theory. Most of �le compression programs (e.g.
\compress", \zip", etc.) are based on Ziv-Lempel
compression[17], presented in twenty years ago. This al-
gorithm stores the recent data into the internal table,
and if the same sub-string appears more than once, puts
out only the address of the sub-string stored in the ta-
ble, instead of printing the sub-string. There are a lot of
variations[1] of this method on the partitioning of sub-
strings and the implementation of the dictionary. There
are many intensive theoretical works in this �eld.

Our streaming BDD manipulation can also be re-
garded as a kind of the data compression method based
on the BDD reduction rules. A big di�erence is that



our BDD data streams can be processed without decom-
pression, while usual compressed data �les have to be
decompressed before applying meaningful operations. It
will be interesting to discuss the BDD techniques on the
aspect of data compression theory.

6 Concluding Remarks
BDD manipulation has been considered as an intensively
memory-consuming procedure; however, it will be hard
to get a 10GB or 100GB monolithic memory block in the
near future. The streaming manipulation enables us to
utilize disk storage and networked resources as well. Our
method will lead a new style of BDD applications.

Currently, our streaming method has the following
limitations.

� Variable order cannot be changed dynamically.

� Quanti�cation operation (e.g. AND-EXIST) can-
not be executed in a simple pipelined processing.

On the �rst point, dynamic variable ordering is some-
times very powerful to reduce the BDD size. Unfortu-
nately, our streaming method cannot change the parsing
order of
Boolean space during the process. It will be a good way
to apply variable reordering for a sample BDD on the
memory, and then retry the streaming operations for the
whole function from the beginning.

On the second point, the quanti�cation operation re-
quires folding of a BDD stream. This is hard for stream-
ing computation without unlimited random access mem-
ories. In other word, it is so far di�cult to directly ap-
ply our streaming method to the symbolic model check-
ing. However, SAT-based design veri�cation/validation
method is also a new topic in recent years[13, 2], and
there are many other LSI CAD applications in the NP
or co-NP class. Our streaming method is useful for those
applications.

Lastly, it will be another interesting future work to
consider streaming manipulation for some extended BDDs,
such as MTBDDs[5] or EVBDDs[7].

References
[1] T. Bell, I. H. Witten, and J. G. Cleary. Modeling for text

compression. ACM Computing Surveys, 21(4):557{591,
Dec. 1989.

[2] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and
Y. Zhu. Symbolic model checking using SAT procedures
instead of BDDs. In Proc. of 36th ACM/IEEE Design
Automation Conference (DAC'99), pages 317{320, June
1999.

[3] K. S. Brace, R. L. Rudell, and R. E. Bryant. E�cient
implementation of a BDD package. In Proc. of 27th
ACM/IEEE Design Automation Conference (DAC'90),
pages 40{45, June 1990.

[4] R. E. Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Trans. on Computers, C-
35(8):677{691, Aug. 1986.

[5] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita,
and J. Yang. Spectral transforms for large Boolean
functions with applications to technology mapping. In
Proc. of 30th ACM/IEEE Design Automation Confer-
ence (DAC'93), pages 54{60, June 1993.

[6] S. Kimura and E. M. Clarke. A parallel algorithm
for constructing binary decision diagrams. In Proc. on
IEEE/ACM International Conference on Computer De-
sign (ICCD-90), pages 220{223, Sept. 1990.

[7] Y.-T. Lai, M. Pedram, and S. B. Vrudhula. FGILP: An
integer linear program solver based on function graphs.
In Proc. of IEEE/ACM International Conference on
Computer-Aided Design (ICCAD-93), pages 685{689,
Nov. 1993.

[8] K. Milvang-Jensen and A. J. Hu. BDDNOW: A parallel
BDD package. In Formal Method in Computer-Aided
Design (Proc. of FMCAD-98), LNCS-1522, pages 501{
507. Springer, June 1998.

[9] S. Minato. BEM-II:an arithmetic Boolean expression
manipulator using BDDs. IEICE Trans. Fundamentals,
E76-A(10):1721{1729, Oct. 1993.

[10] S. Minato, N. Ishiura, and S. Yajima. Shared bi-
nary decision diagram with attributed edges for e�-
cient Boolean function manipulation. In Proc. of 27th
ACM/IEEE Design Automation Conference (DAC'90),
pages 52{57, June 1990.

[11] H. Ochi, Y. Kouichi, and S. Yajima. Breadth-
�rst manipulation of very large binary-decision dia-
grams. In Proc. of IEEE/ACM International Conference
on Computer-Aided Design (ICCAD-93), pages 48{55,
Nov. 1993.

[12] H. G. Okuno. Reducing combinatorial explosions in solv-
ing search-type combinatorial problems with binary de-
cision diagram. Trans. of Information Processing Soci-
ety of Japan (IPSJ), (in Japanese), 35(5):739{753, May
1994.

[13] J. P. M. Silva and K. A. Sakallah. GRASP|a
new search algorithm for satis�ability. In Proc. of
IEEE/ACM International Conference on Computer-
Aided Design (ICCAD-96), pages 220{227, Nov. 1996.

[14] F. Somenzi et al. CUDD: CU deci-
sion diagram package. Public Software.
http://vlsi.colorad.edu/~fabio/CUDD.

[15] T. Stornetta and F. Brewer. Implementation of an
e�cient parallel BDD package. In Proc. of 33th
ACM/IEEE Design Automation Conference (DAC'96),
June 1996.

[16] B. Yang, Y.-A. Chen, R. E. Bryant, and D. R.
O'Hallaron. Space- and time-e�cient BDD construc-
tion via working set control. In Proc. of Asia and South
Paci�c Design Automation Conference (ASPDAC-98),
pages 423{432, Feb. 1998.

[17] J. Ziv and A. Lempel. A universal algorithm for sequen-

tial data compression. IEEE Trans. Inform. Theory, IT-
23(3):337{343, Mar. 1977.


	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index


