Integrated Har dwar e-Softwar e Co-Synthesis and High-L evel Synthesisfor
Design of Embedded Systemsunder Power and L atency Constraints

Alex Doboli
VLSI Systems Design Laboratory
Department of Electrical and Computer Engineering
State University of New York (SUNY) at Stony Brook
Stony Brook, NY, 11794-2350
adoboli@ece.sunysb.edu

Abstract

Thispaper presents an integrated approach to hardware-
software co-synthesis and HLSfor design of low-power em-
bedded systems. The main motivation for this work is that
finetrade-offsbetween latency and power can be explored at
the systemlevel onlywith a detailed knowl edge of used hard-
ware resources. Integrated method was realized as a simu-
lated annealing based solution-space exploration. Explo-
ration isguided by Performance M odels, that exactly cap-
ture the relationship between performancesi.e. power con-
sumption and latency and design decisionsi.e. binding and
scheduling. The proposed approach permits not only amore
accuratelatency and power estimation but al so the exposure
of RTL-level design decisionsat the systemlevel. Asaresult,
more effective power-latency trade-offs are possible during
co-synthesis as compared to traditional task-level methods.

1. Introduction

co-synthesis must be conducted with a detailed knowledge
of the used hardware resources. This enables precise power
estimations because power consumptionis tightly related to
hardware specifics. Hardware abstraction at a high-level is
not practical for low-power co-synthesis as it offers vague
power estimations [2] [5]. Finally, power minimization con-
flicts with latency constraints as time-critical systems dissi-
pate more power [3]. An important conclusion that emerges
from these observations is that fine trade-offs between la-
tency and power have to be explored at the system level
with a detailed knowledge of the used hardware resources.
Therefore, we believe that hardware-software co-synthesis
for low-power embedded systems should be performed in
tight integration with high level synthesis (HLS) under the
guidance of an accurate timing and power evaluation (esti-
mation) mechanism. This is the topic of this paper.

Many of the existing hardware-software co-synthesis
methodologies [1] [8] [18] contemplate an abstract model-
ing of hardware by considering generic properties such as its
capacity to concurrently execute operations and to be shared

With the impending technological revolution due to mo- by similar operations. As a result, co-synthesis and HLS

bile computing, there is a growing demand for low-power are successive and independent activities. This is a valid
embedded systems. Nevertheless, success of mobile sysssumption if objective is speeding-up process execution.
tems such as cell phones, digital cameras, personal commurFhe link between co-synthesis and HLS, however, has to be
nicators etc in real-life crucially depends on the amount of much stronger if fine performance trade-offs between con-
energy they consume. Reducing power consumption of em-licting performance constraints i.e. latency and power are
bedded systems lengthens the time period between two sucexamined. Also, system functionality is traditionally de-
cessive re-chargings of their batteries. An enhanced mobil-scribed as a task graph with data dependencies, only [4] [8]
ity range facilitates the employment of mobile embedded [10] [18]. This implies that co-synthesis does not address
systems for a wider class of applications. any conditional behavior expressed with control dependen-
System level design tasks (including hardware-software cies. Nevertheless, handling control dependencies enables
partitioning, task scheduling, communication synthesis, etc) more precise performance estimations, more effective de-
are critical for building high-quality low-power systems [2] sign decisions i.e. scheduling and ultimately, better qual-
[11] [17]. It is well known that by the time the RTL de- ity solutions [7]. Recently, Elest al [7] and Strehlet al
sign of a system is finished, 80% of its power consump- [16] propose scheduling techniques that consider control de-
tion is already committed. Moreover, hardware-software pendencies besides data dependencies. Targeted goal is sys-

tem latency minimization. Authors do no indicate how their
methods could be extended to address power reduction.

Recent work discusses hardware-software co-synthesis
for low-power embedded systems. Henkel [10] suggests a
hardware-software partitioning method for low-power sys-
tems. Partitioning is at the level of operation (instruction)
clusters. After cluster scheduling, clusters with a high uti-
lization rate (thus, with less wasted energy) are moved to
hardware. Still, there is no guarantee that a hardware-
software partition actually meets imposed power constraints
because accurate estimations are possible only at the RTL
level, hence, after HLS. A tighterintegration of co-synthesis
and HLS is probably needed to surmount this limitation.
Shinet al [14] describe a power efficient scheduling method
that exploits slack times. Dawtal [4] propose a low-power
co-synthesis method that includes allocation, scheduling
and performance estimation. Their method is at the task Figure 1. Exampleof Hierarchical Dataand Con-
level so that estimation is limited to average power. Also, trol Dependency Graph
authors do not consider any low-power specific design is-
sues [12] i.e. temporary shut-down of unused resources.

This paper presents an integrated approach to hardware
software co-synthesis and HLS for design of low-power em-
bedded systems. Goal is to find the hardware-software im-
plementation of a system, that minimizes overall power con-
sumption while satisfying a global latency constraint. All

-condl cond2

mits a more accurate latency and power estimations but also
because it exposes RTL-level design decisions at the system
level. As aresult, more effective performance trade-offs are
possible during co-synthesis.

The paper is organized as follows. Section 2 discusses
. system representation for the integrated approach. Section 3
ludin neral-pur : | ts - PEs f r]Sresents performance modeling for co-synthesis. Integrated
cluding general-purpose processing elements S for ex methodology for co-synthesis and HLS is discussed in Sec-

elgutlng ts offtwa;lre gnd funlc t|tonal tu T;ts i FU?h(ao!dersé mll_ng'- tion 4. Results toillustrate the efficiency of our approach are
pliers, etc) for hardware. Integrated co-synthesis an 'Sin Section 5. Finally, we putforth our conclusions.

accomplished by describing systems as hierarchical graphs.

Graphs includeoperation clusters for expressing software i

andoperations for hardware. Data and control dependen- 2- System Representation

cies exist among the nodes. To the best of our knowl-

edge, addressing control dependencies during co-synthesis A Hierarchical Data and Control Dependency Graph

of low-power systems is a novel research topic. (HDCG) is the input for our integrated co-synthesis and
Integrated method was realized as a simulated annealingiLS methodology. HDCG offers a dual perspective on a
(SA) [13] basedsol ution-space explor ation. During explo- system: atask-level description that is used for co-synthesis

ration, operation clusters are partitioned and scheduled to@Nd an operation-level representation that is needed for
PEs (as in traditional co-synthesis) and operations are boundiLS: Figure 1 presents an HDCG example.

and scheduled to FUs (like in HLS). Low-power orientedas- HDCG is a hybrid representation with nodes of two
pects such as PE shut-down are then contemplated for eacfyPes: operation nodes (ON) and cluster nodes (CN).
partitioned (bound) and scheduled solution. Explorationis ¢ Operation nodesare needed to conduct HLS activities
guided byPerformance Model (PM) evaluation. PMs are such as operation binding and scheduling. They de-
a key component of the co-synthesis approach. PMs are Note an atomic processing such as addition, multiplica-
graphs that exactly capture the relationship between latency ~ tion, comparison, etc. Communications are described
and power consumption and design decisions i.e. binding s special ONs that are not part of any CN. Communi-
and scheduling. PM also reflect data and control depen- cation ONs are shown as black bubbles in the figure.
dencies present in a system graph. We believe that PM are ¢ Cluster nodes are useful to perform hardware-software
more suggestive and precise than traditional performance co-synthesis, including partitioning and task schedul-

modeling through metrics such as task (operation) priorities, ing. Similar to [10], we assume that clusters are com-

forces, degree of concurrency, utilization rate [6] [10]. piled from system specifications (i.e. VHDL specifica-
The integrated approach to co-synthesis and HLS is an tions) and represent loops, if-then-else constructs and

important contribution of this paper not only because it per- functions. Each CN is a polar sub-graph that is built of

ONs. For example, the detailed operation structure of
cluster node 3 is depicted in Figure 1.
Both CNs and ONs are linked through data and control

dependencies. Data dependencies are directed arcs that exz)

press an imposed execution order: a target can start its ex-
ecution only after its source is completed. In order to ex-

press control dependencies, some arcs are annotated with

condition values. In Figure 1, conditions are depicted in
italics. Node 2 computes conditimondl, and depending

on its valueone of its out-branches is selected. Fotrae
value, the graph traversal activates the communication be-
tween nodes 2 and 3, followed by starting operations per-
taining to node 3. Node 4 is executed fofaése condition
value falseis indicated by condl). Nodes 5 and 8 are ficti-
tiousjoin nodes, which are created for the purpose of outlin-
ing control structures. Each ON and CN is annotated with
its execution times and power consumptions specific to all
hardware resources that can implement it. The technique
suggested by Gupt al [9] can be used for ON characteri-
zation and the method by Tiwaatial [17] can be applied for
CN characterization. Any dependency of power consump-
tion on input data [12] [11] is addressed at this level.

The execution semantics of our model assumes that each
CN is executed not more than once for each traversal of the
graph. ONs can be executed multiple times with the restric-
tion that the number of iterations is known.

Even though system functionality can be fully repre-
sented using only ONs, CNs preventthe unnecessary growth
of solution-space and hence, a very difficult exploration pro-
cess. If realized in software, CN performances for latency
and power consumption can be estimated with a fair pre-
cision using data profiling and memory models for CPU,
cache, memory and communication units [11] [17]. This
permits that hardware-software partitioning and system-
level scheduling is performed using clusters. A second ad-
vantage of representing software as CNs is that compiler op-
timizations i.e. loop unrolling and tilling can be contem-
plated during performance estimation. Finally, CNs offer a
clear perspective on system-level issues such as inter-task
communications. This is beneficial for co-synthesis tasks
i.e. communication synthesis [7]. As explained in the intro-
ductory part, ONs are still required for accurate timing and
power consumption estimation of the hardware component.

3. Performance M odeling

System descriptions as HDCGs represent functionality
aspects but do not indicate any timing and power character-
istics of alternative implementations. However, for select-
ing the best solution found during co-synthesis, a technique
is needed for relating performances to HDCG characteris-

(b) PM for latency

(a) HDCG

Figure 2. Latency Performance M odel for HDCG

consumption. This section presents main characteristics and
rules for automatically building PMs.

PM representation includes two parts:censtant part

that presents HDCG characteristics angidable part that
reflects design decisions taken during co-synthesis. For ex-
ample, a certain scheduling order of CNs mapped to the
same PE is correspondingly described by the variable part
of a PM. Figure 2(a) shows an HDCG. Operation nodes 2, 5
and 3 are executed in this order on a shared FU. Figure 2(b)
depicts the PM of the HDCG for latency. Following are the
main characteristics of the PM:

e The PM has a starting node labeledJag his node in-
dicates that all observed performances (latency in our
case) are set to value 0.

¢ Theconstant part of the PM is represented in the fig-
ure as nodes and solid edges. It depends on invariant
HDCG characteristics i.e. data and control dependen-
cies and the semantics of performances with respect
to observed metrics. For exampl@ax and addition
nodes are used in the PM in Figure 2(b) to express ON
(CN) start and end timedMax nodes describe that an
ON (CN) can not start earlier than the moment when all
its predecessors were finished. Outputsnak nodes
indicate the starting time of their corresponding ON
(CN). Addition nodes describe that the end tiffice
of ON op; is the sum between its start time and its ex-
ecution timel'i_ezx.

e Thevariable part of the PMs shows the influence of
scheduling decisions for ONs 2, 3 and 5 on the result-
ing latency. For instance, the execution order 2, 5, 3
is represented in the figure by dotted arcs between ad-
dition nodes that calculate end times for ON (CN) and
max nodes that characterize starting times. Other ON
schedulings are easily captured by the PM by accord-
ingly changing the orientation of dotted arcs.

¢ The latency of a certain implementation solutioncan be
precisely determined by numerically evaluating its PM.

The remaining part of this section presents our rules for

tics and synthesis decisions. We propose Performance Modautomatically building PMs that express HDCG character-
els (PM) - a representation for expressing timing and power istics and synthesis decisions.

b) Representation of control dependencies

Figure 3. Modeling of dataand control dependen-
cies . .
Figure 4. Modeling of power consumption

M odeling of Data Dependencies M odeling of Power Consumption
Data dependencies introduce a required sequencing of Global power consumption is the sum between the power
HDCG node executions. For example, in Figure 3(a) noderequired for executing ONs (CNSs) on their FUs (PEs) and
n can be executed only after all its predecesdors, ..., the power consumed during the idle periods of hardware re-
k are performed. The right part of Figure 3(a) depicts the sources [11] [12]. Power during idle periods can be dimin-
PM that expresses these execution order requirements. Fdshed by shutting down PEs (FUs) [12]. However, when a
each operation, addition nodes indicate how node end timesPE (FU) is turned-off, the power needed for shut-down and
Tie, (i = 1,k) are computed depending on node starting re-start has to be added. Moreover, the latency PM has to be
timesT'i_s and node execution timé&s_ex. Themax node also updated to consider the times it takes for PE (FU) shut-
models the constraint that nodestarts only after allits pre- down and re-start.
decessors are terminated. We discuss the total power consumption PM for the ex-
Modeling of Control Dependencies ample in Figure 2(a). Similar PMs can be built to express
Control dependencies describe conditional node execu-peak power consumption as well. We consider that nodes
tions in an HDCG. In Figure 3(b), for example, if the value execute in the order 2, 5 and 3 on the shared resource. Fig-
of condition(is true then nodes 2, ..p are performed. ure 4 shows the global power consumption PM for this ex-
Nodes 3, ...4 are executed for a false conditidh Join ample. The top part of the PM calculates the @;’gl Pyx
noder is introduced in the HDCG to point the end of the (T'i_e — T'i_s) that represents the consumed power for ex-
conditional construct. The right part of Figure 3(b) intro- ecuting the five nodesPi,i = 1,3 is the average power
duces the PM generated for the HDCG. Similar to data de-consumption of a PE (FU) in a clock cycle. Techniques by
pendencies, control dependencies define an execution ordefsupta [9] and Tiwari [17] can be used to find values fat
ing among nodes. For example, nodes 2, 3, etc can not starthe bottom part of the PM describes power during idle pe-
their executions until node 1 completed. Analogous to datariods (valuesPi_idle) and power for shut-downHi_stop)
dependencies, the built PM reflects this requirement throughand re-start £i_start) of PEs (FUs).
max hodes. Conditional execution of nodes is presented in Variables25_stop and35_stop model the shut-down of
the PMs by annotating edges with condition values. Follow- the shared hardware resource. Varidkilestop has value 1
ing semantics is applied when numerically evaluating suchif the hardware unit is shut-down between the end of node
PMs: edges annotated with a true condition will propagate 2 and the start of node 5. Otherwise, variablestop has
the numerical values that result from evaluating the DAGs value 0. Variabl&5_stop has a similar definition. Section 4
for PMs. Edges annotated with a false condition will propa- explains how values for these variables are found as a part of
gate the valuinfinite. Theminnode in a PM correspondsto the integrated co-synthesis process. If resources are turned-
noder in the HDCG. It is used to eliminate infinite values off then no idle power is consumed, otherwise idle power
due to the non-selected branches. This permits calculatinghas to be added. Using variabl&s stop and35_stop, PM
the correct time values for operations that succeed node in Figure 4 accurately describes these requirements for eval-

Tls T1 e

TT1ex

T2 s> [T2_e]
!

T2 ex

=

a) Scheduling with data dependencies b) Scheduling with control dependencies- case 1

Tl ex

T2.s
" p T c
_S Tlr p
aé - T\
~ T3 s ; 1CY
¢ w P
S Tas o T4
©)
T4 ex T4 ex

c) Scheduling with control dependencies
-case?2

d) Scheduling with control dependencies
-case3

Figure 5. Representation of scheduling decisions

uation of consumed power.

Modeling of Cluster Partitioning and Operation
Binding

We assume that the resource ®e{including PEs and
FUs) available for implementing an HDCG is given. Thus,

share the same resource and the scheduler decides that node
2 is executed before node 1. Accordingly, the PM is updated
by introducing the dotted arc that imposes that node 1 starts
only after node 2 ends. The dotted arc pertains to the vari-
able part of the PM. Different scheduling decisions can be
easily captured by PMs by simply changing the orientation
of dotted arcs.

Representing scheduling decisions in the presence of
control dependencies is more difficult due to the uncertain
character of control dependencies. Difficulty increases if
scheduling is performed across control constructs. The main
challenge is to generate node schedules that maintain HDCG
semantics with respect to three criteria: (1) respecting the
execution order defined by data and control dependencies,
(2) maintaining conditional node execution as defined by a
HDCG (i.e. if a condition value is true then only nodes from
the true branch must be executed) and (3) executing at most
once each CNinthe HDCG. The first two requirements were
already captured by the modeling of data and control depen-
dencies in a PM. To exemplify the third requirement, let's
assume that for the graph in Figure 5(b) a schedule is pro-
duced such that node 4 is scheduled before node 1 if condi-
tion C istrue, and after node 1 if conditighis false. Nodes
2, 3 and 4 share the same resource. This situation occurs if

the number and type of hardware resources that can realiz&"e branch for conditiod” true is very long and the branch

each CN and ONinthe HDCG is knowR._op; isthe subset
of setR to which nodesp; can be mapped. Also, we define
function

Resource : Nodes in HDCG — R
that presents the resource to which each node is bound. Th
goal of cluster partitioning and operation binding is finding
the definition of functioResource (thus, its values for all
nodesop;). Obviously, binding has to be done such that
Resource(op;) € R-op;. A consequence of cluster parti-
tioning and operation binding is that any attribute value (in
our case, execution time and power consumption) of node

op; that depends on the resource type becomes well defined.

For example, let's assume that node execution time «
varies with resource type. After binding, execution time be-
comes known and its value is updated in the PM.

M odeling of Scheduling

Given a HDCG and a node binding to hardware re-
sources, scheduling decides the execution order of opera
tions on shared resources. Depending on taken schedul
ing decisions, different node sequences and different tim-
ing attributes (i.e. starting time, end time) result for nodes
in a HDCG. These correlations between scheduling deci-
sions and performance metrics i.e. timing attributes have
to be captured by a PM. If only data dependencies occur
then the imposed ordering can be easily modeled by intro-
ducing an arc from the PM node for the end time of the first
HDCG node to the PM node for the starting time of the sec-
ond HDCG node. For example, in Figure 5(a) node 1 and 2

for conditionC' false is very short compared to path to which
node 4 pertains. However, this schedule is incorrect because
if condition C is false then node 4 will be executed twice,
both before and after node 1.

For modeling the third requirement of scheduling cor-

?ectness, we identified three different cases that are possible

ina PM:

e Casel: Node 4 is executed before node 1. Its schedul-
ing does not depend on the value of conditionThus,
there is no risk that node 4 is executed multiple times
for a single execution of the HDCG. Figure 5(b) depicts
this situation and the dotted arc is enforces so that node
1 starts only after node 4 terminates.

Case 2. Node 4 executes after node Its schedul-

ing time depends on the value of conditibh How-
ever, the value of conditiof' is already known by the
time node 4 starts. Thus, there is no danger of execut-
ing node 4 multiple times. This situation is reflected in
Figure 5(c) by the dotted arc between thie node for
noder and themax node for node 4.

Case 3: For a given condition value (i.e. conditi@n

is true), node 4 is scheduled to execute after node 1 but
before node- starts. To maintain scheduling correct-
ness, for the opposite value of conditioh it is also
required that node 4 executes only after node 1 ends.
Figure 5(d) depicts this case. Two dotted arcs are in-
troduced so that node 4 starts after node 2 if condition
C'is true and after node 1 if conditiaris false.

HDCG not violate any timing constraints.
Latency Co-synthesis by Performance Model Optimization
constraint
This section describes our approach for integrated co-
synthesis and HLS as an optimization-based design-space

A exploration algorithm. Exploration was realized using the
Integrated co-synthesis e e 05 ‘ very popular simulated-annealing optimization algorithm
and HLS Generation . . .
(SA) [13]. The algorithm examines the quality of numerous
\ Partitioning (binding) $I' partitioning (pinding) and scheduling solu'tions by numeri-
‘ Schedl:—ling Ti ex cally evaluating PMs for power consumption and latency.
L Performance Model The SA algorithm iteratively selects a new point from
Eteblish Reource the neighborhood of the current solution. We defined neigh-
‘ Shut-Down Points ij_stop borhood as the set of points that (1) differ from the cur-
rent solution by the execution order offie pair of nodes
Latency & Power Consumption that share a hardware resource or (2) the resource binding
of one node. PMs are updated for the newly selected solu-
Figure 6. Integrated approach to co-synthesisand tion and then used for numerically evaluating the resulting
HLS power consumption and latency. If the resulting solution has

a better quality than the current then the new solution is un-

conditionally accepted. A worse solution is accepted with a
4. Integrated Approach to Hardware-Software higher probability at the beginning of exploration. Accep-

Co-synthesisand HL S tance probability decreases as exploration progresses. Ini-
tial solution is obtained by uniformly distributing nodes to
Co-synthesis M ethodology resources, and then scheduling nodes using list-scheduling.

The integrated approach to hardware-software Critical path was the priority function for list-scheduling.
co-synthesis and HLS is presented in Figure 6. Inputs to co- Partitioning (binding) and scheduling steps are executed
Synthesis are an HDCG and |atency Constraint_ The numbeM/ith dif‘fel’ent probabi”ties. The reason iS that mu|tlp|e Valid
and type of available hardware resources, including PEs andchedules are possible for each resource partitioning (bind-
FUs, is also given. Co-synthesis problem is finding what re- ing) decision. A small probability, is used to select a par-
source executes each HDCG node and deciding the schedufitioning step, that moves a cluster from a PE to another PE
ing order of nodes so that power consumption is minimized ©Of to hardware. A probability; (p2 > p1) binds an ON to
while latency is below the given constraint. another FU. The reason fpg being greater thap, is that

The method includes two steps. Firerformance multiple HLS solutions are possible for each partitioning of
Models (PM) are generated for an HDCG. Rules for PM clusters to FUs. Finally, a probability 15+ p2) decides a
set-up were discussed in Section 3. Second step igithe scheduling action. This strategy emulates a hierarchical ex-

tegrated co-synthesis and HL S, which was defined as an ploration process because for each new partition (binding)
optimizationalgorithm. As explained in Section 3, foreach there areM analyzed schedules. For examplepif

CN (ON), attributes?; (hardware resource that executes the = 0.01 anqoz 0.1 then on the average, 8 schedules are ex-
node) and’; (starting time of node execution) constitute un- amined for each partition (binding). Ifthe execution order of
knowns for the co-synthesis process. CN partitioningto PEsa node pair is modified then the algorithm also verifies that
and ON binding to FUs is modeled by unknowhis. CN the new ordering is feasible. This means that no cycles can
and ON scheduling is described by unknowiffjs Possi- occur in the updated PMs.

ble values for unknowng&; andZ; are searched during ex- Establishing Resour ce Shut-Down Points

ploration. Power consumption and latency are computed by We propose a greedy algorithm for deciding what hard-
numerically instantiating all node characteristi¢s 7; and ware resource shut-downs resultin power savings and do not
T;_.. and then evaluating their PMs. violate the imposed latency constraint. As discussed in Sec-

Unknownsij_stop model resource shut-down during the tion 3, variablej _stop models the decision to stop the hard-
idle period defined by the end of nodeand the start of ware resourc&esource(7) shared by nodesand;j between
nodej. Values for these variables are established by athe end of nodé and start of nodg. These variables are
greedy algorithm. The algorithm examines all possibilities affected only when a new scheduling decision is taken be-
of turning-off hardware resources and determines those thatause then resource idle times are modified. More precisely,
reduce power consumption (sum of shut-down and restartthese variables correspond to the nodes that have their start-
power is less than idle power). Then, in the order of their ingtimes changed by the scheduling decision. Hence, the al-
power savings, it retains those shut-down decisions that dogorithm for establishing resource shut-down points has to be

| . . .
nput S assumed hardware resource set is detailed in Column 3.

At the task level, the architecture includes general purpose
processing elements (PE) and an ASIC (HW) modeled ab-
stractly. For integrated approach, Column 3 presents the
number of PEs and FUs (adders, multipliers) that were avail-
able for each example. Resulting power consumption for
best solutions found during explorationis shown in Column

for v ij_stop € Sdo
Calculate power saving if resourége s ource(i) is shut-down
between the end of nodend the start of nodg;
if power saving resultshen
Introduceij stop in setP;

for forall ij.stop € Pinthe order oftheir power savirdp 4. Column 5 presents the latency of the solution. Relative
if latency constraint is not violated 3y stop then power saving of the integrated approach with respect to the
Resource(i) is shut-down between end of nodland task-level method is reported in Column 6. Finally, execu-
start of nodg ; tion times of the SA-based exploration are indicated in Col-
umn 7.

The results in Table 1 show that the integrated co-
synthesis and HLS approach offers significant power sav-
ings as compared to the task-level co-synthesis method.
Power savings ranged from 1.6% to 27% but were, in

called after each scheduling decision of the SA exploration.general higher than 10%. Obtained solutions had also a
Figure 7 presents the suggested algorithm. As motivategsmaller latency for the integrated method. The reason for
in Section 3, variablesj_stop are part of the PM for power the proposed integrated method performing better may be
consumption. Lets assume that the Sehcludes all vari- attributedto a more efficient utilization of the available hard-
ablesij_stop that were affected by a scheduling decision. Ware resources. Better hardware utilization is due to su-
The algorithm considers each of the variables and checkg?erior FU sharing that can be revealed in the integrated
if any power saving results by shutting-down the resource. method. As a result, resource idle periods are shorter so
Power savings are calculated by using PMs. Resource shutthat less energy is wasted. Also, more functionality can
downs that offer the highest power savings and do not vi- be shifted towards slower but less power consuming re-

olate the fixed latency constrained are retained in the finalsources without violating the imposed latency constraints.
solution. As a conclusion, the integrated approach offers more ef-

fective latency-power consumption trade-offs than the task-
level method. An interesting observation was that relative
power saving tends to decrease as imposed latency relaxes.

Goal of . tal part N luate the eff This can be explained by the fact that for loose latency con-
_ coalorour experimental part was to evaluate e €liec- q 4iniq functionality is mostly placed into software. In our
tiveness of the integrated approach for hardware-software

. i experiments, power consumption was less in software than
co-synthesis and HLS as compared to traditional task-levelin hardware.
co-synthesis. We analyzed the resulting power consump-
tion of solutions found by the proposed method and a task- .
level method for different latency constraints and distinct 8- Conclusion
hardware resources. Bothloose and tightlatency constraints
were considered. We used two examples: the video coding In this paper, we presented an integrated approach to
algorithm H261 (video) [1] and the 4x4 determinant calcu- hardware-software co-synthesis and HLS for design of low-
lator (4x4 det) [15]. power embedded systems. Goal is to find the hardware-
Both integrated and task-level co-synthesis methodssoftware implementation of a system, that minimizes overall
were realized as simulated-annealing (SA) based explopower consumption while satisfying a global latency con-
ration algorithms. Hence, we excluded the possibility that straint.
observed differences in solution quality were due to differ- Integrated co-synthesis and HLS is accomplished by de-
ent exploration techniques. SA was run with the follow- scribing systems as Hierarchical Data and Control Depen-
ing parameters: initial temperature was 80000, temperaturedency Graphs (HDCG) that includmperation clusters for
length was set to 200 and cooling schedule was 0.8. The SAsoftware andperationsfor hardware. Integrated approach
exploration finished when 10000 solutions were analyzed was realized as a simulated annealing (SA) based solution-
or when no improvement was observed for the last 5000space exploration. Exploration is guided by Performance
moves. Model (PM) evaluation. PMs are graphs that express the
Table 1 presents the results of the comparison betweerrelationship between latency and power consumption and
the integrated and the task-level co-synthesis methods. Coldesign decisions (i.e. binding and scheduling) and HDCG
umn 2 are the latency constraints posed on the designs. Theharacteristics (i.e. data and control dependencies). The in-

Figure 7. Algorithm for establishing resource
shut-down points

5. Experimental Results

Example | Latency Constraint (msec Resource Set Power Consumption (W) | Latency (msec) | Power Saving (%) | Execution Time (sec)
1) 2 3 4 (5) (6) (1)
video 2000 System-level: 2 PE + 1 HW 2.72 1864 - 275
video 4000 System-level: 2 PE + 1 HW 2.36 3486 - 214
video 20000 System-level: 2 PE + 1 HW 2.175 9168 - 225
video 2000 2 PE + 2 adder + 1 mult. 2.42 1744 11 222
video 4000 2 PE + 2 adder + 1 mult. 2.20 3396 6.7 241
video 20000 2 PE + 2 adder + 1 mult. 2.14 16146 1.6 200
video 2000 2 PE + 2 adder + 2 mult. 2.26 1744 18 218
video 4000 2 PE + 2 adder + 2 mult. 1.97 3024 16 204
video 20000 2 PE + 2 adder + 2 mult. 1.94 15034 10 205
video 2000 4 PE + 4 adder + 4 mult. 1.98 1664 27 240
video 4000 2 PE + 4 adder + 4 mult. 1.79 2944 24 205
video 20000 2 PE + 4 adder + 4 mult. 1.65 8968 19.5 230
4x4 det 300 System-level: 1P + 1 HW 4.0 150 - 24.0
4x4 det 1000 System-level: 1B + 1 HW 3.0 900 - 20.0
4x4 det 300 1 PE + 1 adder + 1 mult. 3.69 110 7.75 105
4x4 det 1000 1 PE + 1 adder + 1 mult. 2.78 900 7.2 130
4x4 det 300 1 PE + 1 adder + 2 mult. 3.49 70 12.4 110
4x4 det 1000 1 PE + 1 adder + 2 mult. 2.68 900 10.3 112
4x4 det 300 1 PE + 3 adder + 3 mult. 3.40 70 15 140
4x4 det 1000 1 PE + 3 adder + 3 mult. 2.57 900 17 142

Table 1. Experimental results for

integrated co-synthesisand HL S

tegrated approach to co-synthesis and HLS permits not only{11] P. Landman, “High-Level Power EstimationProc. of IS

more accurate latency and power estimations but also it ex-

PLED, 1996.

poses RTL-level design decisions at the system level. Our{12] M. Pedram, “Power Minimization in IC Design: Principles

experiments showed that more effective performance trade-

offs are possible than for task-level co-synthesis.

References

[1] A. Benderet al, “MILP Based Task Mapping for Heteroge-
neous Multiprocessor Systemgtoc. of EDAC, 1996, pp.283-
288.

[2] L. Benini et al, “System-Level Power Optimization: Tech-
niques and ToolsProc. of ISPLED, 1999, pp.283-288.

[3] M. Borahet al, “High-throughput and Low-power DSP using
clocked CMOS Circuitry” Proc. of ISPLED, 1995.

[4] B. Daveet al, “COSYN: Hardware-Software Co-Synthesis of
Embedded SystemsProc. of DAC, 1997, pp.703-708.

[5] W. Fornaciariet al, “Power Estimation for Embedded Sys-
tems: A Hardware/Software Codesign ApproadEBEE Trans.
on VLY, June 1998.

[6] G. De Micheli, “Synthesis and Optimization of Digital Cir-
cuits”, McGraw-Hill, 1994.

[7] P. Eleset al, “Scheduling with Bus Access Optimization
for Distributed Embedded SystemdEEE Trans. on VLY,
November, 2000.

[8] R. Guptaet al, “Hardware-Software Cosynthesis for Digital
Systems”| EEE Design & Test of Computers, September 1992,
pp.29-40.

[9] S. Guptaet al, “Power Macro-Models for DSP Blocks with
Applications to High-Level SynthesisProc. of ISPLED, 1999,
pp.103-105.

[10] J. Henkel, “A Low Power Hardware/Software Partitioning
Approach for Core-based Embedded Systersdc. of DAC,
1999, pp.122-127.

and Applications” ACM Trans. on DAES, Vol.1, No.1, 1996,

pp.3-56.

[13] C. Reevestal, “Modern Heuristic Techniques for Combina-
torial Problems”J. Wiey, 1993.

[14] Y. Shinetal, “Power Conscious Fixed Priority Scheduling for
Hard Real-Time SystemsProc. of DAC, 1999, pp.134-139.
[15] V. Srinivasaret al, “Hardware Software Partitioning with In-
tegrated Hardware Design Space Exploratiéingc. of DATE,

1998, pp.28-35.

[16] K. Strehletal, “Scheduling Hardware/Software Systems Us-
ing Symbolic TechniquesRroc. of CODES/CACHE, 1999.

[17] V. Tiwari et al, “Power Analysis of Embedded Software:
A First Step Towards Software Power MinimizationEEE
Trans.on VLY, Vol.2, No.4, December 1994, pp.437-445.

[18] T. Y. Yen et al, “Hardware-Software Co-synthesis of Dis-

tributed Embedded Systems”, Kluwer, 1997.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

