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Abstract

This paper introduces an allocation and scheduling al-
gorithm that efficiently handles conditional execution in
multi-rate embedded system. Control dependencies are in-
troduced into the task graph model. We propose a mu-
tual exclusion detection algorithm that helps the schedul-
ing algorithm to exploit the resource sharing. Allocation
and scheduling are performed simultaneously to take ad-
vantage of the resource sharing among those mutual exclu-
sive tasks. The algorithm is fast and efficient,and so is suit-
able to be used in the inner loop of our hardware/software
co-synthesis framework which must call the scheduling rou-
tine many times.

1. Instructions

Hardware/software co-synthesis partitions an embedded
system specification into hardware and software modules to
meet performance, power and cost goals.A common model
to describe the system specification is the task graph [1].
The task graph has a structure similar to a data flow graph,
except that the tasks in a task graph represent larger units
of functionality. Allocation and scheduling of a set of
data-dependent tasks, which are described by task graphs,
on a multiprocessor architecture has been intensively re-
searched. But most previous work that used a task graph
model that has no control dependency information can only
capture data dependency in the system specification. Re-
cently, some researchers in co-synthesis domain have tried
to use conditional task graph to capture both data depen-
dencies and control dependencies of the system specifica-
tion [7][8]. However, because of the time complexity, their
algorithms are not very suitable for large task graphs or to
be used in the inner loop of the co-synthesis procedure.

This paper describes an allocation and scheduling algo-

rithm that is used in the inner loop of our co-synthesis pro-
cess of distributed, embedded computing systems[11]. The
co-synthesis process synthesizes a distributed multiproces-
sor architecture and allocates processes to the target archi-
tecture, such that the allocation and scheduling of the task
graph meets the deadline of the system, while the cost of the
system is minimized. The algorithm targets periodic multi-
rate task graphs. The target architecture is a heterogeneous
multiprocessor architecture that consists of multiple pro-
cessing elements (PEs) of various types: general-purpose
CPUs or domain-specific CPUs and ASICs. The allocation
and scheduling algorithm has been implemented as part of
our co-synthesis tool [11], which is the first co-synthesis
tool that takes into account the impact of different custom
ASIC implementations of tasks on system performance and
cost in the co-synthesis process.

This paper is organized as follows. Section 2 reviews
previous related work. Section 3 describes the problem for-
mulation and section 4 introduces a method to detect mutual
exclusion among tasks. We then present our scheduling and
allocation algorithm. Finally we discuss the experimental
results of our algorithm.

2. Related Work

Previous work in hardware/software co-design has ad-
dressed various aspects of HW/SW co-synthesis. Hard-
ware/software partitioning algorithms implement the sys-
tem specification on some sort of architectural template,
usually a single CPU with one or more ASICs connected to
the bus. On the other hand, distributed system co-synthesis
creates a multiprocessor architecture. The target architec-
ture is usually heterogeneous in both its processing ele-
ments and its communication channels. It can employ mul-
tiple CPUs, ASICs and FPGAs.

Task allocation and scheduling are important aspects of
the co-synthesis process. The scheduling routine is not only



used to generate the final allocation and schedules for the
design, but also used in the inner loop of co-synthesis to
evaluate the performance of intermediate solutions, and to
help to generate new solutions. Both its result quality and
its efficiency are critical to the co-synthesis algorithm.

Some scheduling problems can be modeled as integer
linear programming (ILP) problems. An ILP solver is used
to find the optimal solution. An earlier example for optimal
approaches is the SOS system, which used mixed integer
linear programming technique (MILP) [5]. Because of the
time complexity, optimal approaches are suitable only for
small task graphs and impractical. Heuristic approach is by
far the most widely used approach. Many heuristic schedul-
ing algorithms are variants and extensions of list scheduling
[1][2][4]. But most of those works consider only the data
dependencies in the task graph model, though scheduling
of control and data flow graphs has been a very active re-
search area in high level synthesis [9][10]. Recently, peo-
ple in the system level synthesis pay attentions to handle
the control dependencies in the task graph model. Eleset
al. described the conditional task graph model and used a
list-scheduling algorithm to generates different schedule ta-
bles for all processing elements in the architecture [7][13].
The schedule table lists all schedules for different condition
combination in the task graph. Their algorithm has two lim-
itations: 1. They assume that the allocation of the tasks is
fixed for each task; 2. Their algorithm has to enumerate
all possible schedules for all condition combinations, thus
it is not suitable for control-intensive application. Kuchcin-
ski et al. [8] used constraint programming techniques to
model the scheduling problem of conditional task graphs,
and then used commercial constraints solver to find the so-
lution. This approach does not take advantage of heuristics
unique to co-synthesis.

3. Problem formulation

Many real-time applications are periodic, running at
multiple rates. We use atask graph model [3] to describe
each application. Application is partitioned into task graph,
which is a directed acyclic graph, as shown in Figure 1. In
a task graph, each node represents task that may have mod-
erate to large granularity; the directed edges represent data
dependencies between tasks. An edge, sayA → D,implies
that task D cannot start execution until A is finished. Data
dependency edges ensure the correct order of execution.
Each edge is associated with a scalar describing the amount
of data that must be transferred between the two connected
tasks, which decides the communication time between the
tasks if they are allocated onto different PE. We assume that
if two tasks are allocated onto the same PE, the communica-
tion time is 0. An edge with an assigned condition value is
a conditional edge (represented with dot lines in Figure 1).

The task with output conditional edge is a branch fork task.
Conditional paths meet at a branch join task. For example,
in Figure 1, A is a branch fork task, and E is a branch join
task. Depending on the condition, one of the out-branches
of task A (A → B orA → C) is activated. The task graph is
executed periodically at its specified rate. For simplicity, in
this paper, we assume that the deadline, by which the task
graph must complete its execution, is equal to the period.
The deadline can actually shorter or longer than the period.
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Figure 1.  Conditional task graph 
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We use a heterogeneous shared memory multiprocessor
as thetarget architecture as shown in Figure 2. The archi-
tecture has a number of processing elements (PEs), which
may be CPUs or ASICs, which are communicating with
each other via communication links (such as a bus). Each
CPU has its private instruction cache and data cache. The
task-level cache performance model we used is proposed
by Li [2]. Each task can have many implementation options
differing in PE type, cost and execution time.
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     Figure 2.  The target architecture.

The technology library provides a number of choices
of the types of CPUs and the worst case execution time
(WCET) for the tasks on each type CPU. Part of the tech-
nology library for the example in Figure 1 is shown in Table
1. The WCET of a task on CPU can be estimated using the
techniques described in [14]. If a task can be implemented
as ASIC, then there is a related behavioral VHDL file for
this task. An architectural exploration system called Monet
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[6], which is provided by Mentor Graphics, is used to de-
termine the performance and cost of the ASIC. By using
Monet as an estimation tool for the custom ASICs, our co-
synthesis system [11] can explore the tradeoffs of different
ASIC implementations during the co-synthesis process.

               
Tasks WCET on CPU1 WCET on CPU2 
 A  10 20 
 B  20 18 
 C  30 20 
 D  30 10 
 E  10 20 
 F  30 20 
Cost of CPU1=100          Cost of CPU2=150 

           Table 1. Part of the technology library.           
 

Given the conditional task graph, target architecture and
technology library, the co-synthesis algorithm produces an
allocation of tasks on target architecture and constructs the
static global schedule of the tasks on specified processing
elements.

4. Detection of mutual exclusion

In the conditional task graph, if two tasks belong to dif-
ferent conditional branch paths that have conflicting condi-
tion combination, they are mutual exclusive and it is impos-
sible for them to be executed at the same time. For example
in Figure 1, depends on the condition value, task B or task C
is executed but not both. If task B and task C are allocated
to the same CPU, they can have overlapping execution time
when they are scheduled, since they are mutual exclusive.

We can use a branch labeling method, which is similar to
the branch numbering procedure described in [9], to iden-
tify the mutually exclusive tasks. Each task in the task graph
is associated with a branch information structure, which is
defined as following:

struct branchinfo{
int level;
branchlabel[i];
branchcondition[i];
};

level the number of branch fork tasks that have to be exe-
cuted before reaching this task.

branch label[i] the name of the ith level branch fork task.

branch condition[i] the condition value for the ith level
branch.

For the example in Figure 3, The task A and F are
not in any branch, so their branch level is 0 and does not
have branchlabel and branchcondition information. Task
J belongs to one of the branches beginning from C, as
well as one of the branches beginning from I. When con-
dition at C is C3 and at I is I1, task J is executed. So

the branch level of task J is 2, and the branch lable=[C,
I], branchcondition=[C3,I1]. We can use the algorithm
shown in Figure 4 to go through the task graph and cal-
culate the branchinfo struct for each task. The result is
shown in Table 2. The fictitious branch joint tasks are cre-
ated in Figure 3 for outlining control structure. Note that
in [7][13], their conditional process graph model only con-
sider boolean condition while our approach allows multiple
conditions (such as the switch statement in C language).
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     Figure 3.  An example conditional task graph.

 

Branch_labeling(task  ps) 
{  
if  (ps is the branch join task) { 
              delete ps->branch_label[ps.level] and 
              ps->branch_condition[ps.level]; 
              ps.level--;} 
foreach child task ps_child of ps{ 
      if(ps is the branch fork task) 
          {    i =ps_child.level++; 
                ps_child->branch_label[i] =ps.name; 
                ps_child->branch_condition[i] 
                              =branch_condition;} 
     else 
 ps_child has the same branch_info as ps 
    } 
Branch_labeling(ps_child) 
} 
 Figure 4. Branch-labeling recursion algorithm outline. 

   
Node  level Branch_label  Branch_condition 
A   0 N/A N/A 
B  0 N/A N/A 
C  0 N/A N/A 
D  1  B  B1 
E  1  B  B2 
G  1  C  C1 
H  1    C  C2 
I  1   C  C3 
J  2  C  I  C3  I1 
K  2  C  I  C3  I2 
F  0   N/A  N/A 

  Table2. The branch_info struct for Figure3. 
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By using this scheme, it is easy to decide if two tasks are
mutual exclusive. For any two tasks,

1. If the level of one task is 0, then they are not mutual
exclusive, such as task A and task I.

2. If task1.level = n1, task2.level = n2,
let N=min(n1,n2), then we compare the first N
branchlabel and branchcondition, beginning from
branch label[1] andbranch condition[1]:

a if task1.branch label[i] 6= task2.branch label[i],
they are not mutual exclusive, such as task I and
task D.

b if task1.branch label[i] = task2.branch label[i]
and task1.branch condition[i] 6=
task2.branch condition[i], they are mutual
exclusive, such as G and J.

c else, compare the i+1 level. Ifi > N , they are not
exclusive.

By using the same scheme, we can decide the mutual
exclusive communication edges. For example, the commu-
nication edgesC → G andC → H in Figure 4 are mutual
exclusive, if they are scheduled on the same communication
link, they can have overlapping execution time slot. Note
that two tasks on different branches might not be mutual
exclusive, such as D and I.

5. Allocation and scheduling algorithm

During the co-synthesis process [2], when the architec-
ture space is explored and the partition of tasks on software
(CPUs) and hardware (ASICs) is generated, a scheduling
routine is used in the inner loop of co-synthesis to evaluate
the performance of intermediate solutions, and to help to
generate new solutions. Since it is used in the inner loop of
co-synthesis process, it is called by the synthesis procedure
many times. The efficiency and the quality of the schedul-
ing are very important to the quality of the co-synthesis re-
sult.

Our scheduling algorithm performs allocation of the
tasks on CPUs and scheduling of the tasks on CPUs and
ASICs simultaneously, such that the algorithm can take ad-
vantage of the resource sharing among those mutual exclu-
sive tasks that belong to different branches. This is different
from the algorithms proposed in [7][13], which assume that
the allocation of tasks on CPUs is fixed.

Our allocation and scheduling algorithm is similar to that
designed by Li [2] and Sih [4]. However, our approach takes
into account mutually exclusive tasks identified by earlier
phases. Figure 5 outlines the allocation and scheduling pro-
cedure.

 

1. for each task, calculate static_urgency(task) 
2.    if there is task i in ready list is partitioned on ASIC 
2.        schedule task i; goto  9 
4.     else  
5.         for each ready task i and each CPU pe-j  
6.             calculate dynamic_urgency(task-i, pe-j) 
7.     schedule task-i on pe-j with maximium    
8.          dynamic_urgency value 
9. update ready task list and goto 2 until all tasks  are  
        scheduled. 
     Figure 5. Outline of allocation and scheduling  
                     algorithm 

      

Thestatic urgency is calculated for each task based on
the maximum distance of the task to the end task of the task
graph. This is similar to the priority assignment in some
list schedulers. For example, in Figure 1, we assume that
the communication time for each edge is 1, and task D is
partitioned to be implemented as ASIC. The execution time
of D as ASIC is estimated by using Monet, as we mentioned
in section 3. Suppose that the execution time for D on ASIC
is 5, then the static urgency (SU) of the tasks are shown as
Table 3. Note that the weight for each task that allocated
on CPUs is calculated as the average WCET on CPUs, user
can also specify to use the mediate WCET as the weight
for the task. For the tasks that are allocated to the ASIC,
the weight is exactly the estimated WCET from Monet by
taking the VHDL description of that task as the input. The
longest branch path is used to calculate the static urgency of
a branch fork task.

 
Task  A B C D E F 
SU 83 61 67 31 41 25 

  Table3. The static urgency for the example in Figure 1. 

Thedynamic urgency is defined as:

DU(task,CPU)=SU(task)
- max{readytime(task),CPU available time}
- WCET(task, CPU)

The dynamic urgency is related to the following factors:

1. Static urgency (SU). If a task’s SU is high, it implies
that this task is a critical task and should be given a
high priority.

2. The earliest start time of this task on the CPU. Note
that the readytime(task) takes into account the com-
munication time from its predecessor. We assume
that the communication time between two tasks on the
same CPU is 0. Furthermore, the mutual exclusive
communication edges can share the same communi-
cation link with overlapping time slot.

3. The worst case execution time (WCET) of this task on
the CPU. When the CPU available time is calculated, if
the allocated task is mutually exclusive with the ready

4



task, then these two tasks can share the same time slot
of the processing element to share the resource.

Figure 6 is the subroutine in the scheduler that deter-
mines the CPU available time for a task by using the infor-
mation obtained from the mutual exclusive detection proce-
dure , which is described in section 4.

 
PE_available(Task ready_task, CPU pe)  //ready_task is the 
task attempt to be allocated on pe 
{ 
1.if no task scheduled on pe, return 0; 
2.ps1=latest allocated task on pe; 
3.if ready_ps is not mutual exclusive with ps1    
        return ps1.completion_time; 
4.else  ps1=previou scheduled task on pe,  
         goto 3   } 
      Figure 6.  Calculation of CPU available time. 
 
Table 4 shows the first several steps to schedule the task

graph in figure 1 on the target architecture with one CPU1
and one CPU2. Task D is implemented as ASIC, which is
decided by the iterative improvement procedure during the
co-synthesis procedure[2].

   
 SU        DU(task, CPU)   Schedule (from,to, PE) 
A 83 73, 63 -- , -- --,  --  (0,10,   CPU1) 
B 61 -- , -- 29, 31 29,  31  (12,30, CPU2) 
C 67 -- , -- 25, 35 -- , --  (12,32, CPU2) 
D 31 -- , -- -- ,  --  -- , --   (11,16, ASIC) 
A-- > D   (10,11, BUS) 
A-- > C   (11,12, BUS) 
A-- > B   (11,12, BUS) 

  Table 4. The first several scheduling steps for figure 1. 

After A is scheduled on CPU1 from 0 to 10, tasks B,C,D
are all ready to be scheduled. Since D is partitioned as
ASIC, D and the communication edge from A to D are
scheduled. Then, C is allocated and scheduled on CPU2
since DU(C,CPU2)=35 is the greatest among all combina-
tion of B,C with CPU1 and CPU2. When DU(B,CPU2) is
calculated, since B and C are mutual exclusive, B can still
be allocated and scheduled on CPU2 and have overlapping
schedule time with task C. Furthermore, the communication
edgeA → C andA → B are mutual exclusive and so can
be scheduled on the bus at the same time slot.

6. Experimental results

We have implemented our conditional task graph allo-
cation and scheduling algorithm as part of our co-synthesis
framework [11]. For the example shown in Figure 3, the
schedule on two CPUs is shown in Figure 7 (we did not
show the communication schedule here). By using our mu-
tual exclusion test scheme, task G, H and J are mutual ex-
clusive, so they can have overlap execution time slot on
CPU1. Similarly, D and E are mutual exclusive, they can
share CPU2 at the same time. But for task K and E, they are

not mutual exclusive though they belong to different condi-
tional branch, so K must wait until E is done.
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Figure 7. Scheduling result for example in fugure 2. 

G

Compared with the algorithms proposed by Eleset al.
and Pop[7][13], which generated schedule table for each
condition combination, our global schedule is not necessary
to be the optimal one for a subset of the task graph. For ex-
ample, under a certain condition, only a subset of task graph
A, C, B, D, G, F is executed. For this subset of task graph,
a shorter schedule exists. But our global schedule guaran-
tees the worst case schedule is available. For example, the
global schedule is fine for subset A, C, B, E, I, J, F, which
has the longest schedule length in this case. This guaran-
tee is important during co-synthesis, which has to find out
the architecture that fits all cases. After the co-synthesis
process, we can use on-line resource reclaim to perform on-
line scheduling, which can produce a better schedule for a
subset of task graph. Furthermore, the ASIC cost reduction
procedure presented in [11] can also be used to reduce the
ASIC cost, which is facilitated by Monet.

We ran our algorithm with examples from Eleset al. and
Pop[7][13], and compared our schedule with their sched-
ule table, which has different schedules for each subset of
the task graph. We found out that our global schedule cor-
responds to the worse case schedule for each task in their
schedule table.

We also did some statistical experiments. We modi-
fied TGFF [12] to generate an extensive number of random
conditional task graphs with different structures. The task
graphs were then allocated and scheduled on various archi-
tectures. Table 5 shows part of the experimental results.

        
 #of tasks #of 

edges 
# of 

condition 
# of CPU Ave. 

Time 
(sec) 

EX1 32 56   4  3 0.02 
EX2 65 96    3  3 0.07 
EX3 105 168  2  2 0.14 
EX3  105 168  3  2  0.15 
EX3 105 168  5  2 0.18 

                  Table 5. Part of the experimental results. 

The fourth column shows the number of condition
branch fork tasks in the task graph. The fifth column shows
the number of CPUs in the target architecture (We did not
show ASIC information here, our co-synthesis algorithm in
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[11] decided the partitioning of task graph between CPUs
and ASICs). The last column shows the average running
time of the algorithm on a Celeron 533 computer with
Linux. Example EX3 shows that even though the condi-
tion variables increase, which means the number of execu-
tion subset of the task graph increase, the running time of
the algorithm does not increase dramatically. The reason is
that our algorithm did not schedule each subset of the task
graph corresponding to each condition combination sepa-
rately. On the contrary, it calculates the mutual exclusion
information for the whole task graph and then schedules the
whole task graph by exploring the resource sharing among
those mutual exclusive tasks.

7. Conclusion

This paper introduces an allocation and scheduling algo-
rithm that is used in the inner loop of co-synthesis proce-
dure. The conditional task graph is targeted with the facili-
tation of a mutual exclusion detection procedure.
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