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Abstract 
This paper introduces an algorithm for code placement in 

cache, and maps it to memory using a second algorithm. The 
target architecture is a multiprocessor system with 1st level 
cache and a common main memory. These algorithms 
guarantee that as many instruction codewords as possible of 
the high priority tasks remain in cache all of the time so that 
other tasks do not overwrite them. This method improves the 
overall performance, and might result in cheaper systems if 
more powerful processors are not needed. Amount of memory 
increase necessary to facilitate this scheme is in the order of 
13%. The average percentage of highest priority tasks always 
in memory can vary from 3% to 100% depending upon how 
many tasks (and their sizes) are allocated to each processor. 

1. Introduction 
As very large scale integration (VLSI) systems become 

larger and larger, and feature sizes become smaller, chips 
become more complex. This complexity leads to extremely 
long development times using traditional design techniques. 
One of the method by which designers are overcoming this 
problem is to use pre-deigned, pre-verified cores.  Several 
cores (also sometimes referred to as processing elements or 
PEs) are connected together to execute a single application. An 
example of such an application can be a video processing 
decoder or a sophisticated aircraft engine management system. 
Hardware Software Co-Synthesis methodologies attempt to 
automate the system development. Several algorithms have 
been developed for Hardware Software Co-Synthesis.  

Caches are small high-speed memories placed between the 
processor and the main memory. They function as the main 
memory but work at close to the speed of the processor. If 
instructions are in the cache then the task can be executed 
faster than if it were to bring it from the memory. 

In HW/SW Co-design environments, we use several 
processors, which have to meet strict deadlines. Failure to 
meet these deadlines can have severe consequences. The usual 
pattern has been to change the processor and meet the 

deadlines with more expensive processors. There has been 
considerable effort to also look at cache by Li and Wolf [1], 
one by reserving some cache for high priority tasks and the 
other by doubling caches until dead lines are met. 

In this work we do not reserve cache for high priority tasks, 
but we look at methods to not overwrite as much as possible of 
the highest priority tasks as possible, so that they do not have 
to be brought into the cache again. 

1.1 Related Work 
Most of the early work in Hardware Software Co-Synthesis 

was constrained to a single processor and  ASIC. Work by 
Henkel et. al [2, 3], Gupta et. al [4, 5] and Parameswaran et al 
[6, 7]. Prakash and Parker published a mixed integer Linear 
Programming (MILP) approach [8] to synthesize multiple 
processor architectures for a specific application. This work 
was enhanced by the authors in [9] to include memory costs 
into the final implementation. Due to the use of MILP, the 
scheme proposed by Prakash and Parker had an exponential 
computation time. Heuristic solutions [10] and evolutionary 
algorithms [11] have been proposed to reduce the total 
computation time and to increase the size of problems, which 
can be dealt with. 

Memory optimisations for Hardware Software co-design 
have been researched extensively in the recent past. Danckert 
et. al [12] looks at mapping data to memory for efficient 
processing of tasks. Verkest et. al [13] have created a tool 
named Matisse which looks at several of the memory 
management problems before partitioning occurs. Wuytack et. 
al [14] presented an approach to reduce memory bandwidth. 
Panda et. al. [15-20] has comprehensively researched the topic 
of data memory in caches and  main memory. 

Instruction placement in cache for multi-processor 
synthesis was published by Li and Wolf in [1]. The system 
divides the tasks into high-priority and low-priority tasks. The 
work discussed in this paper allocates approximately half the 
cache for high priority tasks and in the other half allocates the 
rest of the tasks, to reduce the total number of compulsory 
misses in a similar manner to the work described in [21, 22]. 



The allocation of these tasks to memory was left to the 
compiler for completion. Li and Wolf found the above scheme 
to be inefficient and used an arbitrary mapping scheme in [23, 
24] where the tasks could map to any position in cache. To 
improve performance of the overall system, they doubled their 
cache memory until the system met deadlines (if it could not 
then they moved on to a different partition). 

1.2 Relevance of this work 
In this paper we describe a method by which high-priority 

tasks try to capture as much of the cache as possible without 
reserving half the cache for them. This work is a part of a 
whole Hardware Software Co-design scheduling portioning 
allocation system. Once tasks have been scheduled to separate 
processors with specific cache memory, this system then looks 
at task allocation in caches and then maps these tasks to the 
memory so that maximum performance can be obtained with 
the given resources. The system also minimizes the total 
memory used by the system. 

1.3 Assumptions 
For the sake of simplicity, the following assumptions are 

made about the tasks and the cache. The assumptions are 
somewhat similar to those made by Li and Wolf in [24].  

Assumption 1: The size of the task is no bigger than the size 
of the cache. This assumption is quite valid in embedded 
systems where the tasks are usually small enough to fit into 
small cache sizes. If the task is too large for the cache it is 
possible to break up the task into smaller granules such that 
each granule will fit into the cache. Due to this assumption, we 
will only have compulsory misses, which does not change 
with the size of cache. 

Assumption 2: Only Level-1 caches are available for use. 
Once again in an embedded system, where frequently there is 
no cache at all, it is unlikely that more than a single level of 
cache is going to be available for use. 

Assumption 3:  The caches are direct mapped. This 
assumption makes easier analysis due to the direct mapping 
and therefore deterministic mapping to cache from memory. 

Assumption 4: The instructions of a task are allocated to a 
continuous region of memory. This states that a task mapped 
to cache will be also in a continuous region in that cache 
(except when it overflows the cache, which then will continue 
from the top of the cache). If the memory is going to be in two 
parts then they will be considered as two separate tasks. 

Assumption 5: All addressing performed within each task 
use relative addressing (i.e. branch) only. Tasks can be 
mapped to arbitrary locations within the memory map. This 
does not allow absolute addressing. If absolute addressing is 
used then instruction code cannot be loaded into any section of 
the code. If absolute addressing is necessary then we need to 
have a more sophisticated compiler is necessary. 

1.4 Motivational Example 
In systems where cache is present, the instruction is first 

brought to the cache before the instruction is executed. In 

Hardware Software Co-Synthesis system, a task graph is used 
as input, where each of the nodes is a task to be executed. The 
task graph is repeatedly executed with separate data sets. In 
general purpose computer systems tasks are compiled and 
stored into memory in a first in first out (FIFO) scheme, which 
means that when a task is mapped into the cache, we have 
little control as to where the task will end up in cache. 
However, by placing tasks carefully in memory, we could 
make critical task at least partially stay in cache at all time so 
that the instructions (after the first time when compulsory 
misses occur) will always be in cache at all times. For 
example, let us assume that the system is composed of the 
following architecture given in Figure 1. In this architecture, 
there are several processors and a single main memory unit, 
which contain all of the instructions and data, which are 
necessary for execution of tasks. 
 
 
 
 
 
 

 
 
 

Figure 1: A sample system 
Let us assume that the following tasks were compiled and 

placed in memory. The number of Processing Elements in this 
example is just two (numbered 1 and 2). Processor 1 has 5 
processes allocated to it numbered from 0 – 4, and Processor 2 
has 4 processes allocated to it numbered from 0-3. Let us 
assume that both the processors have a cache size of 1024 
bytes. Then the I-cache of Processor 1 and 2 will be mapped as 
shown in column 5. 
 

PE Process no Size Mem. Map Cache Map 

1 0 900 0-899 0-899 

2 0 800 900-1699 900-675 

1 1 800 1700-2499 676-451 

2 1 700 2500-3199 452-127 

1 2 700 3200-3899 128-827 

2 2 500 3900-4399 828-303 

1 3 600 4400-4999 304-903 

2 3 500 5000-5499 904-379 

1 4 400 5500-5899 380-779 

 
Table 1: An example system 

As can be seen from this table, if we only look at processor 
1, it can be seen that the associated cache is filled from 0-899 
(task 0), then from 676-1023 and then from 0-451 (task 1). 
Task 2 in processor 1 will then fill 128-827. Task 3 will cover 
from 304 to 903 and finally task 4 will cover the cache from 
380-779. The only part of the cache that does not need to be 
replaced again when a new task arrives will be the part of the 
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cache from 904 to 1023. As the number of tasks increase, this 
too will disappear and there will be virtually no part of the task 
that will remain in the cache when the task graph starts to 
repeat once again. Thus there are only 120 locations that will 
never have to be filled once again. 

If another scenario is considered, where the cache is filled 
in the following manner. Task 0 is filled from 0-899. Task 1 is 
filled from 224-1023. The space from 224-923 is filled by task 
2. Task 3 occupies 224-823 and finally task 4 occupies 224-
623. If the cache were to be filled in such a manner, then the 
cache area from 0-223 and 924-1023, will never need to be 
replaced (totalling 323 locations). Assuming that it takes an 
extra 10 clock cycles to bring in data from memory to cache 
the total time saved will be 2030 clock cycles for just one 
processor. With both processors taken into account, the total 
savings will be 5020 clock cycles. 

The negative side to this is the extra memory needed to 
make certain that the data maps to the particular locations that 
have been allocated to them. For Task 0 to map to 0-899 in 
cache, let us say it is in memory location 0-899. Task 1, which 
maps from 224-1023, will have to be in locations 1248  (1248 
mod 1024 equals 224) to 2047, since that is the first address 
which is free where the data will map to cache at 224. In this 
example there is a gap in memory from locations 899 to 1248. 
Unless there is a later task that can utilize that space, this gap 
in memory will remain, which will result in wasted space. 
Therefore the total memory needed will be greater than for the 
FIFO scheme, but the scheme will result in faster execution of 
certain tasks resulting in an overall speedup on the task graph.  

1.5 Organization of this paper 
This paper is organized as follows: the first section 

introduced the topic and discussed the relevant works. The 
next section mathematically defines the problem. Section three 
discusses two heuristic algorithms and section four gives the 
method by which these algorithms were validated and then the 
results are presented. Section five concludes the paper. 

2. Problem Statement 
The problem can be mathematically stated as follows: 

Let there be m processors named P1, P2, P3 … Pm, each with 
associated cache sizes S1, S2, S3 …Sm. The jth processor has nj 
tasks associated with it. The tasks have an urgency factor 
associated with each called x1j, x2j, x3j …xnj and a size 
associated with it called s1j, s2j, s3j … snj. Let 

n321 x...xxx ≥≥ . That is the tasks are ordered in 

descending order of priority.  
For a cache be tightly packed, and that as many a high 

priority tasks be given space in the cache which is not 
replaced, let task kj satisfy, 
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it can be seen that k – 1 tasks can fit completely in the cache 
above the largest of the remaining tasks. A part of the kth task 

will also fit above the largest of the remaining task but all of 
the others will be below the largest of the remaining tasks. For 
the sake of representation we shall break task k into two tasks 
(thus now there are nj +1 tasks in each cache). The kth task has 
now become k and k+1th task, where k is in the section, which 
will never be overwritten by the remaining largest task, and 
k+1th task is in the section, which will be over written by the 
remaining largest task. 

Let tij be the starting address in cache j of task i and let eij 
be the ending address of task i in cache j. Therefore  

t1j = 0 and e1j = s1j –1, 
 tlj = elj-1 +1 and elj = tlj + slj – 1 for l = 2, …, k+1j and j = 

1, …, m. 

jklj j
et ≥ + 1 and jlj Se ≤ for l = kj+2, …, nj. and j = 1, …, 

m 
Our aim is to preserve the above task allocation in cache, 

while reducing the overall memory consumption. In order to 
do that, we must satisfy the following inequalities in memory 
so that two separate tasks will not overlap in memory.  

tlj +iljSj +Zj ≥ eνµ + iνµSµ + Zµ 
tνj + iνjSj + Zj  ≥  elµ + ilµSµ +Zµ,  for µ = 1, …, m and j = 1, 

…, m. 
Since the broken up task kj and k+1j must be together in 

memory, the tasks must also meet the condition that  
tkj +ikjSj +Zj +skj – 1 = tk+1j. 

If Y is the largest memory location then, 
elj +iljSj +Zj ≤  Y 
Our aim is to minimize Y. 

2.1 Complexity of the Problem 
It can be shown that a special case of the problem where, 

we set all Z’s to 0 can be shown to be a bin-packing problem. 
Therefore this problem is at least as hard as the bin-packing 
problem which is NP-Hard. To solve this problem in 
reasonable run-time it is necessary to use some type of 
heuristics. The following section gives two separate 
algorithms, one algorithm to allocate tasks in cache and 
another to map the tasks in memory to reduce overall memory 
size. 
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3. Algorithm for allocating tasks in Cache 
and Memory 

3.1 Cache allocation 
The methodology used for ordering tasks in cache is as 

follows (see Figure2). First the tasks are ordered for each of 
the processors in their order of urgency. Until the cache is 
completely filled, the tasks (only whole tasks are allowed) are 
allocated to the cache from the lowest address to the highest. 
Once this step is finished, we find the largest task from the 
remaining tasks. This large task is allocated to the bottom of 
the cache say with starting address Als and ending at the end of 
the cache (step 2). After this we take the next largest task and 
allocate it’s starting address in cache to Als. (step3). The ending 
address will be less than the final address of the cache. Thus if 
another unallocated task can be found which can go into the 
space (below the task we just allocated, and above the last 
cache address), we allocate that task into the available space 
(step 3 contd). We keep doing this until we reach the end of 
the cache. We take the next largest unallocated task (step 4), 
and start it at address Als and we repeat the process until all 
tasks are allocated. 
Algorithm 

Let us assume that the processors used in the system are p1, 
p2, p3… pk. The associated caches are c1, c2, c3,  … ck.     For 
each processor r, the tasks to be executed in that processor are 
as follows: Tr1, Tr2, Tr3 …… Trn where n is the number of tasks, 
and the tasks are ordered in descending order of urgency. As 
the Urgency increases, the associated task is expected to be 
executed in as short a time as possible.  Urgency can be 
defined in many differing ways. We have used the definition 
given in [1]. 
 
ForEach Processor { 

Until Cache is filled 
 Allocate tasks to the cache in  

descending order of urgency; 
       Reorder Unallocated tasks in order of 

size and place in list Trl  (Trl = Trl1, 
Trl2, Trl3 … Trlm, where y is the number of 
unallocated tasks for that processor and 
y <n); 

       Allocate Trl1 from address Als to end of 
cache (where trl1  = sizeof (cache r)  - 
sizeof (Trl1)); 

       Remove Trl1 from Trl 
       Repeat Until all tasks are allocated { 

       Find the next largest unallocated 
Task Trlp from the list Trl; 

 Allocate Trlp from address Als to 
Ale where Ale = Als + sizeof (Trlp); 

 Mark Trlp from list Trl as 
allocated; 

       Move along the list Trl and place 
as many tasks as possible between 
Ale  and sizeof (cache r); 

  Mark placed tasks as allocated; 
} 

} 

3.2 Memory Allocation 
The memory allocation algorithm takes the placed tasks in 

cache and directly maps them to the memory. Thus if a task is 
mapped to location from tx to ex in cache of processor r, then 
the task can be placed in memory in any one of the address 
ranges from addresses tx + i* sizeof (cache r) to ex + i * sizeof 
(cache r), where i is a positive integer .  However, since tasks 
in cache will wrap around the cache, an offset Zr, can be added 
to each task allocated to processor r, and the task can be 
placed from memory location tx + Zr + I * sizeof (cache r) to 
memory location tx + Zr + i * sizeof (cache r). This 
introduction of the offset allows the reduction in size of the 
total memory needed for the system.  

The algorithm works as follows as described here. The 
processors are ordered in the descending order of total task 
size and put in a processor list. The processor with the highest 
sum of all task sizes will be the first in the processor list. The 
processor with the lowest sum will be the last element in the 
processor list. The tasks allocated in the first processor are 
mapped to the main memory as follows: the first task allocated 
in cache is directly mapped to the memory (in this case, task tx 
= 0 and ex = sizeof (task 1) – 1); task and upwards will be 
mapped by moving i along the non-negative integer range and 
trying to find an area in memory which is free from locations 
tx + i* sizeof (cache 1) to ex + i * sizeof (cache 1). The tasks 
allocated to the subsequent processors are allocated thus: the 
largest task allocated to the processor is put in the first 
available memory block where the task will fit (say Mx to My); 
from this the offset Zr is calculated, and Zr =  (Mx mod sizeof 
(cache r)) – tx. Using this Zr, all of the other tasks allocated to 
the processor are mapped to the memory in the order of size 
from largest to smallest using the mapping each task from 
memory location tx + Zr + i* sizeof (cache r) to memory 
location tx + Zr + i * sizeof (cache r).   
Algorithm 

Let us assume that the processors used in the system are p1, 
p2, p3… pk. The associated caches are c1, c2, c3,  … ck.     For 
each processor r, the tasks to be executed in that processor are 
as follows: Tr1, Tr2, Tr3 …… Trn where n is the number of tasks. 
 
Foreach processor do 

 

∑
n

rx )T(sizeof ; 

Reorder processors from largest sum to 
smallest sum of total task size and name them 
pa, pb, pc …; 
 
For all tasks ordered in the cache allocation 
order in pa do { 
  i =  0;  
  While task not allocated do { 

If memory locations tx + i* sizeof 
(cache a) to tx + i * sizeof (cache a) 
is free then  

Map task to address tx + i* 
sizeof (cache a) to tx + i * 
sizeof (cache a); 



 Else  
   i++; 
 } 
} 
 
For all tasks ordered in descending order of 
size in each subsequent processor pb, pc etc do 
{ 

Allocate largest task in the first 
available contiguous memory block  (Mx 
to My) which will hold the task  
 
Calculate Zr =  (Mx mod sizeof (cache 
r)) – tx, where tx is the address in 
which the task being allocated starts in 
the cache at address 0 and r is the 
present processor under consideration; 

 
While task not allocated do { 

If memory locations tx + Zr + i* 
sizeof (cache a) to ex +Zr + i * 
sizeof (cache a) is free then  

Map task to address tx + Zr 
+  i* sizeof (cache a) to 
ex + Zr + i * sizeof (cache 
a); 

  Else  
   i++; 
 } 
} 

4.Validation of cache performance & 
Results. 

4.1 Validation method 
To validate the performance of the cache we looked at two 

schemes: one the scheme described in this paper and the other 
an arbitrary scheme, where we assumed memory was written 
in a first in first out manner (ie the one that was compiled first 
was written to the memory first and then the second and so 
on).  In order to check the performance of the cache we wrote 
a task level cache simulator, which only tracks compulsory 
misses. Since we are only expecting to have compulsory 
misses, a cache simulator at this level is sufficient.  

To show the power of this technique, we found it useful to 
randomly create cache sizes, the size of tasks and vary the 
number of processors and the cache sizes. We created systems 
with 2, 5, 10 and 20 processors and varied the number of tasks 
from twice the number of processors to one hundred times the 
number of processors. Therefore for two processors we varied 
the number of tasks from 20 to 200. The cache sizes were 
randomly created and varied from 1K to 1M. The caches were 
associated with processors. All task sizes were randomly 
created and each task was associated with a particular 
processor. Since there was a condition that the task size had to 
be smaller than the size of the cache, all tasks larger than the 
cache size was rejected from the tasks created randomly. The 

largest sized task in each processor was given the highest 
priority since that would give us the worst case performances. 

We recorded the total number of words, which did not have 
to be brought into the cache for the second time. We also 
recorded the percentage of each of the first three highest 
priority tasks, which were never pre-empted. We tabulated 
these for the two cases: one our proposed algorithm and the 
other the FIFO case. We further collected the amount of 
memory needed for the tasks in both of the cases. 

4.2 Results 
The results are given for the average percentage of each of 

the first two highest priority tasks, which does not have to be 
restored to memory, when other tasks pre-empt the task. 
Figure 3 shows the average percentage for the first task in 
processors for varying number of tasks for our allocation 
scheme and the FIFO allocation scheme. As can be seen from 
the graph when there are just a few tasks for each processor, 
the percentages for the FIFO case is reasonably close to the 
figures given using our method. As the number of tasks 
increase, the amount of words left in the cache is significantly 
more in comparison to the FIFO case. Even when there is only 
a 10% difference this could mean 10,000 words may be in 
cache all the time. So for every execution of the task graph, the 
amount of time save would be in the order of 80,000 clock 
cycles (assuming that it takes 8 more clock cycles to bring a 
word from memory), which is quite significant. 

 
In Figure 4 the average percentage of 2nd highest priority 

tasks, which is always in memory, is shown for differing 
processor and task numbers. This shows that the scheme 
works for not only the highest priority task, but it also 
continues to work for lower priority tasks as well (as long as it 
has not been overwhelmed by large tasks).  

The average memory necessary for the proposed scheme 
and the FIFO scheme are shown in Figure 5. The extra 
memory required was on average 13.2 % and varied from 3% 
to 37% excess memory. 

5. Conclusions 
This paper presented a method by which to allocate tasks in 

cache in such a way that the total execution time could be 
reduced. The scheme requires the user to place the highest 
priority tasks in an area where the lower priority tasks will 
never overwrite. In order for the tasks to map to the correct 
position in cache, the task has to be mapped to memory in a 
particular way. 
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Figure 3: Average percentage of highest priority tasks never overwritten 
 

Figure 4: Average percentage o f 2nd highest priority tasks never overwritten 
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