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Abstract

Cache misses form a major bottleneck for real-time mul-
timedia applications due to the off-chip accesses to the main
memory. This results in both a major access bandwidth over-
head (and related power consumption) as well as perfor-
mance penalties. In this paper, we propose a new technique
for organizing data in the main memory for data dominated
multimedia applications so as to reduce majority of the con-
flict cache misses. The focus of this paper is on the formal and
heuristic algorithms we use to steer the data layout decisions
and the experimental results obtained using a prototype tool.
Experiments on real-life demonstrators illustrate that we are
able to reduce upto ��� % of the conflict misses for applications
that are already aggressively transformed at the source-level.
At the same time, we also reduce the off-chip data accesses
by upto 78% and combined with address optimizations we are
able to reduce the execution time. Thus our approach is com-
plimentary to the more conventional way of reducing misses
by reorganizing the execution order.

1 Introduction and Related Work

The ever increasing gap between processor and mem-
ory speeds has motivated the design of systems with deep
memory hierarchies. Most data-dominated multimedia appli-
cations do not use their cache efficiently and spend much of
their time waiting for memory accesses [1]. This also implies
a significant additional cost in increased memory bandwidth
due to power consuming off-chip accesses to the main mem-
ory apart from increasing the average memory access time.

In this work, we are mainly targeting the embedded
real-time multimedia processing (RMP) application domain
which is an important growing market. Algorithms in there
lend themselves to very good compile-time analysis and very
aggressive data locality improving methods can be applied
[6, 18]. Although embedded RMP applications are relatively
regular, but certainly not perfectly linear/affine in the loop and

index expressions, the simultaneous presence of complex ac-
cesses to large working sets makes most of the existing ap-
proaches to largely fail in taking full advantage of the local-
ity. According to [9], for StrongARM SA-110 about 43% of
the total power consumption was due to the primary cache.
Hence a maximal reduction of cache misses is of crucial im-
portance.

Source-level program transformations to modify the ex-
ecution order can improve the cache performance of these ap-
plications to a large extent [5, 10, 13, 14, 15] but still a signif-
icant amount of cache misses are present. Similarly storage
order optimizations [5, 6] are very helpful in reducing the ca-
pacity misses. Thus mostly conflict cache misses related to
the sub-optimal data layout remain. Array padding has been
proposed earlier to reduce the latter [16, 18, 20]. These ap-
proaches are useful for reducing the (cross-) conflict misses to
some extent. However existing approaches do not eliminate
the majority of the conflict misses. Besides [3, 10, 18, 20],
very little has been done to measure the impact of data lay-
out(s) on the cache performance. Thus there is a need to
investigate additional data layout organization techniques to
reduce these remaining cache misses.

The fundamental relation which governs the mapping of
data from the main memory to a cache is given below :
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(1)

Based on the number of lines in a set one can define direct
mapped, n-way associative and fully associative cache [19]. It
is clear that, if we arrange the data in the main memory so that
they are placed at particular block addresses depending on
their lifetimes and sizes, we can control the mapping of data
to the cache and hence (largely) remove the influence of as-
sociativity on the mapping of data to the cache. The problem
is however that trade-offs normally need to be made between
many different variables. This requires a global data layout
approach. This has been the motivation for us to come up with
a new formalized and automated methodology for optimized
data organization in the higher levels of memory, termed as
the main memory data layout organization in the sequel. The
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formalized heuristic algorithm(s) to steer this forms our main
contribution in this paper. They have been implemented in a
prototype tool and its effectiveness will be demonstrated on
real-life applications.

The remaining paper is organized as follows: Section 2
presents an example illustration of the proposed main mem-
ory data layout organization methodology. This is followed
by the introduction of the general memory data layout orga-
nization problem and the potential solution(s) in section 3.
Experimental results on two large real-life applications and
three smaller test-vehicles are presented in section 4. Some
conclusions from this work are given in section 5.

2 Example Illustration

We now illustrate our data organization methodology on
a compact but still representative real-life test vehicle namely
a full search motion estimation kernel with four pixel accu-
racy [2]. This illustration is mostly qualitative, a more formal
and quantitative approach is presented in section 3.

Typically, the memory allocation in traditional com-
piler/linkers is single contiguous and no cache parameters are
taken in to account for this process. This is indicated as initial
in figure 1. The second case in figure 1, indicated as improved
initial, whose data layout is modified so as to incorporate the
cache size. We have modified the base addresses of the arrays
taking into account their life-times and cache size1. The third
case in figure 1 is data layout optimized, where we first split
the existing arrays and then merge them into groups based on
the cache size and the line size, as explained in the succeeding
sections. This data organization can be imposed on the linker
by carefully rewriting the code (see [12]).

In the present example, we observe that, initially vari-
ables

/ � �����)- (�� ��� � and � ������+ 
 � ��� �	� � are mapped using the re-
lation in equation 1. Thus whenever elements of

/ � �����3- (�� ��� �
and � ���
��+ 
 � ��� �	� � are separated by a distance of the cache
size, they will conflict with each other and cause additional
cache misses. But for the data layout optimized case, variable/ � �)���)- (�� �	� � and � ������+.
 � ��� ��� � can be mapped only to (mutu-
ally exclusive) cache locations 0 to 240 and 240 to 480 re-
spectively. Thus we have eliminated the cross conflict misses
altogether. A similar explanation holds for variables �
��� � �	� �
and �
��� � �	� �

. In addition, since the number of partitions, due
to tile sizes, of

/ � �����)- (�� �	� � and � ������+ 
 � ��� ��� � does not match
those of �
��� � �	� �

and �
��� � ��� �
, we have to let some of the lo-

cations, corresponding to the multiple of base address(es) of
�
��� � �	� �

and ����� � ��� �
, remain empty so as to avoid the map-

ping of other variables on to those locations in cache. Thus
we have some overhead in memory locations, in the present
example 1%, but this is very reasonable and acceptable in our
target domain as motivated in section 1. We impose the mod-

1By doing so we have eliminated some possibilities of cross conflict
misses.

ified data layout by means of complex addressing of the form�*� +.- ��� � ���	( + �!���3+�������������� �! ��"�� #��%$��'& � 1 ��2 ���3+����(� 
$# # �)�)(*�
. Note

that the complexity in addressing can be removed to a large
extent using the address optimizations proposed in [7]. The
effectiveness of that stage will be shown in section 4.
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Figure 1. The initial and final data organizations
for the motion estimation kernel.

We note that by performing the data layout organization
as illustrated above, we are able to decrease the miss rates
by upto 82% and reduce the write backs by upto 50%. More
detailed results on different test-vehicles are available in sec-
tion 4.

3 Data layout organization algorithm

In this section we present the algorithm to perform data
layout organization that can be integrated in a compiler. First
we will present a complete problem formulation involving the
two stages namely the tile size evaluation and the array merg-
ing. To deal with complex realistic applications the optimal
solution would require too much CPU time. So we have also
developed a heuristic, which has been automated as a major
step in the Acropolis source-to-source (C-to-C) precompiler.

3.1 Assumptions

We make two assumptions (be)for applying the data lay-
out organization technique to any program: (1) Only the stor-
age order of the program can be modified and all transfor-
mations which modify the execution order (like loop trans-
formations [14, 15]) have already been applied and (2) Loop
blocking [15] has been applied successfully and so is in-place
data mapping [5] which ensure that the number of capacity
misses is minimal. This is indeed the case, as observed in the
experimental results (see section 4).
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3.2 Basic terms

The following terms are used in this paper and they are
interpreted (and defined) as below :

1. Effective Size : The total number of elements of an
array accessed in a loop nest represents the effective size
(
� %��

) of the array in the particular loop nest.

2. Tile Size : The total number of contiguous lines of
(main) memory allocated to an array in the cache is
termed as tile size ( � � ) of the particular array.

3. Reuse Factor : The ratio of total number of accesses
to an array in a particular loop nest and the effective size
of that array in the loop nest is termed as the reuse factor
( ��� � ) of that array in the particular loop nest.

3.3 Problem formulation

The general main memory data layout organization
problem for conflict miss reduction can be stated as,“For a
given program with m-loop nests and n-variables (arrays),
obtain a data layout which has the least possible conflict
misses”. This problem has two sub-problems. First, the
tile size evaluation problem and secondly the array merg-
ing/clustering problem. Before discussing the sub-problems,
we first introduce the cache miss model which can be used to
drive the optimization process.

3.3.1 Cache miss model

We now briefly present the cache miss model used to drive
the optimizations in this work2. The conflict miss estimation
has two main components namely the cross-conflict misses
and the self-conflict misses. The main cost function used for
this estimate and the algorithm used to estimate the number of
misses are provided in figure 2. A more detailed explanation
is omitted due to lack of space. It can be found in [12].

3.3.2 Tile size evaluation problem

The problem of tile size evaluation refers to the evaluation of
the size of sub-array(s) for a given array (as shown in figure 1
and illustrated in section 2). Let � � be the tile size of the array+

and
/

be the cache size. For a given program we need to
solve the � equations below to obtain the needed (optimal)
tile sizes. This is required because of two reasons. Firstly, an
array can have different effective size in different loop nests.

2The cache miss model is presented here for completeness of the work
and is not the main focus of this paper.
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Figure 2. Pseudo-code for evaluating the total
number of conflict misses in a given algorithm.

The second reason is that different loop nests have different
number of arrays which are simultaneously alive.

Z\[^] � [ � �`_ � �ba �dc�c�c�� � �fe /
cgc�c�c

ZYhi] � [kj
hml [$n � � _ j

hml [$n � � a j
hml [$n �dc�c�c�� � � j

hml [$n e /
(2)

The above equations need to be solved so as to : (1)
minimize the conflict misses obtained from algorithm in fig-
ure 23, (2) ensure that oqp � � e � 1 � � � % � � and (3) ensure
that � � � 
�� Zr] o , where

+ ]ts c�c�c3-
. The optimal solution

to this problem comprises solving an ILP problem [17], which
requires large CPU time for complex applications. Also, note
that we can ensure an optimal solution only by imposing a
strict equality to

/
in the above equations but for

- pu� 4,
the strict equality does not guarantee a result and hence we
use an inequality. To overcome this practical limitation, we
have developed heuristics which provide good results in a rea-
sonable CPU time, as demonstrated in section 4.

3.3.3 Array Merging/Clustering Problem :

We now further formulate the general problem using the loop
weights for the heuristic approach. The weight in this context
is the probability of conflict misses calculated based on the
simultaneous existence of arrays for a particular loop-nest i.e.
sum of effective sizes of all the arrays as given below :

ZVv � ] �w
��x [

� % � (3)

Hence, now the problem to be solved is, which vari-
ables to be clustered or merged and in what order i.e. from
which loop-nest onwards so as minimize the cost function.
Note that we have to formulate the array merging problem

3In practice, we can also incorporate a model like cache miss equations
[8] which should provide accurate cache miss information to be plugged into
this framework.

4The total number of variables are less than the total number of loop nests.
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this way because, we can have many tile sizes for each array5

and there can be different number of arrays alive in different
loop nests. In the example illustration in section 2 we have
only one loop nest and hence we did not need this extension.
Using the above considerations, we can identify loop nests
which can potentially have more conflict misses (and assign
corresponding weights) and focus on clustering arrays in the
highest weighted loop nests (first).

3.4 Heuristic solution

We now discuss a pragmatic solution for the above prob-
lem. This solution makes use of a heuristic approach, which
is less complex and faster from the point of view of imple-
mentation in a tool. The approach comprises the five steps
explained below:

1. In the first step, we perform all the analysis. We evaluate
the effective size of each array in each loop nest. Next,
we also evaluate the number of accesses to every array
in every loop nest.

2. In the second step, for every loop nest we evaluate the
loop weights using the relation in equation 3.

3. Now, we visit the loop nest with highest loop weight.
And we evaluate the individual array weights, where the
array weight is the sum of reuse factors for the particu-
lar array in all the loop nests where it is alive times the
effective size of the array in the considered loop nest.

4. In the fourth step, we obtain the tile size of all the arrays
in the loop nest by proportionate allocation. The latter al-
locates larger tile sizes (in multiples of cache line sizes)
to arrays with larger array weights and vice-versa. Once
the tile size is obtained, we obtain the offset of the array
in the cache through a global memory map used to keep
track of all the array allocations.

5. We repeat the steps three and four for the loop nest with
the next highest loop weight and so on, till all the ar-
rays are covered. We perform code generation to fix the
obtained data layout.

Note that in the above approach, we have solved both the tile
size evaluation problem as well as the array merging problem
in one step (step four). As mentioned earlier, this heuristic has
been automated in a prototype C-to-C precompiler, which is
based on the pseudo code shown in figure 3.

4 Experimental Results

In this section we present the experimental results ob-
tained by applying the above discussed data layout organiza-

5In the worst case, one tile size for every loop nest in which the array is
alive.

begin
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end

end
end

Figure 3. Pseudo-code for the heuristic data
layout organization technique.

tion tool on two large real-life demonstrators and three other
(smaller) test-vehicles. The execution times were obtained
after applying address optimizations [7] on the data layout or-
ganized code.

4.1 Metrics used

We have used three (main) metrics in this paper namely
miss rate, memory bandwidth and power consumption. The
memory bandwidth refers to the sum of number of cache
misses and the number of write backs from the data cache
to the off-chip main memory (on the system bus). The power
consumption in the memories is evaluated using the power
model similar to [13] and base energy values from [4]. Apart
from the above three main metrics, in the experiments we
have also included the total execution time of the program as
well as the total number of instructions to provide a complete
picture of the data layout organization technique.

4.2 Experimental setup

The experimental setup comprises two parts: (1) The
prototype C-to-C precompiler is coupled to the cache simula-
tor and the processor (board). We thus obtain the transformed
C code from the prototype data layout transformation tool and
compile this transformed C code with native compiler of the
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simulator or the processor. (2) We have used the SimpleScalar
simulator tool set [21] in this work for simulating cache per-
formance for varying cache sizes. We have also used real
processors for observing performance. The processors used
are PA-RISC 8000 and MIPS R10000.

4.3 Results and discussion

We present a discussion of the experimental results ob-
tained in this section. We will discuss the impact of data lay-
out organization technique on the data cache miss rate as well
as on the number of off-chip data accesses. Followed by this
we will briefly discuss the influence of the data layout or-
ganization technique on the number of instructions and the
number of cycles.

Table 1 shows the miss rate and the number of off-chip
accesses for the cavity detection and the QSDPCM algo-
rithms. We observe that the miss rate is consistently reduced
by 65-70% on the average and for some cases it is reduced
by upto 82%. This implies that we are able to remove a large
majority of the conflict misses by the data layout organization
technique. Note that our data layout organized code on direct
mapped cache is able to outperform the initial code even on a
2-way associative cache6 in terms of miss rate. The reduction
in the number of off-chip accesses also follows a similar pat-
tern as observed in table 1, which also means that the data lay-
out technique is able to reduce the write backs apart from the
conflict misses. Table 1 also shows that the miss rate and the
number of off-chip accesses for the SOR, the motion estima-
tion and the 2d convolution algorithms. Here too we observe
that the miss rate reduces consistently and so are the off-chip
accesses, confirming again the large impact of the data layout
organization technique. Also, we note that the initial cav-
ity detection algorithm on a direct mapped cache consumes
146mW, 177mW, 312mW for 512 byte, 1Kbyte and 2Kbyte
cache sizes respectively [4]. The corresponding data layout
organized algorithms requires 79mW, 151mW and 286mW
respectively. This illustrates the reduction in power consump-
tion due to our technique.

Our initial goal was to achieve the performance (in terms
of miss rate) of a fully associative cache using a direct mapped
cache. This study was intended to show that by increasing
the control complexity in the compiler, we can reach a per-
formance close to the complex hardware control embedded
in a fully associative cache (which is much more expensive in
terms of power and area). We have achieved this goal because
we are within 18% of the theoretical limit, as seen in table 1.
Note that the data layout organized case for a direct mapped
cache (6.39% miss rate) performs better than the initial two
way associative case (9.92% miss rate), which illustrates that

6A 2-way associative cache also consumes more power than a direct
mapped since the number of tag bits increase (more bit lines and related
switching activity) and the increase in number of comparators.

Miss Rate Mem BW
512 1K 2K 512 1K 2K

Cavity Detection
Initial - DM 35.5 9.10 5.72 43.88 12.84 8.32

DL Orgd - DM 6.39 3.90 2.30 9.26 5.65 3.48
Initial - FA 1.95 0.25 0.25 2.93 0.49 0.44

Initial - 2Way 9.92 5.44 2.37 13.5 7.84 3.54
DL Orgd - 2Way 3.2 1.50 1.30 4.41 2.27 1.98

Initial - FA 1.95 0.25 0.25 2.93 0.49 0.44
QSDPCM

Initial - DM 13.78 9.85 7.14 15.74 11.25 8.21
DL Orgd - DM 9.39 5.18 2.98 11.40 6.20 3.65

Initial - FA 2.3 2.12 1.58 2.93 2.63 2.12
SOR

Initial - DM 86.40 78.21 45.50 94.90 86.63 49.80
DL Orgd - DM 51.37 46.09 34.79 58.70 53.40 38.90

Initial - FA 37.22 29.37 29.37 40.87 31.40 25.42
Motion Estimation

Initial - DM 60.63 60.20 47.53 62.38 62.32 49.41
DL Orgd - DM 48.60 37.30 26.30 49.44 38.10 27.10

Initial - FA 1.16 1.12 1.11 1.84 1.21 1.11
2D Convolution

Initial - DM 13.69 8.77 5.60 14.94 9.80 6.51
DL Orgd - DM 9.40 3.87 3.10 10.50 4.60 3.90

Initial - FA 1.59 1.59 1.59 2.35 2.23 1.76

Table 1. Cache miss rates and the memory
bandwidths for different algorithms and differ-
ent associativities of cache. Cache size are
in bytes, DM stands for direct mapped and FA
stands for fully associative.

our technique is able to outperform a 2-way associative cache
without paying the hardware overhead in power and area.

We have earlier shown the impact on the data cache miss
rates due to the data layout organization technique. The actual
implementation of this technique involves modification of ad-
dress values, which adds to the number of instructions. Ta-
ble 2 shows the number of cycles as well as the number of in-
structions for cavity detection algorithm on SimpleScalar ma-
chine simulated (sim-outorder) with a 512 byte direct mapped
data cache, 2Kbyte 4-way instruction cache, single cycle ac-
cess on a cache hit, a penalty of 18 cycles on a miss and
no level two caches. Note that the overhead in instructions
is approximately 21%. We observe that we are able to gain
in the total cycles due to the reduction in conflict misses for
the data cache by 82% even though there is an increase in
the total number of instructions. It is worth noting that the
Simplescalar architecture has dedicated instructions for inte-
ger division, which is a single cycle access. This though is
not true for any of the existing (commercial embedded) pro-
cessors. We perform systematic address code transformations
[7] on this code. We now use existing processors to illustrate
that we can remove all the overhead in cycles due to complex
addressing and reduce the number of cycles even further due
to reduced cache misses. The address transformations espe-
cially target the integer division and modulo’s introduced by
the data layout technique. Table 3 shows that indeed we are
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able to remove majority of the overhead for both the cavity
detection and motion estimation algorithms for two different
platforms. However note that the impact of these transfor-
mations is highly platform and application specific and hence
there is a need for tool support for these steps to explore dif-
ferent alternatives. Additional results on this technique are
available in [11].

Initial code Data layout organized

# cycles 290M 230M
# instructions 323M 391M

Table 2. Simulated Number of cycles and num-
ber of instructions for cavity detection algo-
rithm.

Initial Global Trf Global Trf + DL
+ Adopt + Adopt

Cavity Detection
Exec Time (PA-8000) 0.77s 0.23 0.26s

Exec Time (MIPSR10k) 2.90s 1.19 0.97s
Motion Estimation

Exec Time (PA-8000) - 80ms 50ms
Exec Time (MIPSR10k) - 218ms 211ms

Table 3. Execution time for cavity detection and
motion estimation algorithms.

5 Conclusion

In summary we observe the following from the above
results: (1) The data layout organization technique is able to
reduce conflict misses significantly for all the drivers for dif-
ferent cache sizes. For larger real-life applications like cavity
detection and QSDPCM we are able to achieve upto 82% re-
duction in the conflict misses, and (2) For embedded systems
which are bandwidth constrained, this technique is able to re-
duce the off-chip accesses to a large extent. This is a signifi-
cant design issue which makes this technique much more use-
ful than existing techniques focusing solely on performance.
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