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Abstract

The Nintendo GameCube(tm) video game console
system is designed to outpace all other such systems
when released. Formerly known by the codename
Dolphin, this system includes an IBM PowerPC(tm)
processor and specialized hardware from ATI. This
specialized hardware is embodied in ATI’s Flipper chip,
the centerpiece in the Dolphin design. Flipper functions
as the graphics processor, audio processor, host
controller, memory controller, and I/O processor of the
Dolphin system. Such a complex chip requires a very
robust design flow to get to functioning silicon in as little
time as possible. Here we will describe that design flow,
developed by ATI engineers to implement the Flipper
design. The goal was to develop a flow to implement the
best gaming hardware on a chip that needed to be as cost-
effective as possible. There were many challenges the
design offered, requiring optimal use of a small design
team with a minimal budget to achieve aggressive
schedules. The biggest challenge the team was presented
was that of area. With high volumes, chips for consumer
devices can benefit greatly from smaller die sizes, due in
part to higher yields and also in part to lower power and
cheaper packages. Another daunting challenge the design
offered was that of the use of embedded DRAM. The
Dolphin architecture called for the use of an embedded
frame buffer and texture memory buffer for fast access.
These embedded DRAM were naturally very large in size
and presented interesting physical problems. During the
architecture definition and RTL coding stages, the design
team made sure to consider the implications on the
physical implementation of the chip. This was evident in
the lack of false and multi-cycle timing paths in the
design. It was also evident in the lack of critical timing
paths between blocks due to the use of registers at most
interfaces. The ATI design team realized from experience
that it is easier to solve these problems early in the design
cycle. Once the first synthesized chip netlist was ready,
we proceeded to floorplan the chip. Due to our extreme
necessity to reduce area, we decided that we would not
use a traditional hierarchical floorplanning methodology
but instead one without any top-level cells or routing,
with each block abutting to another. This tile-based
approach offered many benefits in addition to reduced

area. By not having any cells or routing at the top-level,
we were able to reduce, if not remove, the need for
running full-chip RC extraction, LVS, DRC, and antenna
checks. The tile-based approach also presented a number
of problems that existing floorplanning tools could not
handle at the time and so we decided to write our own
tool. Among the problems was how pins, feedthroughs
and fanout among the various blocks and tiles were
handled. We decided that our floorplanner would also be
an integrated netlisting tool that could group portions of
the netlist both logically and physically. We also decided,
for simplicity’s sake, that we would integrate the pad ring
into the tiles. This eliminated the need for cutouts or
wasted space for IO pads of varying size. The pad ring
itself was created using internally written tools that
created from an ordered list not only the physical location
of each IO cell and bond pad but also the RTL for each
IO cell as well as the RTL associated with each IO cell
(e.g., input receiver and output driver flops). We decided
not to integrate this associated RTL, what we called near-
pad logic, into the actual IO cell so that we would have
the flexibility to change the design at a late stage in the
schedule. This near-pad logic was placed by the
floorplanning toolset in the nearest standard cell row to
the IO cell. Other macros, such as SRAM, ROM, and
eDRAM macros were placed using a Logo/Turtle style
programming language that allowed great flexibility
when the overall floorplan changed slightly. Ultimately,
the large eDRAM macros, approximately 35% of the core
area of the chip, and the pad ring design, defined by board
restrictions, forced a single floorplan to be used on the
design. Once we had the initial floorplan, we decided to
develop a place-and-route flow that had as its main goal a
3-day turnaround time from netlist generation to GDSII.
This required a high-level of automation so as to
minimize the need for human intervention and maximize
the use of computer time. We decided to use point tools,
mostly from Cadence, driven by dependency-driven
Makefiles to automate the process as much as possible.
We developed our own scripting interface to the Cadence
tools using Perl. Though the basic flow was mostly the
standard Cadence timing-driven flow using QPlace,
CTGen, PBOpt, and Warp Route, we developed our own
tools for such tasks as pin optimization and scan stitching.
For these and other internal tools, we developed a



physical database format, based on the DEF format,
which we could use to access a design as quickly as
possible. This database had the underlying code written in
C that we accessed through Perl using SWIG as our
interface generator. We also created a complementary
database to represent the various physical and logical
views of the library elements. The two databases allowed
us to quickly write tools that could process our design
data in a fast and efficient manner. During the RTL
coding, floorplanning and place-and-route process, we
came upon methodologies to handle power grid design,
clock tree design (including use of gated clocks for power
savings), and various signal integrity problems. Among
the signal integrity problems we tackled were crosstalk.
Not having access to the still immature crosstalk analysis
tools, we decided we would prevent problems by design.
We ensured that all our wires had low slew rates,
especially on long wires, to reduce the likelihood of
coupling. Once done with the place-and-route process, we
verified the design hierarchically by extracting at the tile
level using Simplex Fire & Ice QX and combining the
parasitic information to be used by the timing tools at a
full-chip level. We ran timing analysis in more than just
the normal best- and worst- case corners by scaling our
RC parasitic information to reflect metal etching issues.
This provided an extra margining that would not have
been taken into account otherwise. For physical
verification including LVS, DRC, and antenna, we were
able to run most of the checks using Mentor Graphics
Calibre only at the tile level and do rudimentary checks at
the chip level, thereby saving precious system resources
and shortening the schedule. To fix timing problems
remaining after the place-and-route process or to fix logic
bugs that were found after the place-and-route process,
we developed an ECO language that the designers could
use. This language, similar in nature to the Synopsys
netlist editing capability, allowed the designers to edit the
physical and logical netlists at the same time. We also

 developed tools to analyze the timing reports and fix
most common problems including setup, slow node, hold,
and gated clock violations automatically. In addition, we
developed tools to analyze and fix certain post-route DRC
and antenna problems automatically. All these tools were
based on our internally developed databases and thus
were able to operate on the DEF very efficiently and
quickly. For netlist verification, we generated a
hierarchical Verilog netlist from the DEF using an
internally developed tool, the result of many frustrations
with the equivalent Cadence tool. We ran LVS using this
netlist and the GDSII. Since the netlist was generated
from DEF, this only verified the quality of the Cadence
place-and-route tools but did not verify the logical
functionality of the netlist. To verify this, we used the
Tuxedo-LEC tool from Verplex to guarantee equivalency
of the pre- and post-route netlists. We also used the
Tuxedo-LEC tool to verify logical ECOs by comparing
RTL to synthesized netlist to post-ECO netlist. Finally,
we rounded out our netlist verification with full-chip
gate-level simulations, including critical scan and reset
simulations. For final integration, we wrote a set of our
own GDSII processing utilities. This saved us the time,
resources, and cost required to use tools like Design
Planner or Virtuoso to do the same tasks. The end result
of all this work was a chip that taped out on schedule
while still meeting the area goals we set for ourselves. We
learned through the experience that a well-defined, highly
automated design flow is crucial for success. We also
learned that it is possible to develop a design flow that
successfully unites tools from various EDA vendors with
our own internal ones. We also learned that though
developing internal tools may be required for certain
tasks, we as a design team are not capable of supporting
too many of these tools. In the future, we expect to
continue developing our own internal tools, but also
expect to depend heavily on EDA vendors for our
success.
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