
Integrated Hardware-Software Co-Synthesis and High-Level Synthesis for
Design of Embedded Systems under Power and Latency Constraints

Alex Doboli
VLSI Systems Design Laboratory

Department of Electrical and Computer Engineering
State University of New York (SUNY) at Stony Brook

Stony Brook, NY, 11794-2350
adoboli@ece.sunysb.edu

Abstract

This paper presents an integrated approach to hardware-
software co-synthesis and HLS for design of low-power em-
bedded systems. The main motivation for this work is that
fine trade-offs between latency and power can be explored at
the system level only with a detailedknowledge of used hard-
ware resources. Integrated method was realized as a simu-
lated annealing based solution-space exploration. Explo-
ration is guided by Performance Models, that exactly cap-
ture the relationship between performances i.e. power con-
sumption and latency and design decisions i.e. binding and
scheduling. The proposed approach permits not only a more
accurate latency and power estimation but also the exposure
of RTL-level design decisions at the system level. As a result,
more effective power-latency trade-offs are possible during
co-synthesis as compared to traditional task-level methods.

1. Introduction

With the impending technological revolution due to mo-
bile computing, there is a growing demand for low-power
embedded systems. Nevertheless, success of mobile sys-
tems such as cell phones, digital cameras, personal commu-
nicators etc in real-life crucially depends on the amount of
energy they consume. Reducing power consumption of em-
bedded systems lengthens the time period between two suc-
cessive re-chargings of their batteries. An enhanced mobil-
ity range facilitates the employment of mobile embedded
systems for a wider class of applications.

System level design tasks (including hardware-software
partitioning, task scheduling, communication synthesis, etc)
are critical for building high-quality low-power systems [2]
[11] [17]. It is well known that by the time the RTL de-
sign of a system is finished, 80% of its power consump-
tion is already committed. Moreover, hardware-software

co-synthesis must be conducted with a detailed knowledge
of the used hardware resources. This enables precise power
estimations because power consumption is tightly related to
hardware specifics. Hardware abstraction at a high-level is
not practical for low-power co-synthesis as it offers vague
power estimations [2] [5]. Finally, power minimization con-
flicts with latency constraints as time-critical systems dissi-
pate more power [3]. An important conclusion that emerges
from these observations is that fine trade-offs between la-
tency and power have to be explored at the system level
with a detailed knowledge of the used hardware resources.
Therefore, we believe that hardware-software co-synthesis
for low-power embedded systems should be performed in
tight integration with high level synthesis (HLS) under the
guidance of an accurate timing and power evaluation (esti-
mation) mechanism. This is the topic of this paper.

Many of the existing hardware-software co-synthesis
methodologies [1] [8] [18] contemplate an abstract model-
ing of hardware by considering generic properties such as its
capacity to concurrently execute operations and to be shared
by similar operations. As a result, co-synthesis and HLS
are successive and independent activities. This is a valid
assumption if objective is speeding-up process execution.
The link between co-synthesis and HLS, however, has to be
much stronger if fine performance trade-offs between con-
flicting performance constraints i.e. latency and power are
examined. Also, system functionality is traditionally de-
scribed as a task graph with data dependencies, only [4] [8]
[10] [18]. This implies that co-synthesis does not address
any conditional behavior expressed with control dependen-
cies. Nevertheless, handling control dependencies enables
more precise performance estimations, more effective de-
sign decisions i.e. scheduling and ultimately, better qual-
ity solutions [7]. Recently, Eleset al [7] and Strehlet al
[16] propose scheduling techniques that consider control de-
pendencies besides data dependencies. Targeted goal is sys-

tem latency minimization. Authors do no indicate how their
methods could be extended to address power reduction.

Recent work discusses hardware-software co-synthesis
for low-power embedded systems. Henkel [10] suggests a
hardware-software partitioning method for low-power sys-
tems. Partitioning is at the level of operation (instruction)
clusters. After cluster scheduling, clusters with a high uti-
lization rate (thus, with less wasted energy) are moved to
hardware. Still, there is no guarantee that a hardware-
software partitionactually meets imposed power constraints
because accurate estimations are possible only at the RTL
level, hence, after HLS. A tighter integration of co-synthesis
and HLS is probably needed to surmount this limitation.
Shinet al [14] describe a power efficient scheduling method
that exploits slack times. Daveet al [4] propose a low-power
co-synthesis method that includes allocation, scheduling
and performance estimation. Their method is at the task
level so that estimation is limited to average power. Also,
authors do not consider any low-power specific design is-
sues [12] i.e. temporary shut-down of unused resources.

This paper presents an integrated approach to hardware-
software co-synthesis and HLS for design of low-power em-
bedded systems. Goal is to find the hardware-software im-
plementation of a system, that minimizes overall power con-
sumption while satisfying a global latency constraint. All
available hardware resources are assumed to be known, in-
cluding general-purpose processing elements - PEs for ex-
ecuting software and functional units - FUs (adders, multi-
pliers, etc) for hardware. Integrated co-synthesis and HLS is
accomplished by describing systems as hierarchical graphs.
Graphs includeoperation clusters for expressing software
andoperations for hardware. Data and control dependen-
cies exist among the nodes. To the best of our knowl-
edge, addressing control dependencies during co-synthesis
of low-power systems is a novel research topic.

Integrated method was realized as a simulated annealing
(SA) [13] basedsolution-space exploration. During explo-
ration, operation clusters are partitioned and scheduled to
PEs (as in traditional co-synthesis) and operations are bound
and scheduled to FUs (like in HLS). Low-power oriented as-
pects such as PE shut-down are then contemplated for each
partitioned (bound) and scheduled solution. Exploration is
guided byPerformance Model (PM) evaluation. PMs are
a key component of the co-synthesis approach. PMs are
graphs that exactly capture the relationship between latency
and power consumption and design decisions i.e. binding
and scheduling. PM also reflect data and control depen-
dencies present in a system graph. We believe that PM are
more suggestive and precise than traditional performance
modeling through metrics such as task (operation) priorities,
forces, degree of concurrency, utilization rate [6] [10].

The integrated approach to co-synthesis and HLS is an
important contribution of this paper not only because it per-

+ +

+

3

2cond1

cond2 -cond2-cond1

1

6

74

5

9

8

Cluster node

Cluster node

Operation node

Figure 1. Example of Hierarchical Data and Con-
trol Dependency Graph

mits a more accurate latency and power estimations but also
because it exposes RTL-level design decisions at the system
level. As a result, more effective performance trade-offs are
possible during co-synthesis.

The paper is organized as follows. Section 2 discusses
system representation for the integrated approach. Section 3
presents performance modeling for co-synthesis. Integrated
methodology for co-synthesis and HLS is discussed in Sec-
tion 4. Results to illustrate the efficiency of our approach are
in Section 5. Finally, we putforth our conclusions.

2. System Representation

A Hierarchical Data and Control Dependency Graph
(HDCG) is the input for our integrated co-synthesis and
HLS methodology. HDCG offers a dual perspective on a
system: a task-level description that is used for co-synthesis
and an operation-level representation that is needed for
HLS. Figure 1 presents an HDCG example.

HDCG is a hybrid representation with nodes of two
types: operation nodes (ON) and cluster nodes (CN).
� Operation nodes are needed to conduct HLS activities

such as operation binding and scheduling. They de-
note an atomic processing such as addition, multiplica-
tion, comparison, etc. Communications are described
as special ONs that are not part of any CN. Communi-
cation ONs are shown as black bubbles in the figure.

� Cluster nodes are useful to perform hardware-software
co-synthesis, including partitioning and task schedul-
ing. Similar to [10], we assume that clusters are com-
piled from system specifications (i.e. VHDL specifica-
tions) and represent loops, if-then-else constructs and
functions. Each CN is a polar sub-graph that is built of

2

ONs. For example, the detailed operation structure of
cluster node 3 is depicted in Figure 1.

Both CNs and ONs are linked through data and control
dependencies. Data dependencies are directed arcs that ex-
press an imposed execution order: a target can start its ex-
ecution only after its source is completed. In order to ex-
press control dependencies, some arcs are annotated with
condition values. In Figure 1, conditions are depicted in
italics. Node 2 computes conditioncond1, and depending
on its value,one of its out-branches is selected. For atrue
value, the graph traversal activates the communication be-
tween nodes 2 and 3, followed by starting operations per-
taining to node 3. Node 4 is executed for afalse condition
value (false is indicated by- cond1). Nodes 5 and 8 are ficti-
tiousjoin nodes, which are created for the purpose of outlin-
ing control structures. Each ON and CN is annotated with
its execution times and power consumptions specific to all
hardware resources that can implement it. The technique
suggested by Guptaet al [9] can be used for ON characteri-
zation and the method by Tiwariet al [17] can be applied for
CN characterization. Any dependency of power consump-
tion on input data [12] [11] is addressed at this level.

The execution semantics of our model assumes that each
CN is executed not more than once for each traversal of the
graph. ONs can be executed multiple times with the restric-
tion that the number of iterations is known.

Even though system functionality can be fully repre-
sented using only ONs, CNs prevent the unnecessary growth
of solution-space and hence, a very difficult exploration pro-
cess. If realized in software, CN performances for latency
and power consumption can be estimated with a fair pre-
cision using data profiling and memory models for CPU,
cache, memory and communication units [11] [17]. This
permits that hardware-software partitioning and system-
level scheduling is performed using clusters. A second ad-
vantage of representing software as CNs is that compiler op-
timizations i.e. loop unrolling and tilling can be contem-
plated during performance estimation. Finally, CNs offer a
clear perspective on system-level issues such as inter-task
communications. This is beneficial for co-synthesis tasks
i.e. communication synthesis [7]. As explained in the intro-
ductory part, ONs are still required for accurate timing and
power consumption estimation of the hardware component.

3. Performance Modeling

System descriptions as HDCGs represent functionality
aspects but do not indicate any timing and power character-
istics of alternative implementations. However, for select-
ing the best solution found during co-synthesis, a technique
is needed for relating performances to HDCG characteris-
tics and synthesis decisions. We propose Performance Mod-
els (PM) - a representation for expressing timing and power

2

1

Start
3

4 5

End

+

+

+

max+

0

max
+

max

max

T1_e

T4_e

T5_e

T2_e

T4_ex T5_ex

T3_ex

T1_ex
T2_ex

Latency

(a) HDCG (b) PM for latency

Figure 2. Latency Performance Model for HDCG

consumption. This section presents main characteristics and
rules for automatically building PMs.

PM representation includes two parts: aconstant part
that presents HDCG characteristics and avariable part that
reflects design decisions taken during co-synthesis. For ex-
ample, a certain scheduling order of CNs mapped to the
same PE is correspondingly described by the variable part
of a PM. Figure 2(a) shows an HDCG. Operation nodes 2, 5
and 3 are executed in this order on a shared FU. Figure 2(b)
depicts the PM of the HDCG for latency. Following are the
main characteristics of the PM:
� The PM has a starting node labeled as0. This node in-

dicates that all observed performances (latency in our
case) are set to value 0.

� The constant part of the PM is represented in the fig-
ure as nodes and solid edges. It depends on invariant
HDCG characteristics i.e. data and control dependen-
cies and the semantics of performances with respect
to observed metrics. For example,max andaddition
nodes are used in the PM in Figure 2(b) to express ON
(CN) start and end times.Max nodes describe that an
ON (CN) can not start earlier than the moment when all
its predecessors were finished. Outputs ofmax nodes
indicate the starting time of their corresponding ON
(CN). Addition nodes describe that the end timeT i e

of ON opi is the sum between its start time and its ex-
ecution timeT i ex.

� The variable part of the PMs shows the influence of
scheduling decisions for ONs 2, 3 and 5 on the result-
ing latency. For instance, the execution order 2, 5, 3
is represented in the figure by dotted arcs between ad-
dition nodes that calculate end times for ON (CN) and
max nodes that characterize starting times. Other ON
schedulings are easily captured by the PM by accord-
ingly changing the orientation of dotted arcs.

� The latency of a certain implementation solutioncan be
precisely determined by numerically evaluating its PM.

The remaining part of this section presents our rules for
automatically building PMs that express HDCG character-
istics and synthesis decisions.

3

1

2

3

k

n
+

+

+

max +
Tn_e

T2_e

T3_e

T1_e

Tk_e

+

1

2

3
C max +

T2_e
max +

max +
T2_e

max +

+

C

=>

a) Representation of data dependencies

...

Tk_ex

Tn_ex

Tn_s

Tk_s

T3_ex
T3_s
T2_ex
T2_s
T1_ex

T1_s

...

=>

p

q

r

. . .

. . .

C

b) Representation of control dependencies

T1_r

T2_s

T2_ex
...

T2_p

Tp_ex

T2_s

T2_ex
...

T2_p

Tp_ex

T1_ex

T1_s C

min

Figure 3. Modeling of data and control dependen-
cies

Modeling of Data Dependencies
Data dependencies introduce a required sequencing of

HDCG node executions. For example, in Figure 3(a) node
n can be executed only after all its predecessors1, 2, ...,
k are performed. The right part of Figure 3(a) depicts the
PM that expresses these execution order requirements. For
each operation, addition nodes indicate how node end times
T i e; (i = 1; k) are computed depending on node starting
timesT i s and node execution timesT i ex. Themax node
models the constraint that noden starts only after all its pre-
decessors are terminated.

Modeling of Control Dependencies
Control dependencies describe conditional node execu-

tions in an HDCG. In Figure 3(b), for example, if the value
of conditionC is true then nodes 2, ...,p are performed.
Nodes 3, ...,q are executed for a false conditionC. Join
noder is introduced in the HDCG to point the end of the
conditional construct. The right part of Figure 3(b) intro-
duces the PM generated for the HDCG. Similar to data de-
pendencies, control dependencies define an execution order-
ing among nodes. For example, nodes 2, 3, etc can not start
their executions until node 1 completed. Analogous to data
dependencies, the built PM reflects this requirement through
max nodes. Conditional execution of nodes is presented in
the PMs by annotating edges with conditionvalues. Follow-
ing semantics is applied when numerically evaluating such
PMs: edges annotated with a true condition will propagate
the numerical values that result from evaluating the DAGs
for PMs. Edges annotated with a false condition will propa-
gate the valueinfinite. Themin node in a PM corresponds to
noder in the HDCG. It is used to eliminate infinite values
due to the non-selected branches. This permits calculating
the correct time values for operations that succeed noder.

-

-

-

-

*

*

*

*

* +

- *

+

*-

+

*

*

*

*

+

+

T1_s

T1_e

T2_s

T2_e

T3_s

T3_e

T4_s

T4_e

T5_s

T5_e
-

P1

P3

P3
P_global

T3_e

T5_e

T2_e

T5_e
P3_idle

P3_stop

P3_start

P3_stop

P3_start

P3_idle

1 - 25_stop

25_stop

P3

P2

1 - 35_stop

35_stop

Figure 4. Modeling of power consumption

Modeling of Power Consumption
Global power consumption is the sum between the power

required for executing ONs (CNs) on their FUs (PEs) and
the power consumed during the idle periods of hardware re-
sources [11] [12]. Power during idle periods can be dimin-
ished by shutting down PEs (FUs) [12]. However, when a
PE (FU) is turned-off, the power needed for shut-down and
re-start has to be added. Moreover, the latency PM has to be
also updated to consider the times it takes for PE (FU) shut-
down and re-start.

We discuss the total power consumption PM for the ex-
ample in Figure 2(a). Similar PMs can be built to express
peak power consumption as well. We consider that nodes
execute in the order 2, 5 and 3 on the shared resource. Fig-
ure 4 shows the global power consumption PM for this ex-
ample. The top part of the PM calculates the sum

P5
i=1 Pi�

(T i e � T i s) that represents the consumed power for ex-
ecuting the five nodes.Pi; i = 1; 3 is the average power
consumption of a PE (FU) in a clock cycle. Techniques by
Gupta [9] and Tiwari [17] can be used to find values forPi.
The bottom part of the PM describes power during idle pe-
riods (valuesPi idle) and power for shut-down (Pi stop)
and re-start (Pi start) of PEs (FUs).

Variables25 stop and35 stop model the shut-down of
the shared hardware resource. Variable25 stop has value 1
if the hardware unit is shut-down between the end of node
2 and the start of node 5. Otherwise, variable25 stop has
value 0. Variable35 stop has a similar definition. Section 4
explains how values for these variables are found as a part of
the integrated co-synthesis process. If resources are turned-
off then no idle power is consumed, otherwise idle power
has to be added. Using variables25 stop and35 stop, PM
in Figure 4 accurately describes these requirements for eval-

4

1

2

max +

max + T2_e

T1_e 2

3

r1
C

max

max

+

C

max

max +

T4_ex

T4_s

max

max

+

C

max + max +

T4_ex

T4_s

max

max

+

C +
T2_e

+
T2_e

C

=>

T1_s

T1_ex

T2_ex

T2_s

. . .

. . .

4

C C
T2_s

=>

T1_ex
T1_s

a) Scheduling with data dependencies

T3_s

b) Scheduling with control dependencies - case 1

T2_s

C

...

...
T1_r

min
T1_s

T1_ex

T3_s

c) Scheduling with control dependencies
- case 2 - case 3

T4_ex

T4_s

T2_s

T2_ex

T2_s

T2_exC
T1_ex

T1_s

...

...

C

d) Scheduling with control dependencies

Figure 5. Representation of scheduling decisions

uation of consumed power.
Modeling of Cluster Partitioning and Operation

Binding
We assume that the resource setR (including PEs and

FUs) available for implementing an HDCG is given. Thus,
the number and type of hardware resources that can realize
each CN and ON in the HDCG is known.R opi is the subset
of setR to which nodeopi can be mapped. Also, we define
function

Resource :Nodes in HDCG!R

that presents the resource to which each node is bound. The
goal of cluster partitioning and operation binding is finding
the definition of functionResource (thus, its values for all
nodesopi). Obviously, binding has to be done such that
Resource(opi) 2 R opi. A consequence of cluster parti-
tioning and operation binding is that any attribute value (in
our case, execution time and power consumption) of node
opi that depends on the resource type becomes well defined.
For example, let’s assume that node execution timeT i ex

varies with resource type. After binding, execution time be-
comes known and its value is updated in the PM.

Modeling of Scheduling
Given a HDCG and a node binding to hardware re-

sources, scheduling decides the execution order of opera-
tions on shared resources. Depending on taken schedul-
ing decisions, different node sequences and different tim-
ing attributes (i.e. starting time, end time) result for nodes
in a HDCG. These correlations between scheduling deci-
sions and performance metrics i.e. timing attributes have
to be captured by a PM. If only data dependencies occur
then the imposed ordering can be easily modeled by intro-
ducing an arc from the PM node for the end time of the first
HDCG node to the PM node for the starting time of the sec-
ond HDCG node. For example, in Figure 5(a) node 1 and 2

share the same resource and the scheduler decides that node
2 is executed before node 1. Accordingly, the PM is updated
by introducing the dotted arc that imposes that node 1 starts
only after node 2 ends. The dotted arc pertains to the vari-
able part of the PM. Different scheduling decisions can be
easily captured by PMs by simply changing the orientation
of dotted arcs.

Representing scheduling decisions in the presence of
control dependencies is more difficult due to the uncertain
character of control dependencies. Difficulty increases if
scheduling is performed across control constructs. The main
challenge is to generate node schedules that maintain HDCG
semantics with respect to three criteria: (1) respecting the
execution order defined by data and control dependencies,
(2) maintaining conditional node execution as defined by a
HDCG (i.e. if a condition value is true then only nodes from
the true branch must be executed) and (3) executing at most
once each CN in the HDCG. The first two requirements were
already captured by the modeling of data and control depen-
dencies in a PM. To exemplify the third requirement, let’s
assume that for the graph in Figure 5(b) a schedule is pro-
duced such that node 4 is scheduled before node 1 if condi-
tionC is true, and after node 1 if conditionC is false. Nodes
2, 3 and 4 share the same resource. This situation occurs if
the branch for conditionC true is very long and the branch
for conditionC false is very short compared to path to which
node 4 pertains. However, this schedule is incorrect because
if conditionC is false then node 4 will be executed twice,
both before and after node 1.

For modeling the third requirement of scheduling cor-
rectness, we identified three different cases that are possible
in a PM:
� Case 1: Node 4 is executed before node 1. Its schedul-

ing does not depend on the value of conditionC. Thus,
there is no risk that node 4 is executed multiple times
for a single execution of the HDCG. Figure 5(b) depicts
this situation and the dotted arc is enforces so that node
1 starts only after node 4 terminates.

� Case 2: Node 4 executes after noder. Its schedul-
ing time depends on the value of conditionC. How-
ever, the value of conditionC is already known by the
time node 4 starts. Thus, there is no danger of execut-
ing node 4 multiple times. This situation is reflected in
Figure 5(c) by the dotted arc between themin node for
noder and themax node for node 4.

� Case 3: For a given condition value (i.e. conditionC
is true), node 4 is scheduled to execute after node 1 but
before noder starts. To maintain scheduling correct-
ness, for the opposite value of conditionC, it is also
required that node 4 executes only after node 1 ends.
Figure 5(d) depicts this case. Two dotted arcs are in-
troduced so that node 4 starts after node 2 if condition
C is true and after node 1 if conditionC is false.

5

Ri

Ti_ex
Ti

Performance Model

Performance Model
Generation

Partitioning (binding)
+

Scheduling

and HLS
Integrated co-synthesis

Latency & ConsumptionPower

Establish Resource
Shut-Down Points

ij_stop

HDCG
+

Latency
constraint

Figure 6. Integrated approach to co-synthesis and
HLS

4. Integrated Approach to Hardware-Software
Co-synthesis and HLS

Co-synthesis Methodology
The integrated approach to hardware-software

co-synthesis and HLS is presented in Figure 6. Inputs to co-
synthesis are an HDCG and latency constraint. The number
and type of available hardware resources, includingPEs and
FUs, is also given. Co-synthesis problem is finding what re-
source executes each HDCG node and deciding the schedul-
ing order of nodes so that power consumption is minimized
while latency is below the given constraint.

The method includes two steps. First,Performance
Models (PM) are generated for an HDCG. Rules for PM
set-up were discussed in Section 3. Second step is thein-
tegrated co-synthesis and HLS, which was defined as an
optimizationalgorithm. As explained in Section 3, for each
CN (ON), attributesRi (hardware resource that executes the
node) andTi (starting time of node execution) constitute un-
knowns for the co-synthesis process. CN partitioningto PEs
and ON binding to FUs is modeled by unknownsRi. CN
and ON scheduling is described by unknownsTi. Possi-
ble values for unknownsRi andTi are searched during ex-
ploration. Power consumption and latency are computed by
numerically instantiating all node characteristicsRi, Ti and
Ti ex and then evaluating their PMs.

Unknownsij stop model resource shut-down during the
idle period defined by the end of nodei and the start of
node j. Values for these variables are established by a
greedy algorithm. The algorithm examines all possibilities
of turning-off hardware resources and determines those that
reduce power consumption (sum of shut-down and restart
power is less than idle power). Then, in the order of their
power savings, it retains those shut-down decisions that do

not violate any timing constraints.
Co-synthesis by Performance Model Optimization
This section describes our approach for integrated co-

synthesis and HLS as an optimization-based design-space
exploration algorithm. Exploration was realized using the
very popular simulated-annealing optimization algorithm
(SA) [13]. The algorithm examines the quality of numerous
partitioning (binding) and scheduling solutions by numeri-
cally evaluating PMs for power consumption and latency.

The SA algorithm iteratively selects a new point from
the neighborhood of the current solution. We defined neigh-
borhood as the set of points that (1) differ from the cur-
rent solution by the execution order ofone pair of nodes
that share a hardware resource or (2) the resource binding
of one node. PMs are updated for the newly selected solu-
tion and then used for numerically evaluating the resulting
power consumption and latency. If the resulting solutionhas
a better quality than the current then the new solution is un-
conditionally accepted. A worse solution is accepted with a
higher probability at the beginning of exploration. Accep-
tance probability decreases as exploration progresses. Ini-
tial solution is obtained by uniformly distributing nodes to
resources, and then scheduling nodes using list-scheduling.
Critical path was the priority function for list-scheduling.

Partitioning (binding) and scheduling steps are executed
with different probabilities. The reason is that multiple valid
schedules are possible for each resource partitioning (bind-
ing) decision. A small probabilityp1 is used to select a par-
titioning step, that moves a cluster from a PE to another PE
or to hardware. A probabilityp2 (p2 > p1) binds an ON to
another FU. The reason forp2 being greater thanp1 is that
multiple HLS solutions are possible for each partitioning of
clusters to FUs. Finally, a probability 1 - (p1+p2) decides a
scheduling action. This strategy emulates a hierarchical ex-
ploration process because for each new partition (binding)
there are1�(p1+p2)

p1+p2
analyzed schedules. For example, ifp1

= 0.01 andp2 = 0.1 then on the average, 8 schedules are ex-
amined for each partition(binding). If the execution order of
a node pair is modified then the algorithm also verifies that
the new ordering is feasible. This means that no cycles can
occur in the updated PMs.

Establishing Resource Shut-Down Points
We propose a greedy algorithm for deciding what hard-

ware resource shut-downs result in power savings and do not
violate the imposed latency constraint. As discussed in Sec-
tion 3, variableij stop models the decision to stop the hard-
ware resourceResource(i) shared by nodesi andj between
the end of nodei and start of nodej. These variables are
affected only when a new scheduling decision is taken be-
cause then resource idle times are modified. More precisely,
these variables correspond to the nodes that have their start-
ing times changed by the scheduling decision. Hence, the al-
gorithm for establishing resource shut-down points has to be

6

Input S

for 8 ij stop 2 S do

Calculate power saving if resourceResource(i) is shut-down

between the end of nodei and the start of nodej;

if power saving resultsthen

Introduceij stop in setP ;

for forall ij stop 2 P in the order of their power savingdo

if latency constraint is not violated byij stop then

Resource(i) is shut-down between end of nodei and

start of nodej;

Figure 7. Algorithm for establishing resource
shut-down points

called after each scheduling decision of the SA exploration.
Figure 7 presents the suggested algorithm. As motivated

in Section 3, variablesij stop are part of the PM for power
consumption. Lets assume that the setS includes all vari-
ablesij stop that were affected by a scheduling decision.
The algorithm considers each of the variables and checks
if any power saving results by shutting-down the resource.
Power savings are calculated by using PMs. Resource shut-
downs that offer the highest power savings and do not vi-
olate the fixed latency constrained are retained in the final
solution.

5. Experimental Results

Goal of our experimental part was to evaluate the effec-
tiveness of the integrated approach for hardware-software
co-synthesis and HLS as compared to traditional task-level
co-synthesis. We analyzed the resulting power consump-
tion of solutions found by the proposed method and a task-
level method for different latency constraints and distinct
hardware resources. Both loose and tight latency constraints
were considered. We used two examples: the video coding
algorithm H261 (video) [1] and the 4x4 determinant calcu-
lator (4x4 det) [15].

Both integrated and task-level co-synthesis methods
were realized as simulated-annealing (SA) based explo-
ration algorithms. Hence, we excluded the possibility that
observed differences in solution quality were due to differ-
ent exploration techniques. SA was run with the follow-
ing parameters: initial temperature was 80000, temperature
length was set to 200 and cooling schedule was 0.8. The SA
exploration finished when 10000 solutions were analyzed
or when no improvement was observed for the last 5000
moves.

Table 1 presents the results of the comparison between
the integrated and the task-level co-synthesis methods. Col-
umn 2 are the latency constraints posed on the designs. The

assumed hardware resource set is detailed in Column 3.
At the task level, the architecture includes general purpose
processing elements (PE) and an ASIC (HW) modeled ab-
stractly. For integrated approach, Column 3 presents the
number of PEs and FUs (adders, multipliers) that were avail-
able for each example. Resulting power consumption for
best solutions found during exploration is shown in Column
4. Column 5 presents the latency of the solution. Relative
power saving of the integrated approach with respect to the
task-level method is reported in Column 6. Finally, execu-
tion times of the SA-based exploration are indicated in Col-
umn 7.

The results in Table 1 show that the integrated co-
synthesis and HLS approach offers significant power sav-
ings as compared to the task-level co-synthesis method.
Power savings ranged from 1.6% to 27% but were, in
general higher than 10%. Obtained solutions had also a
smaller latency for the integrated method. The reason for
the proposed integrated method performing better may be
attributed to a more efficient utilizationof the available hard-
ware resources. Better hardware utilization is due to su-
perior FU sharing that can be revealed in the integrated
method. As a result, resource idle periods are shorter so
that less energy is wasted. Also, more functionality can
be shifted towards slower but less power consuming re-
sources without violating the imposed latency constraints.
As a conclusion, the integrated approach offers more ef-
fective latency-power consumption trade-offs than the task-
level method. An interesting observation was that relative
power saving tends to decrease as imposed latency relaxes.
This can be explained by the fact that for loose latency con-
straints functionality is mostly placed into software. In our
experiments, power consumption was less in software than
in hardware.

6. Conclusion

In this paper, we presented an integrated approach to
hardware-software co-synthesis and HLS for design of low-
power embedded systems. Goal is to find the hardware-
software implementation of a system, that minimizes overall
power consumption while satisfying a global latency con-
straint.

Integrated co-synthesis and HLS is accomplished by de-
scribing systems as Hierarchical Data and Control Depen-
dency Graphs (HDCG) that includeoperation clusters for
software andoperations for hardware. Integrated approach
was realized as a simulated annealing (SA) based solution-
space exploration. Exploration is guided by Performance
Model (PM) evaluation. PMs are graphs that express the
relationship between latency and power consumption and
design decisions (i.e. binding and scheduling) and HDCG
characteristics (i.e. data and control dependencies). The in-

7

Example Latency Constraint (msec) Resource Set Power Consumption (W) Latency (msec) Power Saving (%) Execution Time (sec)
(1) (2) (3) (4) (5) (6) (7)

video 2000 System-level: 2 PE + 1 HW 2.72 1864 - 275
video 4000 System-level: 2 PE + 1 HW 2.36 3486 - 214
video 20000 System-level: 2 PE + 1 HW 2.175 9168 - 225
video 2000 2 PE + 2 adder + 1 mult. 2.42 1744 11 222
video 4000 2 PE + 2 adder + 1 mult. 2.20 3396 6.7 241
video 20000 2 PE + 2 adder + 1 mult. 2.14 16146 1.6 200
video 2000 2 PE + 2 adder + 2 mult. 2.26 1744 18 218
video 4000 2 PE + 2 adder + 2 mult. 1.97 3024 16 204
video 20000 2 PE + 2 adder + 2 mult. 1.94 15034 10 205
video 2000 4 PE + 4 adder + 4 mult. 1.98 1664 27 240
video 4000 2 PE + 4 adder + 4 mult. 1.79 2944 24 205
video 20000 2 PE + 4 adder + 4 mult. 1.65 8968 19.5 230

4x4 det 300 System-level: 1PE + 1 HW 4.0 150 - 24.0
4x4 det 1000 System-level: 1PE + 1 HW 3.0 900 - 20.0
4x4 det 300 1 PE + 1 adder + 1 mult. 3.69 110 7.75 105
4x4 det 1000 1 PE + 1 adder + 1 mult. 2.78 900 7.2 130
4x4 det 300 1 PE + 1 adder + 2 mult. 3.49 70 12.4 110
4x4 det 1000 1 PE + 1 adder + 2 mult. 2.68 900 10.3 112
4x4 det 300 1 PE + 3 adder + 3 mult. 3.40 70 15 140
4x4 det 1000 1 PE + 3 adder + 3 mult. 2.57 900 17 142

Table 1. Experimental results for integrated co-synthesis and HLS

tegrated approach to co-synthesis and HLS permits not only
more accurate latency and power estimations but also it ex-
poses RTL-level design decisions at the system level. Our
experiments showed that more effective performance trade-
offs are possible than for task-level co-synthesis.

References

[1] A. Benderet al, “MILP Based Task Mapping for Heteroge-
neous Multiprocessor Systems”,Proc. of EDAC, 1996, pp.283-
288.

[2] L. Benini et al, “System-Level Power Optimization: Tech-
niques and Tools”,Proc. of ISPLED, 1999, pp.283-288.

[3] M. Borahet al, “High-throughput and Low-power DSP using
clocked CMOS Circuitry”,Proc. of ISPLED, 1995.

[4] B. Daveet al, “COSYN: Hardware-Software Co-Synthesis of
Embedded Systems”,Proc. of DAC, 1997, pp.703-708.

[5] W. Fornaciariet al, “Power Estimation for Embedded Sys-
tems: A Hardware/Software CodesignApproach”,IEEE Trans.
on VLSI, June 1998.

[6] G. De Micheli, “Synthesis and Optimization of Digital Cir-
cuits”, McGraw-Hill, 1994.

[7] P. Eles et al, “Scheduling with Bus Access Optimization
for Distributed Embedded Systems”,IEEE Trans. on VLSI,
November, 2000.

[8] R. Guptaet al, “Hardware-Software Cosynthesis for Digital
Systems”,IEEE Design & Test of Computers, September 1992,
pp.29-40.

[9] S. Guptaet al, “Power Macro-Models for DSP Blocks with
Applications to High-Level Synthesis”,Proc. of ISPLED, 1999,
pp.103-105.

[10] J. Henkel, “A Low Power Hardware/Software Partitioning
Approach for Core-based Embedded Systems”,Proc. of DAC,
1999, pp.122-127.

[11] P. Landman, “High-Level Power Estimation”,Proc. of IS-
PLED, 1996.

[12] M. Pedram, “Power Minimization in IC Design: Principles
and Applications”,ACM Trans. on DAES, Vol.1, No.1, 1996,
pp.3-56.

[13] C. Reeveset al, “Modern Heuristic Techniques for Combina-
torial Problems”,J. Wiley, 1993.

[14] Y. Shinet al, “PowerConsciousFixed Priority Scheduling for
Hard Real-Time Systems”,Proc. of DAC, 1999, pp.134-139.

[15] V. Srinivasanet al, “Hardware Software Partitioning with In-
tegrated Hardware Design Space Exploration”,Proc. of DATE,
1998, pp.28-35.

[16] K. Strehlet al, “Scheduling Hardware/Software Systems Us-
ing Symbolic Techniques”,Proc. of CODES/CACHE, 1999.

[17] V. Tiwari et al, “Power Analysis of Embedded Software:
A First Step Towards Software Power Minimization”,IEEE
Trans. on VLSI, Vol.2, No.4, December 1994, pp.437-445.

[18] T. Y. Yen et al, “Hardware-Software Co-synthesis of Dis-
tributed Embedded Systems”, Kluwer, 1997.

8

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

