
Code placement in Hardware Software Co synthesis to improve performance and
reduce cost

Sri Parameswaran
Department of Computer Science and Electrical Engineering

The University of Queensland
Qld 4072, Australia

sridevan@csee.uq.edu.au

Abstract
This paper introduces an algorithm for code placement in

cache, and maps it to memory using a second algorithm. The
target architecture is a multiprocessor system with 1st level
cache and a common main memory. These algorithms
guarantee that as many instruction codewords as possible of
the high priority tasks remain in cache all of the time so that
other tasks do not overwrite them. This method improves the
overall performance, and might result in cheaper systems if
more powerful processors are not needed. Amount of memory
increase necessary to facilitate this scheme is in the order of
13%. The average percentage of highest priority tasks always
in memory can vary from 3% to 100% depending upon how
many tasks (and their sizes) are allocated to each processor.

1. Introduction
As very large scale integration (VLSI) systems become

larger and larger, and feature sizes become smaller, chips
become more complex. This complexity leads to extremely
long development times using traditional design techniques.
One of the method by which designers are overcoming this
problem is to use pre-deigned, pre-verified cores. Several
cores (also sometimes referred to as processing elements or
PEs) are connected together to execute a single application. An
example of such an application can be a video processing
decoder or a sophisticated aircraft engine management system.
Hardware Software Co-Synthesis methodologies attempt to
automate the system development. Several algorithms have
been developed for Hardware Software Co-Synthesis.

Caches are small high-speed memories placed between the
processor and the main memory. They function as the main
memory but work at close to the speed of the processor. If
instructions are in the cache then the task can be executed
faster than if it were to bring it from the memory.

In HW/SW Co-design environments, we use several
processors, which have to meet strict deadlines. Failure to
meet these deadlines can have severe consequences. The usual
pattern has been to change the processor and meet the

deadlines with more expensive processors. There has been
considerable effort to also look at cache by Li and Wolf [1],
one by reserving some cache for high priority tasks and the
other by doubling caches until dead lines are met.

In this work we do not reserve cache for high priority tasks,
but we look at methods to not overwrite as much as possible of
the highest priority tasks as possible, so that they do not have
to be brought into the cache again.

1.1 Related Work
Most of the early work in Hardware Software Co-Synthesis

was constrained to a single processor and ASIC. Work by
Henkel et. al [2, 3], Gupta et. al [4, 5] and Parameswaran et al
[6, 7]. Prakash and Parker published a mixed integer Linear
Programming (MILP) approach [8] to synthesize multiple
processor architectures for a specific application. This work
was enhanced by the authors in [9] to include memory costs
into the final implementation. Due to the use of MILP, the
scheme proposed by Prakash and Parker had an exponential
computation time. Heuristic solutions [10] and evolutionary
algorithms [11] have been proposed to reduce the total
computation time and to increase the size of problems, which
can be dealt with.

Memory optimisations for Hardware Software co-design
have been researched extensively in the recent past. Danckert
et. al [12] looks at mapping data to memory for efficient
processing of tasks. Verkest et. al [13] have created a tool
named Matisse which looks at several of the memory
management problems before partitioning occurs. Wuytack et.
al [14] presented an approach to reduce memory bandwidth.
Panda et. al. [15-20] has comprehensively researched the topic
of data memory in caches and main memory.

Instruction placement in cache for multi-processor
synthesis was published by Li and Wolf in [1]. The system
divides the tasks into high-priority and low-priority tasks. The
work discussed in this paper allocates approximately half the
cache for high priority tasks and in the other half allocates the
rest of the tasks, to reduce the total number of compulsory
misses in a similar manner to the work described in [21, 22].

The allocation of these tasks to memory was left to the
compiler for completion. Li and Wolf found the above scheme
to be inefficient and used an arbitrary mapping scheme in [23,
24] where the tasks could map to any position in cache. To
improve performance of the overall system, they doubled their
cache memory until the system met deadlines (if it could not
then they moved on to a different partition).

1.2 Relevance of this work
In this paper we describe a method by which high-priority

tasks try to capture as much of the cache as possible without
reserving half the cache for them. This work is a part of a
whole Hardware Software Co-design scheduling portioning
allocation system. Once tasks have been scheduled to separate
processors with specific cache memory, this system then looks
at task allocation in caches and then maps these tasks to the
memory so that maximum performance can be obtained with
the given resources. The system also minimizes the total
memory used by the system.

1.3 Assumptions
For the sake of simplicity, the following assumptions are

made about the tasks and the cache. The assumptions are
somewhat similar to those made by Li and Wolf in [24].

Assumption 1: The size of the task is no bigger than the size
of the cache. This assumption is quite valid in embedded
systems where the tasks are usually small enough to fit into
small cache sizes. If the task is too large for the cache it is
possible to break up the task into smaller granules such that
each granule will fit into the cache. Due to this assumption, we
will only have compulsory misses, which does not change
with the size of cache.

Assumption 2: Only Level-1 caches are available for use.
Once again in an embedded system, where frequently there is
no cache at all, it is unlikely that more than a single level of
cache is going to be available for use.

Assumption 3: The caches are direct mapped. This
assumption makes easier analysis due to the direct mapping
and therefore deterministic mapping to cache from memory.

Assumption 4: The instructions of a task are allocated to a
continuous region of memory. This states that a task mapped
to cache will be also in a continuous region in that cache
(except when it overflows the cache, which then will continue
from the top of the cache). If the memory is going to be in two
parts then they will be considered as two separate tasks.

Assumption 5: All addressing performed within each task
use relative addressing (i.e. branch) only. Tasks can be
mapped to arbitrary locations within the memory map. This
does not allow absolute addressing. If absolute addressing is
used then instruction code cannot be loaded into any section of
the code. If absolute addressing is necessary then we need to
have a more sophisticated compiler is necessary.

1.4 Motivational Example
In systems where cache is present, the instruction is first

brought to the cache before the instruction is executed. In

Hardware Software Co-Synthesis system, a task graph is used
as input, where each of the nodes is a task to be executed. The
task graph is repeatedly executed with separate data sets. In
general purpose computer systems tasks are compiled and
stored into memory in a first in first out (FIFO) scheme, which
means that when a task is mapped into the cache, we have
little control as to where the task will end up in cache.
However, by placing tasks carefully in memory, we could
make critical task at least partially stay in cache at all time so
that the instructions (after the first time when compulsory
misses occur) will always be in cache at all times. For
example, let us assume that the system is composed of the
following architecture given in Figure 1. In this architecture,
there are several processors and a single main memory unit,
which contain all of the instructions and data, which are
necessary for execution of tasks.

Figure 1: A sample system
Let us assume that the following tasks were compiled and

placed in memory. The number of Processing Elements in this
example is just two (numbered 1 and 2). Processor 1 has 5
processes allocated to it numbered from 0 – 4, and Processor 2
has 4 processes allocated to it numbered from 0-3. Let us
assume that both the processors have a cache size of 1024
bytes. Then the I-cache of Processor 1 and 2 will be mapped as
shown in column 5.

PE Process no Size Mem. Map Cache Map

1 0 900 0-899 0-899

2 0 800 900-1699 900-675

1 1 800 1700-2499 676-451

2 1 700 2500-3199 452-127

1 2 700 3200-3899 128-827

2 2 500 3900-4399 828-303

1 3 600 4400-4999 304-903

2 3 500 5000-5499 904-379

1 4 400 5500-5899 380-779

Table 1: An example system

As can be seen from this table, if we only look at processor
1, it can be seen that the associated cache is filled from 0-899
(task 0), then from 676-1023 and then from 0-451 (task 1).
Task 2 in processor 1 will then fill 128-827. Task 3 will cover
from 304 to 903 and finally task 4 will cover the cache from
380-779. The only part of the cache that does not need to be
replaced again when a new task arrives will be the part of the

ASIC/
FPGA

Main

Memory
System

cpu

w/cache

cpu

w/cache

cpu

w/cache

cpu

w/cache

cpu

w/cache

cache from 904 to 1023. As the number of tasks increase, this
too will disappear and there will be virtually no part of the task
that will remain in the cache when the task graph starts to
repeat once again. Thus there are only 120 locations that will
never have to be filled once again.

If another scenario is considered, where the cache is filled
in the following manner. Task 0 is filled from 0-899. Task 1 is
filled from 224-1023. The space from 224-923 is filled by task
2. Task 3 occupies 224-823 and finally task 4 occupies 224-
623. If the cache were to be filled in such a manner, then the
cache area from 0-223 and 924-1023, will never need to be
replaced (totalling 323 locations). Assuming that it takes an
extra 10 clock cycles to bring in data from memory to cache
the total time saved will be 2030 clock cycles for just one
processor. With both processors taken into account, the total
savings will be 5020 clock cycles.

The negative side to this is the extra memory needed to
make certain that the data maps to the particular locations that
have been allocated to them. For Task 0 to map to 0-899 in
cache, let us say it is in memory location 0-899. Task 1, which
maps from 224-1023, will have to be in locations 1248 (1248
mod 1024 equals 224) to 2047, since that is the first address
which is free where the data will map to cache at 224. In this
example there is a gap in memory from locations 899 to 1248.
Unless there is a later task that can utilize that space, this gap
in memory will remain, which will result in wasted space.
Therefore the total memory needed will be greater than for the
FIFO scheme, but the scheme will result in faster execution of
certain tasks resulting in an overall speedup on the task graph.

1.5 Organization of this paper
This paper is organized as follows: the first section

introduced the topic and discussed the relevant works. The
next section mathematically defines the problem. Section three
discusses two heuristic algorithms and section four gives the
method by which these algorithms were validated and then the
results are presented. Section five concludes the paper.

2. Problem Statement
The problem can be mathematically stated as follows:

Let there be m processors named P1, P2, P3 … Pm, each with
associated cache sizes S1, S2, S3 …Sm. The jth processor has nj
tasks associated with it. The tasks have an urgency factor
associated with each called x1j, x2j, x3j …xnj and a size
associated with it called s1j, s2j, s3j … snj. Let

n321 x...xxx ≥≥ . That is the tasks are ordered in

descending order of priority.
For a cache be tightly packed, and that as many a high

priority tasks be given space in the cache which is not
replaced, let task kj satisfy,

}s{sS}s{s ij
nik

1k

1i
ijjij

ni1k

k

1i
ij maxmax

jj

j

jj

j

≤≤

−

=≤≤+=

+≥≥+ ∑∑ . Thus

it can be seen that k – 1 tasks can fit completely in the cache
above the largest of the remaining tasks. A part of the kth task

will also fit above the largest of the remaining task but all of
the others will be below the largest of the remaining tasks. For
the sake of representation we shall break task k into two tasks
(thus now there are nj +1 tasks in each cache). The kth task has
now become k and k+1th task, where k is in the section, which
will never be overwritten by the remaining largest task, and
k+1th task is in the section, which will be over written by the
remaining largest task.

Let tij be the starting address in cache j of task i and let eij
be the ending address of task i in cache j. Therefore

t1j = 0 and e1j = s1j –1,
 tlj = elj-1 +1 and elj = tlj + slj – 1 for l = 2, …, k+1j and j =

1, …, m.

jklj j
et ≥ + 1 and jlj Se ≤ for l = kj+2, …, nj. and j = 1, …,

m
Our aim is to preserve the above task allocation in cache,

while reducing the overall memory consumption. In order to
do that, we must satisfy the following inequalities in memory
so that two separate tasks will not overlap in memory.

tlj +iljSj +Zj ≥ eνµ + iνµSµ + Zµ
tνj + iνjSj + Zj ≥ elµ + ilµSµ +Zµ, for µ = 1, …, m and j = 1,

…, m.
Since the broken up task kj and k+1j must be together in

memory, the tasks must also meet the condition that
tkj +ikjSj +Zj +skj – 1 = tk+1j.

If Y is the largest memory location then,
elj +iljSj +Zj ≤ Y
Our aim is to minimize Y.

2.1 Complexity of the Problem
It can be shown that a special case of the problem where,

we set all Z’s to 0 can be shown to be a bin-packing problem.
Therefore this problem is at least as hard as the bin-packing
problem which is NP-Hard. To solve this problem in
reasonable run-time it is necessary to use some type of
heuristics. The following section gives two separate
algorithms, one algorithm to allocate tasks in cache and
another to map the tasks in memory to reduce overall memory
size.

task with
urgency =1

task with
urgency =3

task with
urgency =2

largest
unallocated

task

largest
unallocated

task

other
unallocated

tasks

largest
unallocated

task

area in which
instructions
will never

be replaced

A ls

Step 1 Step 4Step 3Step 2

Fig 2. An Illustration to show task allocation methodology in
cache

3. Algorithm for allocating tasks in Cache
and Memory

3.1 Cache allocation
The methodology used for ordering tasks in cache is as

follows (see Figure2). First the tasks are ordered for each of
the processors in their order of urgency. Until the cache is
completely filled, the tasks (only whole tasks are allowed) are
allocated to the cache from the lowest address to the highest.
Once this step is finished, we find the largest task from the
remaining tasks. This large task is allocated to the bottom of
the cache say with starting address Als and ending at the end of
the cache (step 2). After this we take the next largest task and
allocate it’s starting address in cache to Als. (step3). The ending
address will be less than the final address of the cache. Thus if
another unallocated task can be found which can go into the
space (below the task we just allocated, and above the last
cache address), we allocate that task into the available space
(step 3 contd). We keep doing this until we reach the end of
the cache. We take the next largest unallocated task (step 4),
and start it at address Als and we repeat the process until all
tasks are allocated.
Algorithm

Let us assume that the processors used in the system are p1,
p2, p3… pk. The associated caches are c1, c2, c3, … ck. For
each processor r, the tasks to be executed in that processor are
as follows: Tr1, Tr2, Tr3 …… Trn where n is the number of tasks,
and the tasks are ordered in descending order of urgency. As
the Urgency increases, the associated task is expected to be
executed in as short a time as possible. Urgency can be
defined in many differing ways. We have used the definition
given in [1].

ForEach Processor {

Until Cache is filled
 Allocate tasks to the cache in

descending order of urgency;
 Reorder Unallocated tasks in order of

size and place in list Trl (Trl = Trl1,
Trl2, Trl3 … Trlm, where y is the number of
unallocated tasks for that processor and
y <n);

 Allocate Trl1 from address Als to end of
cache (where trl1 = sizeof (cache r) -
sizeof (Trl1));

 Remove Trl1 from Trl
 Repeat Until all tasks are allocated {

 Find the next largest unallocated
Task Trlp from the list Trl;

 Allocate Trlp from address Als to
Ale where Ale = Als + sizeof (Trlp);

 Mark Trlp from list Trl as
allocated;

 Move along the list Trl and place
as many tasks as possible between
Ale and sizeof (cache r);

 Mark placed tasks as allocated;
}

}

3.2 Memory Allocation
The memory allocation algorithm takes the placed tasks in

cache and directly maps them to the memory. Thus if a task is
mapped to location from tx to ex in cache of processor r, then
the task can be placed in memory in any one of the address
ranges from addresses tx + i* sizeof (cache r) to ex + i * sizeof
(cache r), where i is a positive integer . However, since tasks
in cache will wrap around the cache, an offset Zr, can be added
to each task allocated to processor r, and the task can be
placed from memory location tx + Zr + I * sizeof (cache r) to
memory location tx + Zr + i * sizeof (cache r). This
introduction of the offset allows the reduction in size of the
total memory needed for the system.

The algorithm works as follows as described here. The
processors are ordered in the descending order of total task
size and put in a processor list. The processor with the highest
sum of all task sizes will be the first in the processor list. The
processor with the lowest sum will be the last element in the
processor list. The tasks allocated in the first processor are
mapped to the main memory as follows: the first task allocated
in cache is directly mapped to the memory (in this case, task tx
= 0 and ex = sizeof (task 1) – 1); task and upwards will be
mapped by moving i along the non-negative integer range and
trying to find an area in memory which is free from locations
tx + i* sizeof (cache 1) to ex + i * sizeof (cache 1). The tasks
allocated to the subsequent processors are allocated thus: the
largest task allocated to the processor is put in the first
available memory block where the task will fit (say Mx to My);
from this the offset Zr is calculated, and Zr = (Mx mod sizeof
(cache r)) – tx. Using this Zr, all of the other tasks allocated to
the processor are mapped to the memory in the order of size
from largest to smallest using the mapping each task from
memory location tx + Zr + i* sizeof (cache r) to memory
location tx + Zr + i * sizeof (cache r).
Algorithm

Let us assume that the processors used in the system are p1,
p2, p3… pk. The associated caches are c1, c2, c3, … ck. For
each processor r, the tasks to be executed in that processor are
as follows: Tr1, Tr2, Tr3 …… Trn where n is the number of tasks.

Foreach processor do

∑
n

rx)T(sizeof ;

Reorder processors from largest sum to
smallest sum of total task size and name them
pa, pb, pc …;

For all tasks ordered in the cache allocation
order in pa do {
 i = 0;
 While task not allocated do {

If memory locations tx + i* sizeof
(cache a) to tx + i * sizeof (cache a)
is free then

Map task to address tx + i*
sizeof (cache a) to tx + i *
sizeof (cache a);

 Else
 i++;
 }
}

For all tasks ordered in descending order of
size in each subsequent processor pb, pc etc do
{

Allocate largest task in the first
available contiguous memory block (Mx
to My) which will hold the task

Calculate Zr = (Mx mod sizeof (cache
r)) – tx, where tx is the address in
which the task being allocated starts in
the cache at address 0 and r is the
present processor under consideration;

While task not allocated do {

If memory locations tx + Zr + i*
sizeof (cache a) to ex +Zr + i *
sizeof (cache a) is free then

Map task to address tx + Zr
+ i* sizeof (cache a) to
ex + Zr + i * sizeof (cache
a);

 Else
 i++;
 }
}

4.Validation of cache performance &
Results.

4.1 Validation method
To validate the performance of the cache we looked at two

schemes: one the scheme described in this paper and the other
an arbitrary scheme, where we assumed memory was written
in a first in first out manner (ie the one that was compiled first
was written to the memory first and then the second and so
on). In order to check the performance of the cache we wrote
a task level cache simulator, which only tracks compulsory
misses. Since we are only expecting to have compulsory
misses, a cache simulator at this level is sufficient.

To show the power of this technique, we found it useful to
randomly create cache sizes, the size of tasks and vary the
number of processors and the cache sizes. We created systems
with 2, 5, 10 and 20 processors and varied the number of tasks
from twice the number of processors to one hundred times the
number of processors. Therefore for two processors we varied
the number of tasks from 20 to 200. The cache sizes were
randomly created and varied from 1K to 1M. The caches were
associated with processors. All task sizes were randomly
created and each task was associated with a particular
processor. Since there was a condition that the task size had to
be smaller than the size of the cache, all tasks larger than the
cache size was rejected from the tasks created randomly. The

largest sized task in each processor was given the highest
priority since that would give us the worst case performances.

We recorded the total number of words, which did not have
to be brought into the cache for the second time. We also
recorded the percentage of each of the first three highest
priority tasks, which were never pre-empted. We tabulated
these for the two cases: one our proposed algorithm and the
other the FIFO case. We further collected the amount of
memory needed for the tasks in both of the cases.

4.2 Results
The results are given for the average percentage of each of

the first two highest priority tasks, which does not have to be
restored to memory, when other tasks pre-empt the task.
Figure 3 shows the average percentage for the first task in
processors for varying number of tasks for our allocation
scheme and the FIFO allocation scheme. As can be seen from
the graph when there are just a few tasks for each processor,
the percentages for the FIFO case is reasonably close to the
figures given using our method. As the number of tasks
increase, the amount of words left in the cache is significantly
more in comparison to the FIFO case. Even when there is only
a 10% difference this could mean 10,000 words may be in
cache all the time. So for every execution of the task graph, the
amount of time save would be in the order of 80,000 clock
cycles (assuming that it takes 8 more clock cycles to bring a
word from memory), which is quite significant.

In Figure 4 the average percentage of 2nd highest priority

tasks, which is always in memory, is shown for differing
processor and task numbers. This shows that the scheme
works for not only the highest priority task, but it also
continues to work for lower priority tasks as well (as long as it
has not been overwhelmed by large tasks).

The average memory necessary for the proposed scheme
and the FIFO scheme are shown in Figure 5. The extra
memory required was on average 13.2 % and varied from 3%
to 37% excess memory.

5. Conclusions
This paper presented a method by which to allocate tasks in

cache in such a way that the total execution time could be
reduced. The scheme requires the user to place the highest
priority tasks in an area where the lower priority tasks will
never overwrite. In order for the tasks to map to the correct
position in cache, the task has to be mapped to memory in a
particular way.
Acknowledgments
The author would like to thank Dr Joerg Henkel for the
interesting discussions and Dr Bhaskar Sengupta for helping to
formulate the mathematical description of the problem. The
author is also immensely grateful for the support given by the
management and members of the Computers and
Communications Research Laboratories of NEC USA in
Princeton, where this work was conducted while on sabbatical.

Figure 3: Average percentage of highest priority tasks never overwritten

Figure 4: Average percentage o f 2nd highest priority tasks never overwritten

Avg % of highest priority tasks never overwritten

0
10
20
30
40
50
60
70
80
90

100

2-
4

2-
6

2-
8
2-

10
2-

15
2-

20
2-

40
2-

80
2-

15
0
2-

20
0
5-

10
5-

15
5-

20
5-

25
5-

405.
50

5-
10

0
5-

20
0
5-

40
0
5-

50
0
10

-2
0
10

-3
0
10

-4
0
10

-5
0
10

-7
5

10
-1

00

10
-2

00

10
-4

00

10
-6

00

10
-1

00
0
20

-4
0
20

-6
0
20

-8
0

20
-1

00

20
-1

50

20
-2

00

20
-4

00

20
-8

00

20
-1

50
0

20
-2

00
0

Processors-Tasks

%

Proposed

FIFO

Avg. % of 2nd highest priority task always in cache

0
10
20
30
40
50
60
70
80
90

100

2-
4

2-
8

2-
15

2-
40

2-
15

0
5-

10
5-

20
5-

40
5-

10
0

5-
40

0
10

-2
0

10
-4

0
10

-7
5

10
-2

00

10
-6

00

20
-4

0
20

-8
0

20
-1

50

20
-4

00

20
-1

50
0

Processors-Tasks

%

Proposed
FIFO

Memory Required

1
10

100
1000

10000
100000

1000000
10000000

100000000

2-
4
2-

6
2-

8
2-

10
2-

15
2-

20
2-

40
2-

80
2-

15
0

2-
20

0
5-

10
5-

15
5-

20
5-

25
5-

40
5.

50
5-

10
0

5-
20

0
5-

40
0

5-
50

0
10

-2
0

10
-3

0
10

-4
0

10
-5

0
10

-7
5

10
-1

00

10
-2

00

10
-4

00

10
-6

00

10
-1

00
0

20
-4

0
20

-6
0

20
-8

0

20
-1

00

20
-1

50

20
-2

00

20
-4

00

20
-8

00

20
-1

50
0

20
-2

00
0

Processors-Tasks

W
o

rd
s

Proposed

FIFO

Figure 5: Memeory requirements for our scheme and the FIFO scheme

References
[1] L. Yanbing and W. Wolf, “A task-level hierarchical memory
model for system synthesis of multiprocessors,” in Proceedings 1997.
Design Automation Conference, 34th DAC. ACM, New York, NY,
USA; 1997; xxix+788 pp. p.153 6, 1997.
[2] J. Henkel, T. Benner, R. Ernst, W. Ye, N. Serafimov, and G.
Glawe, “COSYMA: a software-oriented approach to
hardware/software codesign,” Journal of Computer and Software
Engineering, vol. 2, pp. 293-314, 1994.
[3] J. Henkel, R. Ernst, U. Holtmann, and T. Benner, “Adaptation of
partitioning and high-level synthesis in hardware/software co-
synthesis,” in 1994 IEEE/ACM International Conference on
Computer Aided Design. Digest of Technical Papers (IEEE Cat.
No.94CH3455 3). ACM, New York, NY, USA; 1994; xxx+771 pp.
p.96 100, 1994.
[4] R. K. Gupta and M.-G. De, “Hardware-software cosynthesis for
digital systems,” IEEE Design & Test of Computers, vol. 10, pp. 29-
41 Phys Sci & Engin Journal holding 21(1984)-
1912(1995);1913(1996)-, 1993.
[5] R. K. Gupta and M.-G. De, “Constrained software generation for
hardware-software systems,” , 1994.
[6] M. F. Parkinson, P. M. Taylor, and S. Parameswaren, “An
Automated Hardware/Software Codesign (HSC) using VHDL,”
Proceedings of First Asian Pacific Conference on Hardware
Description Languages, Standards and Applications, pp. 267-280,
Dec. , 1993.
[7] M. F. Parkinson and S. Parameswaran, “Profiling in the ASP
codesign environment,” in Proceedings of the Eighth International
Symposium on System Synthesis (IEEE Cat. No.95TH8050). IEEE
Comput. Soc. Press, Los Alamitos, CA, USA; 1995; xiii+175 pp.
p.128 33, 1995.
[8] S. Prakash and A. C. Parker, “Synthesis of application-specific
multiprocessor systems including memory components,” in
Proceedings of the International Conference on Application Specific
Array Processors (Cat. No.92TH0453 1). IEEE Comput. Soc. Press,
Los Alamitos, CA, USA; 1992; xii+698 pp. p.118 32, J. Fortes, E.
Lee, and T. Meng, Eds., 1992.
[9] S. -*Prakash and A. C. Parker, “Synthesis of application-specific
multiprocessor systems including memory components,” Journal of
VLSI Signal Processing, vol. 8, pp. 97-116, 1994.
[10] W. H. Wolf, “An architectural co-synthesis algorithm for
distributed, embedded computing systems,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 5, pp. 218-229,
1997.
[11] A. Rae and S. Parameswaran, “Application-specific
heterogeneous multiprocessor synthesis using differential-evolution,”
in Proceedings. 11th International Symposium on System Synthesis
(Cat. No.98EX210). IEEE Comput. Soc, Los Alamitos, CA, USA;
1998; xii+164 pp. p.83 8, 1998.
[12] K. Danckaert, F. Catthoor, and M.-H. De, “System level memory
optimization for hardware-software co-design,” , 1997.

[13] D. Verkest, S.-J. L. Da, Jr., C. Ykman, K. Croes, M. Miranda, S.
Wuytack, F. Catthoor, J.-G. De, and M.-H. De, “Matisse: a system-
on-chip design methodology emphasizing dynamic memory
management,” Journal of VLSI Signal Processing Systems for Signal,
Image, and Video Technology, vol. 21, pp. 185-194, 1999.
[14] S. Wuytack, F. Catthoor, J.-G. de, B. Lin, and M.-H. De, “Flow
graph balancing for minimizing the required memory bandwidth,” in
Proceedings. 9th International Symposium on System Synthesis (Cat.
No.96TB100061). IEEE Comput. Soc. Press, Los Alamitos, CA, USA;
1996; xii+145 pp., 1996.
[15] P. R. Panda, N. D. Dutt, and A. Nicolau, “Local memory
exploration and optimization in embedded systems,” IEEE
Transactions on Computer Aided Design of Integrated Circuits and
Systems, vol. 18, pp. 3-13, 1999.
[16] P. R. Panda and N. D. Dutt, “Low-power memory mapping
through reducing address bus activity,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 7, pp. 309-320, 1999.
[17] P. R. Panda, H. Nakamura, N. D. Dutt, and A. Nicolau,
“Augmenting loop tiling with data alignment for improved cache
performance,” IEEE Transactions on Computers, vol. 48, pp. 142-
149 Phys Sci & Engin Journal holding 117(1968)-
1944(1995);1945(1996)-, 1999.
[18] P. R. Panda and N. D. Dutt, “Behavioral array mapping into
multiport memories targeting low power,” in Proceedings. Tenth
International Conference on VLSI Design (Cat. No.97TB100095).
IEEE Comput. Soc. Press, Los Alamitos, CA, USA; 1997; xxxvii+566
pp. p.268 72, 1997.
[19] P. R. Panda, N. D. Dutt, and A. Nicolau, “Efficient utilization of
scratch-pad memory in embedded processor applications,” in
Proceedings. European Design and Test Conference. ED & TC 97
(Cat. No.97TB100102). IEEE Comput. Soc. Press, Los Alamitos, CA,
USA; 1997; xxxvi+634 pp. p.7 11, 1997.
[20] P. R. Panda, H. Nakamura, N. D. Dutt, and A. Nicolau,
“Improving cache performance through tiling and data alignment,” in
Solving Irregularly Structured Problems in Parallel. 4th
International Symposium, IRREGULAR '97 Proceedings. Springer
Verlag, Berlin, Germany; 1997; x+288 pp. p.167 85, G. Bilardi, A.
Ferreira, R. Luling, and J. Rolim, Eds., 1997.
[21] D. B. Kirk, J. K. Strosnider, and J. E. Sasinowski, “Allocating
SMART cache segments for schedulability,” in Proceedings.
EUROMICRO '91. Workshop on Real Time Systems. IEEE Comput.
Soc. Press, Los Alamitos, CA, USA; 1991; ix+231 pp. p.41 50, 1991.
[22] D. B. Kirk and J. K. Strosnider, “SMART (strategic memory
allocation for real-time) cache design using the MIPS R3000,” in
Proceedings. 11th Real Time Systems Symposium (Cat.
No.90CH2933 0). IEEE Comput. Soc. Press, Los Alamitos, CA, USA;
1990; xi+341 pp. p.322 30, 1990.
[23] L. Yanbing and W. Wolf, “Hardware/software co-synthesis with
memory hierarchies,ICCAD, 1998.
[24] L. Yanbing and W. H. Wolf, “Hardware/software co-synthesis
with memory hierarchies,” IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems, vol. 18, pp. 1405-1417,
1999.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

