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Abstract

We consider the optimal placement of hardware mod-
ules in space and time for FPGA architectures with re-
configuration capabilities, where modules are modeled as
three-dimensional boxes in space and time. Using a graph-
theoretic characterization of feasible packings, we are able
to solve the following problems:
(a) Find the minimal execution time of the given problem

on an FPGA of fixed size,
(b) Find the FPGA of minimal size to accomplish the tasks

within a fixed time limit.
Furthermore, our approach is perfectly suited for the treat-
ment of precedence constraints for the sequence of tasks,
which are present in virtually all practical instances. Addi-
tional mathematical structures are developed that lead to a
powerful framework for computing optimal solutions. The
usefulness is illustrated by computational results.

1 Introduction

A Field-Programmable Gate Array (FPGA) typically
consists of a regular rectangular grid of equal configurable
cells (logic blocks) that allow the prototyping of simple
logic functions together with simple registers and with spe-
cial routing resources (see Figure 1). A particular design
is realized by customizing a configuration: In traditional
SRAM-based chips, this can be done at power-up by load-
ing a configuration bit-stream serially into the chip. These
chips may only be reconfigured as a whole with typical re-
configuration times ranging in the order of milliseconds.

Today, new generations of FPGAs have become par-
titionable and dynamically reconfigurable, even partially.
These chips (see e.g. [1, 24]) may support several indepen-
dent or interdependent tasks and designs at a time, and parts
of the chip can be reconfigured quickly during run-time.

For a start, the reader may think of architectures simi-
lar to the Xilinx 6200 FPGA [24] architecture, where col-
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Figure 1. An FPGA and a set of five modules
(tasks), shown in ordinary two-dimensional
space and in three-dimensional space-time.
Modules must be placed inside the chip and
must not overlap if executed simultaneously
on the chip.

umn read-ins and read-outs of flip-flop contents may be per-
formed during run-time without interfering with other con-
figured parts of the chip. (In Section 3, we describe how to
model additional overhead for devices such as a Xilinx Vir-
tex.) Under these assumptions, a task, or module, may be
represented by a cuboid, with two spatial dimensions, and
one representing the time of computation, see Fig. 2.

However, even if the configuration time is short, the
compilation time for constructing the configuration stream
for a task is still rather long. This diminishes the results that
have been reported recently on on-line strategies for com-
piling and reconfiguring such devices. Important examples
include speeding up computational problems in hardware
by task compaction on hypercubes [16], or approaches to
dynamic allocation of a sequence of tasks on an FPGA of
given size by using heuristics to compact tasks in execution
on the chip during run-time [3, 4].

Here we consider statically defined problems where a
task set is given. In previous work reported in [22, 23] we
have described how these problems can be understood by
virtue of an easy graph-theoretic characterization of feasi-
ble packings. In this paper, we show how to extend this
approach in order to deal with very restrictive constraints
that are present in virtually all practical instances: Typi-
cally, there are temporal precedence constraints imposed
on the set of computing modules, since the output of one
task may be needed as input for another task. Such a set of



precedence constraints may be described by a dependency
graph, see Figure 2. For a problem instance of this type,
we are interested in finding exact solutions to the following
problems. (In the following, a spatial placement is called
feasible if the locations occupied by each pair of tasks that
have overlapping execution intervals are disjoint and fit into
the available space and time. In the presence of precedence
constraints for the tasks, feasibility of a schedule implies
that all of these constraints are met.)� Find the chip of smallest size to accommodate all tasks

such that a given maximum total execution-time is sat-
isfied (MinA&FindS) together with a feasible sched-
ule. A subproblem called MinA&FixedS arises when
the precise starting times of all tasks are already given.

� Check whether for a chip of given size and given maxi-
mum execution time, there is a feasible placement and
a feasible schedule that accommodates a set of tasks
(FeasAT&FindS).

� Find the smallest execution time of the set of tasks for
a chip of fixed size (MinT&FindS).

� Check whether a chip of given size and a given feasible
schedule allow a feasible placement (FeasA&FixedS).
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Figure 2. Dependency graph of tasks and
shape of modules (3D boxes) with the spatial
dimensions � and � and the temporal dimen-
sion � (execution time)

Our results reported in [23] deal with solving the above
FixedS-problems. For these cases, the problems may be
modeled by three-dimensional orthogonal packing prob-
lems (OPP) without precedence constraints. Note that al-
ready the one-dimensional counterparts without precedence
constraints are known to be NP-complete in the strict sense
[13]. Existing ILP formulations for similar problems such
as [2] fail to solve technical problems of interesting size
to optimality because they use a grid decomposition and
model the placement of a module at location �����
	�� and
time  by a 0-1-variable, requiring ����� ����� ����� ��� � 0-1 vari-
ables and ���
� ����� ����� ��� � constraints where � ��� , � ��� , � ��� are
the dimensions of the underlying grid in the � -, 	 -, and  -
direction. The largest two-dimensional packing problems
that have been solved with this technique place about 20
rectangles on a ���! "�#� grid [2, 15]. Solving a three-
dimensional problem with about $%��� nodes is hopeless if
these standard solution techniques are used.

A breakthrough to solve these problems to optimality
was due to the introduction of so-called packing classes
[7, 21] that drastically reduce the search space for feasible
packings. The application of this idea to FixedS-problems in
the context of FPGA module reconfiguration has been elab-
orated in [22, 23]. Here, we develop a framework to solve
also problems with precedence constraints such as given by
data dependencies.

After introducing some basic mathematical terminology
in Section 2, we describe in Section 3 how to extend our ap-
proach to a new line of FPGAs with limited reconfiguration
capabilities. In Section 4, we sketch the mathematical con-
cepts of packing classes and a solution to packing problems
without precedence constraints, which are indispensable for
understanding how to deal with precedence constraints. In
Section 5, we introduce precedence constraints, describe the
mathematical foundations for incorporating them into the
search, and explain how to implement the resulting algo-
rithms. Finally, we present computational results for two
realistic benchmarks in Section 6.

2 Mathematical Modeling
Problem instances. We assume that a problem instance

is given by a set of tasks � . Each task has a spatial re-
quirement in the � - and 	 -direction, denoted by &(')��*+� and
&-,��.*�� , and a duration, denoted by a size &0/1�.*�� along the
time axis. The reconfigurable chip 2 consists of an array
of 34'5 634, cells. In addition, there may be an overall al-
lowable time 3)/ for all tasks to be completed. A schedule
is given by a start time 7 / ��*+� for each task. A schedule is
feasible, if all tasks can be carried out without overlap of
computation tasks in time or space, such that all tasks are
within spatial and temporal bounds.

Graphs. Some of our descriptions make use of a num-
ber of different graph classes. An (undirected) graph 8:9
�;�<�
=>� is given by a set of vertices � , and a set of edges
= ; each edge describes the adjacency of a pair of vertices,
and we write ?A@B�C&ED for an edge between vertices @ and & .
For a graph 8 , we obtain the complement graph 8 by ex-
changing the set = of edges with the set = of non-edges.
In a directed graph FG9H�I�J��KL� , edges are oriented, and we
write �.@B�C&L� to denote an edge directed from @ to & .

Precedence constraints. There may be a temporal
precedence requirement between some of the tasks, since
some tasks need to be finished before others can get started.
Mathematically, this means that we are given a partial order
on � , which can be described by a directed acyclic graph
FM9N�I�J��KL� , where K is the set of directed arcs. In the pres-
ence of such a partial order (denoted K ), a feasible schedule
also needs to satisfy these additional constraints.

Packing problems. In the following, we treat tasks as
three-dimensional boxes and feasible schedules as arrange-
ments of boxes that satisfy all side constraints. This is



implied by the term of a feasible packing. As described
in the introduction, there are different types of objectives,
corresponding to different types of packing problems. The
Orthogonal Packing Problem (OPP) is to decide whether a
given set of boxes can be placed within a given “container”
of size 3 '  <3 ,  <3 / . The Base Minimization Problem (BMP)
is to minimize the size 3 ' for a fixed 3 / such that all boxes
fit into a container 34'  34'  3 / with quadratic base. This
corresponds to minimizing chip size to carry out a set of
computations within a given time – called MinA&FindS in
the introduction. The Strip Packing Problem (SPP) is to
minimize the size 3)/ for a given base size 3 '  34, , such
that all boxes fit into the container 3 '  34,  3)/ . This
corresponds to minimizing the time to carry out a set of
computations on a given chip – called MinT&FindS in the
introduction.

3 Technical Aspects and Overheads
In previous work [23], we made the assumption that

communication and reconfiguration can be described by
fixed time periods, so they are not subject to optimization.
Here we quantify these overheads for a recent Xilinx Vir-
tex device, the XCV 1000. Therefore, we describe in more
technical detail how our approach can also be applied to this
kind of FPGAs. After computing the overheads for com-
munication and reconfiguration for this device, Section 6.2
presents an example that takes these overheads into account.

Communication overhead. The Xilinx Virtex devices
are column-oriented in the sense that reconfiguration and
read-in/out of flip-flop contents may only be specified for a
full column of CLBs of the chip. In Fig. 3, one column of
CLBs (configurable logic blocks) is shown. Now, our model
of communication assumes that a task finishing its execu-
tion communicates with another task (data-dependence) in
the following way: All flip-flops of CLBs containing result
values to be read by the direct successor task are read-out
using a bus interface and stored to external memory. Sub-
sequently, assuming the receiving module has been loaded
at the location as specified by the packing, this module per-
forms a read-in of the results of the sending module into its
input flip-flops, not necessarily at adjacent CLB columns.

Unfortunately, for a Virtex device, only complete col-
umn read-outs and read-ins can be performed and the bus
width is only 8 bit. For a Virtex XCV 1000 device, read-
ing one column of flip-flops corresponds to addressing one
frame containing 1248 bits. This takes approximately 180
clock cycles (156 for reading the column in chunks of 8 bits
with the other, 24 cycles overhead for configuration of the
interface). The same overhead is necessary to perform a
write of a column of flip-flops specified by another frame.

Based on this overhead for reading/writing a column of
flip-flops, we can bound the communication overhead from
above by 2 times the overhead of 180 clock cycles time the

Slice 0

FFx

FFy

FFy

FFx

Slice 0 Slice 1

FFx

FFy
CLB row0

CLB row 1

CLB row n

Slice 1

Slice 1

Slice 0

FFx

FFy FFy

FFx

FFy

FFx

Configuration frame
for slice1 FFx

Configuration frame

Configuration frame
for slice1 FFyConfiguration frame

for slice0 FFx

for slice0 FFy

Figure 3. One-column slice of a Xilinx Virtex
FPGA with CLBs containing two slices each

number of columns containing data that must be communi-
cated. The problem of having to update a complete column
of flip-flops during a read-in may be addressed by using a
particular column of flip-flops (such as FFy in Slice 0) for
read-ins only and designing the modules such that FFy flip-
flops of Slice 0 are only used during the first cycle of module
execution.

As we will see in an example (presented in Section 6.2),
this overhead may be accounted for by adding the overhead
to the execution time of a task.

Reconfiguration overhead. Consider reconfiguring a
hardware task * occupying a rectangle of &(')�.*��E &-, �.*��
CLBs. In case of a Virtex FPGA, we have to reconfigure
& , �.*�� columns of CLBs in this case. Each CLB column
consists of 48 frames to be configured, each responsible for
configuring a certain type of resource. When using auto-
increment of addresses within the 48 frames of a CLB col-
umn, each column to reconfigure requires

���  ���  � (1248
bit = 39 * 32 bit, 32 bit requires 4 cycles (32 = 4 * 8)) cycles
leading to a complete reconfiguration overhead of 7512 cy-
cles per column reconfiguration, for a total of &(,��.*��  �����$
	
clock cycles. Again we treat this reconfiguration overhead
as a constant that we add to the execution time of a hardware
task.

4 Solving Unconstrained Problems
4.1 A Framework for Optimal Solutions

Before discussing precedence constraints, we describe a
number of fundamental mathematical insights and result-
ing computational methods for unconstrained packing prob-
lems. Mathematical details can be found in our previous
papers [7, 8, 9, 10, 11, 21, 22, 23].

If we have an efficient method for solving OPPs, we can
also solve BMPs and SPPs by using a binary search. How-
ever, deciding the existence of a feasible more-dimensional
packing is a hard problem in higher dimensions, and pro-
posed methods suggested by other authors [2, 15] have been
of limited success.



Our framework uses a combination of different ap-
proaches to overcome these problems:

1. Try to disprove the existence of a packing by fast and
good classes of lower bounds on the necessary size.

2. In case of failure, try to find a feasible packing by using
fast heuristics.

3. If the existence of a packing is still unsettled, start an
enumeration scheme in form of a branch-and-bound
tree search.

By developing good new bounds for the first stage, we
have been able to achieve a considerable reduction of the
number of cases where a tree search needs to be performed.
(Mathematical details for this step are described in [8, 10]
and are omitted from this short paper.) However, it is clear
that the efficiency of the third stage is crucial for the overall
running time when considering difficult problems. Using a
purely geometric enumeration scheme for this step by trying
to build a partial arrangement of boxes is easily seen to be
immensely time-consuming. In the following, we describe
a purely combinatorial characterization of feasible packings
that allows to perform this step more efficiently.

4.2 Packing Classes
If we consider a feasible packing in

�
-dimensional space,

we can extract some partial information by considering
the relative arrangement of coordinate intervals. More
precisely, we can consider the projections of the boxes
onto the three coordinate axes, and thus reduce the one

�
-

dimensional arrangement to
�

one-dimensional ones. (See
Figure 4 for an example in

� 9 	 .) In a second step, we
can disregard the exact coordinates of the resulting inter-
vals in direction � and only consider the component graph
8�� 9H�I�J��=��I� : Two boxes @ and * are connected by an edge
in 8�� , iff they have overlapping � coordinates. Mathemati-
cally, a graph with this characterization of edges is called an
interval graph. These graphs have been studied intensively
in graph theory (see [14, 20]), and they have a number of
very useful algorithmic properties.

G
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G

2

Figure 4. The projections of the boxes onto
the coordinate axes define interval graphs
(here in 2D: ��� and �	� ).
Considering sets of

�
component graphs 8 � instead of

complicated geometric arrangements has some clear advan-
tages. (Algorithmic implications for our specific purposes

will be discussed further down.) It is not hard to check
that the following three conditions must be satisfied by all�

-tuples of graphs 8 � that are constructed from a feasible
packing:

C1: 8�� is an interval graph, 
��� ? $�������� � � D .
C2: Any independent set � of 8�� is � -admissible, 
����

?#$#�������1� � D , i.e., &��
���J� 9��������0&��
��*+��� 3 � , since
all boxes in � must fit into the container in the � th di-
mension.

C3: !#"�%$'& = � 9)( . In other words, there must be at least
one dimension in which the corresponding boxes do
not overlap.

A
�
-tuple of component graphs satisfying these neces-

sary conditions is called a packing class. The remarkable
property (proven in [21, 9]) is that these three conditions
are also sufficient for the existence of a feasible packing.

Theorem 1 A
�
-tuple of graphs 8*�B9 �I�J��=��I� corresponds

to a feasible packing, iff it is a packing class, i. e., if it satis-
fies the conditions C1, C2, C3.

This allows it to consider only packing classes in order
to decide the existence of a feasible packing, and disregard
most of the geometric information.

4.3 Solving OPPs
Our search procedure works on packing classes, i.e.,

triples of component graphs with the properties C1, C2, C3.
Since each packing class represents not only a single pack-
ing but a whole family of equivalent packings, we are ef-
fectively dealing with more than one possible candidate for
an optimal packing at a time. (The reader may check for
the example in Figure 4 that there are 36 different feasible
packings that correspond to the same packing class.)

The search tree is traversed by Depth First Search, see
[11, 21] for details. Branching is done by fixing an edge
?,+ �.- D/� = � or ?0+ �1- D32� = � . After each branching step, it
is checked if one of the three conditions C1, C2, C3 is vio-
lated, or whether a violation can only be avoided by fixing
further edges. This is easy for two of the conditions: en-
forcing C3 is obvious; property C2 is hereditary, so adding
edges to =4� later will keep it satisfied. (Note that computing
maximum weighted cliques on comparability graphs can be
done efficiently, see [14].) In order to ensure that property
C1 is not violated, we use a number of graph-theoretic char-
acterizations of interval graphs and comparability graphs.
These characterizations are based on two forbidden sub-
structures (again, see [14] for details). In particular, this
means that the following configurations have to be avoided:

1. induced chordless cycles of length 4 in =5� ;
2. so-called 2-chordless odd cycles in the set =5� of edges

excluded from =4� (see [11, 14] for details);

3. infeasible stable sets in =4� .



Each time we detect such a fixed subgraph, we can abandon
the search on this node. Furthermore, if we detect a fixed
subgraph, except for one unfixed edge, we can fix this edge,
such that the forbidden subgraph is avoided.

Our experience shows that these conditions are already
useful when only small subsets of edges have been fixed,
since by excluding small sub-configurations, like induced
chordless cycles of length 4, each branching step triggers a
cascade of more fixed edges.

5 Solving Optimization Problems with Prece-
dence Constraints

For most practical instances, we have to satisfy ad-
ditional constraints for the temporal placement, i.e., for
the start times of tasks. It should be stressed that for
standard approaches, adding constraints makes the three-
dimensional packing problems much harder. This is sig-
nificantly different from our approach, where the nature of
the data structures simplifies these problems from three-
dimensional to purely two-dimensional ones: If the whole
schedule is given, all edges =(/ in one of the graphs are de-
termined, so we only need to construct the edge sets = '
and =(, of the other two graphs1. As we have worked out in
detail in [22, 23], this allows it to solve the resulting FixedS-
Problems quite efficiently.

A more realistic, but also more involved situation arises
if only a set of precedence constraints is given, but not the
full schedule. The following describes how to convert pack-
ing classes into ordered arrangements, and how to deal with
order constraints.
5.1 Packing Classes and Interval Orders

Any edge in a graph 8*� corresponds to an overlap be-
tween the corresponding intervals. This means that the
complement graph 8 � given by the complement = � of the
edge set = � consists of all pairs of coordinate intervals that
are “comparable”: Either the first interval is “to the left” of
the second, or vice versa. Any (undirected) graph of this
type is a so-called comparability graph [14]. By orienting
edges to point from “left” to “right” intervals, we get a par-
tial order of the set � of vertices, a so-called interval order
[20]. Obviously, this order relation is transitive, i.e., �����
and ����� imply ����� , which is the reason why we also
speak of a transitive orientation of the undirected compara-
bility graph 8�� . See Figure 5 for a (two-dimensional) ex-
ample of a packing class, the corresponding comparability
graph, a transitive orientation, and the packing correspond-
ing to the transitive orientation.

Now consider a situation where we need to satisfy a par-
tial order K of precedence constraints in the time dimension.

1To emphasize the motivation of temporal precedence constraints, we
write 	�
 to suggest that the time coordinate is constrained, and 	� and 	��
to imply that the space coordinates are unrestricted. Clearly, our approach
works the same way when dealing with spatial restrictions.
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Figure 5. (a) A two-dimensional packing class.
(b) The corresponding comparability graphs.
(c) A transitive orientation. (d) A feasible
packing corresponding to the orientation.

It follows that each arc � 9 �.@B�C&L� � K in this partial or-
der forces the corresponding undirected edge � 9 ?%@ �
&ED
to be excluded from = / . Thus, we can simply initialize
our algorithm for constructing packing classes by fixing
all undirected edges corresponding to K to be contained in
= / . After running the original algorithm, we may get ad-
ditional comparability edges. As the example in Figure 6
shows, this causes an additional problem: Even if we know
that the graph 8E/ has a transitive orientation, and all arcs
��9 ��@ �
&L� of the precedence order �I�J��KL� are contained in
=-/ as � 9 ?%@ �
&ED , it is not clear that there is a transitive
orientation that contains all arcs of K .

1

v2 v3

v4v

(comparability edges)

(component edges)

E

tE
t

Figure 6. A comparability graph ����������� �����
with a partial order � contained in ��� , such
that there is no transitive orientation of ���
that extends � .

5.2 Finding Feasible Transitive Orientations
Consider a comparability graph 8 that is the comple-

ment of an interval graph 8 . Deciding whether 8 has a
transitive orientation that extends a given partial order K is
a problem that has been studied in the context of schedul-
ing. Korte and Möhring [18] give a linear-time algorithm
for determining a solution, or deciding that none exists.

In principle, it is possible to solve our more-dimensional
packing problems with precedence constraints by adding
this algorithm as a black box to test the leaves of our search
tree for packing classes: In case of failure, backtrack in the
tree. However, the resulting method cannot be expected
to be reasonably efficient: During the course of our tree
search, we are not dealing with one fixed comparability
graph, but only build it while exploring the search tree.
This means that we have to expect spending a considerable



amount of time testing similar leaves in the search tree, i.e.,
comparability graphs that share most of their graph struc-
ture. It may be that already a very small part of this struc-
ture that is fixed very “high” in the search tree constitutes an
obstruction that prevents a feasible orientation of all graphs
constructed below it. So a “deep” search may take a long
time to get rid of this obstruction. This makes it desirable to
use more structural properties of comparability graphs and
their orientations to make use of obstructions already “high”
in the search tree.

5.3 Implied Orientations
As in the basic packing class approach, we consider the

component graphs 8*� and their complements, the compara-
bility graphs 8 � . This means that we continue to have three
basic states for any edge: (1) edges that have been fixed to
be in = � , i.e., component edges; (2) edges that have been
fixed to be in = � , i.e., comparability edges; (3) unassigned
edges.

In order to deal with precedence constraints, we also
consider orientations of the comparability edges. This
means that during the course of our tree search, we can have
three different possible states for each comparability edge:
(2a) one possible orientation; (2b) the opposite possible ori-
entation; (2c) no assigned orientation.

A stepping stone for this approach arises from consider-
ing the following two configurations – see Figure 7:
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Figure 7. Implications for edges and their ori-
entations: Above are path implications (D1,
left) and transitivity implications (D2, right);
below the forced orientations of edges.

The first configuration consists of two comparability
edges ?%*�& �C* � D �1?%* � �C*�� D � =-/ , such that the third edge
?A*�& �
*�� D has been fixed to be an edge from the component
graph = / . Now any orientation of one of the comparability
edges forces the orientation of the other comparability edge,
as shown in the figure. Since this configuration corresponds
to an induced path in 8 � , we call this arrangement a path
implication.

The second configuration consists of two directed com-
parability edges �.* & �
* � �1�A�.* � �C* � � . In this case we know that
the edge ?%*�& �
*�� D must also be a comparability edge, with an
orientation of �.* & �
*��A� . Since this configuration corresponds

to a triangle in 8*� , we call this arrangement a transitivity
implication.

Clearly, any implication arising from one of the above
configurations can induce further implications. Considering
sequences of path implications leads to the following parti-
tion of comparability edges into path implication classes:
Two comparability edges are in the same implication class,
iff there is a sequence of path implications, such that orient-
ing one edge forces the orientation of the other edge. For
an example, consider the arrangement in Figure 6. Here, all
three comparability edges ?%* & �
* � D , ?%* � �C*���D , and ?%*�� �
*�� D
are in the same path implication class. Now the orientation
of �.*�& �C* � � implies the orientation �.*��#�C* � � , which in turn
implies the orientation ��*����
*��%� , contradicting the orienta-
tion of ?A*����C*�� D in the given partial order K . We call this
type of contradiction a path conflict on a path implication
class.

It is not hard to see that the path implication classes form
a partition of the comparability edges, since we are dealing
with an equivalence relation.

Similar to possible orientation conflicts for path impli-
cation classes, we may get a violation of transitivity impli-
cations, as a sequence of implications may force a directed
cycle. (An example can be found in our mathematical report
[6].) This type of violation we call a transitivity conflict.

Thus, we have the following necessary conditions for the
existence of a transitive orientation that extends a given par-
tial order K :

D1: Any path implication can be carried out without a con-
flict.

D2: Any transitivity implication can be carried out without
a conflict.

These necessary conditions are also sufficient:

Theorem 2 (Fekete, Köhler, Teich) Consider a partial or-
der K with arc set contained in the edge set of a given com-
parability graph 8 . K can be extended to a transitive orien-
tation of 8 , iff all arising path implications and transitivity
can be carried out without creating a path conflict or a tran-
sitivity conflict.

A proof and further mathematical details2 are described
in our forthcoming mathematical paper [5].

5.4 Solving OPPs with Precedence Constraints
We start by fixing for all arcs ��@ �
*+� � K the edge ?A@B�C*4D

as an edge in the comparability graph 8 / , and we also fix its
orientation to be �.@B�C*�� . In addition to the tests for enforcing
the conditions for unoriented packing classes (C1, C2, C3),

2The interested reader may take note that we are extending previous
work by Gallai [12], who extensively studied implication classes of com-
parability graphs. See Kelly [17], Möhring [20] for informative surveys on
this topic, and Krämer [19] for an application in scheduling theory.



we employ the tests suggested by path implications and tri-
angle implications. Like for packing classes, we can again
get cascades of fixed edge orientations. If we get an orienta-
tion conflict or a cycle conflict, we can abandon the search
on this tree node. The correctness of the overall algorithm
follows from Theorem 2.

6 Computational Experiments
The first example is a numerical method for solving a

differential equation (DE) with 11 nodes. The node opera-
tions are either multiplications or ALU-type operations. In
this example, we treat overheads as constants, so they are
not part of the optimization. In a second example, a video-
codec using the H.261 norm is optimized. For this example,
we consider the various possible overheads derived in Sec-
tion 3.

6.1 DE Benchmark
In this benchmark, we assume a module library contain-

ing two hardware modules (box types): an array-multiplier
and a module of type ALU that realizes all other node opera-
tions (comparison, addition, subtraction). For a word-length
of n=16 bits, we assume a module geometry of 16 x 1 cells
for the ALU module, and of 16 x 16 cells for the multiplier.
Furthermore, the execution time of an ALU node takes one
clock cycle, while a multiplication requires 2 clock cycles
on our target chip.

The dependency graph is shown in Fig. 2. First, we com-
pute the transitive closure of all data dependencies to allow
our algorithm to find contradictions to feasible packings al-
ready in the input.

Next, we solve several instances of the BMP problem
for different values of 3 / reported in Table 1. Each 3 / listed
yields a test case for which the container size is minimized
(MinA ), assuming 3 '59M3), . Also shown is the CPU-time
needed for finding a solution.

Table 1. Computational results for optimizing
reconfigurations for the DE benchmark

 ���  container sizes
3 / 3)' 3), CPU-time (s)

1 6 32 32 6.54 s
2 13 17 17 0.03 s
3 14 16 16 0.02 s

The reported optimization times were measured as the
CPU-times on a SUN-Ultra 30 architecture.

For the DE benchmark, it turns out that a chip of 32 x 32
freely programmable cells is necessary to obtain a latency
between 6 and 12 clock cycles. As the longest path in the
graph has length 6, there does not exist any faster schedule.
For 12 and 13 cycles, a chip of size 17 x 17 is necessary, for
3 / � $ � , a chip of size 16 x 16 cells is sufficient which is

the smallest chip possible to implement the problem as one
multiplication by itself uses the full chip.

Similarly, the SPP is solved. The tradeoff between area
size and necessary time is visualized in Fig. 8, where the
Pareto-optimal points are shown. The figure also shows the
Pareto-points for the case where no partial order needs to be
satisfied (shown dashed).
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Figure 8. Pareto-optimal points for minimiz-
ing chip area and processing time for the
DE benchmark. (a) Including partial order
constraints (solid lines). (b) Without consid-
eration of partial order constraints (dashed
lines).

6.2 Video-Codec
In the following, we describe an optimal schedule for a

hybrid image sequence coder/decoder. (See Figure 9.) Its
purpose is to compress and decode video images using the
H.261 standard.
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Figure 9. Block diagram of a video-codec
(H.261)

For realizing the device, we have a library of three dif-
ferent modules. One is a simple processor core with a (nor-
malized) area requirement of 625 units (25 x 25 cells, nor-
malized to other modules in order to obtain a coarser grid)
called PUM. Secondly, there are two dedicated special-
purpose modules: a block matching module (BMM) that
is used for motion estimation and requires 64 x 64 = 4096
cells; and a module DCTM for computing DCT/IDCT-
computations, requiring 16 x 16 = 256 cells.

To illustrate the impact of various overheads (as dis-
cussed in Section 3) and of precedence constraints, we give
three sets of computational results, as shown in Table 2.
Tests “A” are without, “B” with precedence constraints. Test
1 uses a freely configurable device without any overhead.
Test 2 assumes additional communication overhead. Test



3 considers communication overhead and expensive recon-
figuration overheads for a Xilinx Virtex device. 3 / reported
corresponds to nanoseconds for a clock rate of 100 MHz.

Table 2. Computational results for optimizing
reconfigurations for the Video-Codec

 � �  container sizes
3 / 34' 3), CPU-time (s)

1 A 88,000 88 89 0.33 s
1 B 129,000 88 89 0.43 s
2 A 91,600 88 89 0.35 s
2 B 161,400 88 89 0.53 s
3 A 6,782,880 88 89 191 s
3 B 18,630,900 88 89 12.97 s

7 Conclusion
We have presented results for an idealized scenario with-

out communication and reconfiguration overheads, as well
as a case study with overheads for a a Xilinx Virtex chip.
It should be stressed that the huge overheads do not limit
the feasibility of our approach, but rather indicate that this
kind of chip is not very well suited for dynamically recon-
figurable tasks. Enhancements of this chip should be a)
higher bandwidth of the reconfiguration interface, and b)
partial reconfiguration capabilities as in former generations
such as the Xilinx 6200 series.

Finally, for the current technology, we conclude that re-
configurability may only be exploited with gain for task ex-
ecution times that are much larger than the communication
and reconfiguration times that are in the order of millisec-
onds today.
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available as Report 97-302.

[22] J. Teich, S. Fekete, and J. Schepers. Compile-time opti-
mization of dynamic hardware reconfigurations. In Proc.
Int. Conf. on Parallel and Distributed Processing Techniques
and Applications (PDPTA’99), pages 1097–1103, Las Ve-
gas, U.S.A., June 1999.

[23] J. Teich, S. Fekete, and J. Schepers. Optimization of dy-
namic hardware reconfigurations. J. of Supercomputing, to
appear, 2001.

[24] Xilinx. XC6200 field programmable gate arrays. Technical
report, Xilinx, Inc., October 1996.


	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index


