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Probabilistic Application Modeling for System-Level Performance Analysis

Radu Marculescu Amit Nandi
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Abstract: The objective of this paper is to introduce the Sto-
chastic Automata Networks (SANs) as an effective formalism
for application modeling in system-level analysis. More pre-
cisely, we present a methodology for application modeling for
system-level power/performance analysis that can help the
designer to select the right platform and implement a set of
target multimedia applications. We also show that, under var-
ious input traces, the steady-state behavior of the application
itself is characterized by very different ‘clusterings’ of the
probability distributions. Having this information available,
not only helps to avoid lengthy profiling simulations for pre-
dicting power and performance figures, but also enables effi-
cient mappings of the applications onto a chosen platform.
We illustrate the benefits of our methodology using the
MPEG-2 video decoder as the driver application.

Keywords: system-level design, performance analysis, appli-
cation modeling, stochastic automata networks, embedded
multimedia systems.

1. Introduction and objectives
Embedded systems represent an important segment of today’s
electronic industry. While there has been a notable growth in
the use and application of these systems, the design process
has become an increasingly difficult problem due to the
increasing design complexity and shortening time-to-market
[1-4]. Practical optimization is impossible without (1) effi-
cient, yet accurateperformance modelsat higher levels of
abstraction, and (2)toolsthat let us quickly evaluate proposed
changes and their impact at the highest level of abstraction,
alleviating the need to defer to a fully detailed implementa-
tion of the system.

The objective of this paper is to present a technique for
application modelingfor system-level power/performance
analysis that can help the designer to select the rightplatform
starting from aset of target applications. By platform we
understand a family ofheterogeneousarchitectures (consist-
ing of both programmable and dedicated components) that
satisfy a set of architectural constraints imposed to allow
reuse of hardware and software components [5].

While the technique that we propose is completely gen-
eral, the focus of our presentation is onportable embedded
multimedia systems. These systems are characterized by
“soft” real-time constraints and then, as opposed to reactive
embedded systems used in safety critical applications, the
average behavior is far more important than the worst-case
behavior. Indeed, due to data dependencies their computa-
tional requirements show such a large spectrum of statistical
variations that designing them based on the worst-case

behavior (typically, one or two orders of magnitude large
than the actual execution time [6]) would result in complete
inefficient systems. Also, since theQuality of Service(QoS)
requirements can vary considerably from one media type
another (e.g. video connections require consistently hi
throughput, but tolerate reasonable levels of jitter and bit
packet errors), the ability to explore several design altern
tives while trying to satisfy QoS requirements is of crucia
importance. To this end, estimating the power/performan
figures of asetof applications, with respect to a target plat
form, is one of the key problems that needs to be addresse

Typically, the design process using heterogeneous arc
tectures follows the Y-chart scheme (Fig.1) [7]. In thi
scheme, the designer first characterizes the set of applicati
and chooses an architecture to run that set. Then, each ap
cation is mapped onto the architecture and the performance
each application-architecture mapping is evaluated. Depe
ing on the resulting performance numbers, the designer m
decide to use that architecture, restructure the application
modify the mapping of the application to get better perfo
mance numbers.

Relying upon this Y-chart design methodology, we focu
on theapplication modelingstep for embedded multimedia
systems (shaded area in Fig.1). This is motivated by o
observation that, constraining a given application (e.
MPEG-2) with various input traces (e.g. MPEG-coded vide
movies with very different scene changes) leads to very d
ferent ‘clusterings’ of the probability distribution that charac
terize the application itself. Tuning the target architecture
this large spectrum of different probability distributions is th
most important development in obtaining efficient mapping
with respect to certain performance metrics.

1.1. Contribution of the paper
The key contribution of this paper is the new idea of usin
Stochastic Automata Networks(SANs) [8][9] as an effective
formalism for application modeling in system-level analysis
SANs are powerful Markovian formalism belonging to th
class of process algebras which are very efficient in modeli
communicating processes. This property is useful sin
embedded applications are highly concurrent and con

application
modeling

architecture
modeling

mapping

input
trace

performance
analysis

Fig 1. Y-chart scheme done
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quently, do not easily fit the traditional model of sequential
control flow. Another advantage of SANs over other formal-
isms is that the state space explosion problem associated with
the Markov models (or Petri nets) is mitigated by the fact that
the state transition matrix isnot stored, nor even generated.

The models that we build for applications areprocess-
level functional models that are free of any architectural
details. The processes communicate and interact among them
to specify what the application should do, not how it will be
implemented. Once the model is built, the next step is model
evaluation. While model evaluation is a challenging problem
by itself, analytical performance model evaluation presents
additional challenges. No other proposed evaluation strategy
for platform-based design supports analytical calculations for
communicating and interacting processes that represent mul-
timedia applications. Based on SANs, we develop a fully ana-
lytical framework that can help to avoid lengthy profiling
simulations for predicting power and performance figures.
This is important for multimedia systems since thousands of
runs are typically required to gather relevant statistics for
average-case behavior. Considering that 5 min. of com-
pressed MPEG-2 video needs roughly 1.2 Gbits of input vec-
tors to simulate, the impact of having such a tool to evaluate
power/performance estimates becomes evident.

Taken together, our proposed technique allows media
systems designers to explore architectures more rapidly, esti-
mate the impact of different design choices more robustly,
and use large multimedia data benchmarks more effectively.

1.2. Related work
Embedded systems interact with the outside world and, in
many cases, their interactions have to satisfy strict timing
constraints. This characteristic drove most of the research
towards theworst-case analysiswhich means that the cor-
rectness of the system depends not only on the logical results
of computation, but also on the time at which the results are
produced [10-12]. Despite the great potential for embedded
system design, the area of average-case analysis received lit-
tle attention [6][14]. The target of our research is to investi-
gate this very issue and, using abstract representations,
provide quantitative measures of power/performance esti-
mates. Our effortcomplementsthe existing results for worst-
case time analysis and is quite distinct from other approaches
for performance analysis based on time separation between
events [15], rate analysis [16], and adaptation process [6].
Compared to our approach, none of these approaches handles
applications at process-level using communicating and inter-
acting processes and yet provides performance metrics that
can be used in platform-based design.

Another important issue is to relate our solution to other
existing tools for high-level performance modeling that can
be used in embedded systems design. Ptolemy [17] focuses
on application modeling and simulation, but does not yet sup-
port explicit mapping of application models onto models of
architectures. The Polis environment [18] is very well-suited
for reactive systems, but less suited for applications involving

DSP kernels. Chinook [19] supports an explicit mappin
from a behavioral description onto a target architecture a
again, a simulation tool is used to simulate the system at d
ferent levels of abstraction. El Greco [20] provides a simul
tion environment for modeling and validating the
functionality of complex heterogeneous systems. Finally, t
tools recently proposed in [7] are centered around the idea
platform-based design. The applications are modelled
Kahn process networks that are further used to perform p
formance evaluation via simulation.

In summary, we propose a completely analytic solutio
for application modeling for performance evaluation. Wha
makes this unique is the potential to significantly shorten th
design cycle, while providing designers the ability to explor
the entire design space. Indeed, by its very nature, our a
lytic approach is fast and scales nicely with the design com
plexity.

1.3. Organization of the paper
Section 2, presents the SAN modeling paradigm. In Secti
3, we present a detailed analysis of application modeling f
the MPEG-2 decoder and discuss the power/performan
results for two different scenarios. In Section 4, we illustra
possible implications of the technique on the design proce
Finally, we conclude by summarizing our main contribution

2. Application modeling using SANs
To model the application of interest, we use aprocess graph,
where each node (component) corresponds to a process in
application. More precisely, we associate an automaton
each process in the application and hence the whole proc
graph specifying the application translates to anetwork of
automata. Furthermore, the process graph is characterized
execution rateswhich, under the hypothesis of exponentially
distributed activity durations, can be used to generate t
underlying Markov chain [9]. We also note that, in our SAN
based modeling strategy, the processes are fully concurr
and the synchronization between them occurs according t
statically defined relation. Communication between pro
cesses can be achieved using various protocols, includ
simple ones based oneventandwait synchronization signals.

2.1 The SAN model construction
One of the central concepts in the theory of continuou
Markov processes is theinfinitesimal generator1 defined as:

(1)

with ,

,and

1.This generator is the analogue of the transition probability matrix in the discre

time Markov chain.

Q

σ0 0,– σ0 1, σ0 2, …

σ1 0, σ1 1,– σ1 2, …

σ2 0, σ2 1, σ2 2,– …

…

=

σi i,
1 pi i→–

t
--------------------- p'i i→–=

t 0→
lim= i 1 2 … n, , ,=

σi j,
pi j→

t
------------ p'i j→=

t 0→
lim= i j, 1 2 … n, , , i j≠( )=
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where is the transition probability (directly or indi-

rectly) from statei to statej during time 0 tot, and is
its derivative. Each entryσij in the infinitesimal generator is
infact theexecution rateof the process in that particular state.

An N-dimensional SAN consists ofN stochastic autom-
ata that operate more or less independently of each other. The

number of states in thekth automaton is denoted bynk, k = 1,

2,..., N. The main objective of the following derivations, is
the computation of the stationary probability distributionπ of
the overallN-dimensional system.

Given N independentstochastic automata, with associ-

ated infinitesimal generatorsQ(1), Q(2),...,Q(N), and probabil-

ity distributions π(1)(t), π(2)(t),..., π(N)(t) at time t, the
probability distributionof the N-dimensional system,π(t), is

given by the tensor product1 of the probability vectors of the
individual automata at timet, that is:

(2)

To solve theN-dimensional system that is formed from
independentstochastic automata, it suffices to solve the prob-
ability distributions of each individual stochastic automata
and form the tensor product of these distributions. Although
such systems may exist, for embedded system applications,
we need to consider interactions among processes. There are
two ways in which the stochastic automata can interact:
• A transition in one automaton forces a transition to occur in
one or more other automata. These are calledsynchronizing
transitions (events). Synchronizing events affect the global
system by altering the state of possiblymany automata. In
any given automaton, transitions that are not synchronized
are said to belocal transitions.
• The rate at which a transition may occur in one automaton
is a function of the state of another automata. These arefunc-
tional transitions, as opposed toconstant-rate(non-func-
tional) transitions. Functional transitions affect the global
system only by changing the state of asingleautomaton.

The effect of synchronizing events
Let (k = 1, 2,...,N) be the matrix consisting only of local
transitions of any automatonk. Then, the part of the global
infinitesimal generator that consists uniquely of local transi-
tions can be obtained by forming the tensor sum of matrices

, ,..., . It has been shown in [21], that SANs
can be always treated by separating out the local transitions,
handling them in the usual fashion by means of a tensor sum
and then incorporating the sum of two additional tensor prod-

ucts per synchronizing event. More than this, since tens
sums are defined in terms of the (usual) matrix sum (ofN
terms) of tensor products, the infinitesimal generator of a sy
tem consisting ofN stochastic automata withE synchronizing
events (and no functional transition rates) can be written as

(3)

This quantity is referred to as theglobal descriptorof the
SAN. It should be noted that, even if the descriptor can b
written as a sum of tensor products, the solution isnot simply
the sum of the tensor products of the vector solutions of ind

vidual Q(i). This directly results from the fact that the autom
ata are not independent.
The effect of functional transition rates
Introducing functional transition rates has no effect on th
structureof the global transition rate matrix other than, whe
functions evaluate to zero, a degenerate form of the origin
structure is obtained. So, although the effect of the depend
interactions among the individual automata prevents us fro
writing the solution as a tensor product of individual solu
tions, it is still possible to take advantage from the fact th
the nonzero structure is unchanged. This is the motivati
behind thegeneralized tensor product[8]. The descriptor is

still written as in eqn. (3), but now the elements of ma

be functions. In this case, we replace each tensor product t
incorporates matrices with functional entries with a sum
tensor products of matrices that incorporate onlyaverage

numerical entries. Then eqn. (3) becomes

where Q contains only numerical values and the size ofT
depends on 2E + N and on , whereF is the set of

automata whose state variables are arguments in functio
transition rates. AlthoughT may be large, it is bounded by

.

An example
Consider the generalProducer-Consumerparadigm with two
interacting processesA and B. ProcessA (the Producer)
writes data into an infinite buffer and processB (the Con-
sumer) gets access to it (to read its contents), only ifA is not
writing any data. (We also note that the processA cannot
write into the buffer when the processB is reading it.) Since
the length of the buffer is infinite, no information is lost.

Fig.2: Interaction between two processesA (producer) andB (consumer)
1.

σi j, σi i,=
i j≠
� i j, 1 2 … n, , , i j≠( )=

pi j→

p'i j→

X
x11 x12

x21 x22

= Y

y11 y12 y13

y21 y22 y23

y31 y32 y33

= X Y⊗
x11Y x12Y

x21Y x22Y
=, ,

π t( )
N

⊗
k 1=

π k( )
t( )=

Ql
k( )

Ql
1( ) Ql

2( ) Ql
N( )

Q

N

⊗
i 1=j 1=

2E N+

� Qj
i( )

=

Ql
k( )

Q

N

⊗
i 1=j 1=

T

� Qj
i( )

=

ni
i F∈
∏

T 2E N+( ) ni
i F∈
∏×≤

A B

(λ2 = 1/Twrite)

produce(item)

(λ1= 1/Tproduce)

wait_to_write

write

consume(item)

(µ1= 1/Tconsume)

wait_to_read

read
(µ2 = 1/Tread)

[state(B) ≠ read] [state(A) ≠ write]
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Referring to processA, we observe a local transition
betweenproduce(item) andwait_to_writestates; that is, this
transition occurs at the fixed rate of 1/Tproduce, whereTproduce

is the time required to produce an item. The local part of the
global generator (Ql) can be computed as:

Given an application,Tproduce has a concrete meaning
which can be deduced from a high-level analysis of the appli-
cation. However, the transition from statewait_to_write to
statewrite is functional, because it depends on the state of the
other process. More precisely, this transition occurs if and
only if the condition [state(B) ≠ read] becomes true. Because
of this dependency, we cannot associate a fixed rate to this
transition; the actual rate depends on the overall behavior of
the system. Finally, once theProducer gets access to the
buffer, it transitions to its initial state (with the local transition
rate 1/Twrite). Similar considerations apply to theConsumer

process.
We note that the complexity of the global generator

increases very fast with the number of processes. However, as
we shall see in the next section, it is possible to find out the
probability distribution of the global system without building
the global generator.

2.2 Performance model evaluation
Once we have the SAN model, we need to find out itssteady-
state solution. This means that the application exhibits some
regularity and predictability in its behavior over the state
space. This special condition is expressed by the equation

(4)
with the normalization conditionπ⋅e =1, whereπ is steady-

state probability distribution andeT= (1,1,...,1).
Our objective is then to solve eqn. (4) by using numeri-

cal methods thatdo not require the explicit construction of
the matrixQ but can work with the descriptor in its compact
form. When the global infinitesimal generator of a SAN is
available in form (3), the numerical methods most suitable to
solve (4) are iterative [9]. Thus, the underlying operation is
the product of a vector with a matrix. Since

(5)

the main issue becomes the efficient computation of

, wherex is a vector of length . For all prac-

tical purposes, it is sufficient to consider the case whenQ(i)

contains only constant transition rates because, as explained
in the previous subsection, this hypothesis covers the cases of

independent stochastic automata (T = N), stochastic automata
with synchronizing effects but no functional transitions (T =
2E + N), and stochastic automata with synchronizing even
and functional transitions, and the functional elements a
handled by expansion (T > 2E + N). Under this hypothesis,

the product may be obtained using

multiplications, whereni is the number of states in theith

automaton. (Typically, theni of the largest automata varies
from a few to a few tens of states.) Due to the special stru
ture resulting from the tensor product, computation is signif
cantly improved using dynamic programming-like tech
niques.

Once the steady-state distribution is known, performan
measures such as throughput, utilization, average respo
time can be easily derived. However, in order to calcula
such performance figures, we need to find thetrue ratesof
the activities, which in turn requires that we calculate th
probability that each activity is enabled. This is because, t
specified rate of an activity isnot necessarily the same as the
rate of that activity in the equilibrium state since bottleneck
elsewhere in the system may slow the activity down. The tr
(or equilibrium) rate of an activity is thus specified by the rat
multiplied by the probability that the activity is enabled,
which means that the system is in that state in which it c
perform that activity.

3. A case study: the MPEG-2 decoder
Our main observation is that, depending on the input trac
processes in the target application expose an inherent ‘cl
tering’ of probability distribution values in the steady-stat
regime. Moreover, depending upon the nature of the inp
traces, these processes react in different ways, giving sc
for optimization and trade-offs. This is explained through th
example of an MPEG-2 decoder (Fig.3). The decoder co
sists of the baseline unit, the Motion Compensator (MC), a
the associated buffers. The baseline unit consists of the V
(Variable Length Decoder), the IQ/IZZ (Inverse Quantizatio
and Inverse Zigzag), the IDCT (Inverse Discrete Cosin
Transform) and the buffer.

3.1 Modeling setup
We chose the Stateflow component of Matlab to model o
system which uses the semantics of Statecharts, formally p
posed by Harel [22]. To create the Stateflow model of th
MPEG-2 video decoder, thesequentialC-code of the decoder
was split into several processes and the communicat

Ql Ql
A

I3⊗ I3 Ql
B⊗+= where

Ql
A

λ– 1 λ1 0

0 0 0

λ2 0 λ2–

= Ql
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µ– 1 µ1 0

0 0 0

µ2 0 µ2–
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0 1 0

0 0 1

=, ,

π Q⋅ 0=

xQ x

N

⊗
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⊗
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⊗
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⊗
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Fig.3 The block diagram of the MPEG-2 decoder
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among processes made explicit by using synchronization and
functional transitions as in Section 2. To this end, we first
identified the main modules of the application. These mod-
ules were then mapped to the corresponding code segments
and functions. Then, from the application profiles, we identi-
fied the interaction between the modules and also developed
the function sequence and call-graphs, to obtain a better view
of the data and control flow inside the modules.

We model the process graph obtained from the
application corresponding to the baseline unit following the
Producer-Consumerparadigm. We described the VLD
process as theProducer and the IDCT/IQ unit as the
Consumer. The VLD decodes the input stream, generates
macroblocks and puts them into the buffer. These are picked
up by theConsumerto compute IDCT’s and output data to
reconstruct the frames. Both the buffer access and the IDCT
output need to access the memory which is a shared resource.
To unravel the full potential for efficient mapping offered by
applications, we assume that each process has its own space
to run, and does not compete for any computing resources.
The buffer is also mapped to a queue, to allow us to see its
utilization characteristics.

The model of the application was evaluated using the
analytical procedure in Section 2 under two scenarios, using
the sf2santool that we developed for exploiting the SAN
analysis techniques. The tool works within Matlab
environment and constructs the infinitesimal generator
matrices corresponding to each automata from the Stateflow
diagrams. This involves deriving the matrices corresponding
to synchronization and functional transitions, apart from
those corresponding to local transitions. These transition
matrices incorporate rate informations, provided by the
designer from trace-driven simulations of the application.
Using the formalism provided in Section 2 the tool is able to
obtain the steady-state probability distributions of the
automata for all the states.

3.2 Results and discussion
In our experiments, we assume that the bit-rate of the input
video stream is the same for all scenarios. Three different
runs are presented: in the first one, theProducerproduces at a
rate equal to the rate at which theConsumerconsumes, on
average. The second run, corresponds to a restructured ver-
sion of the decoder, where theProducer is slightly slower
than it is in the first run. The third one corresponds to another
concurrent version of the decoder (differently structured)
where theProduceris slightly faster than it is in the first run.
Moreover, two scenarios are presented for comparison:
• The first scenariocorresponds to the case, of running a clip
of with very low correlation (<10%) between adjacent macro-
blocks and frames (e.g., playing an MPEG-coded video
movie like Terminator2). This low correlation appears
because the adjacent macroblocks in the I-frames can be very
different. Further, due to a lot of special effects, the error
between the predicted frame and the original frame (coded
using P and B frames) can be very high.

The figures corresponding to the steady-stat
probabilities of some of the states are given in Fig.4, for thr
runs. The first column in theProducerstate diagram shows
the probability of the VLD process using the CPU (CPUV).

The second column shows the probability that the process
waiting for the buffer (WaitB) because theConsumerprocess

is accessing it. The third column shows the probability of th
Producer process being blocked because the buffer is fu
(FullB). For the Consumer, the first column refers to the

probability of the process being blocked by an empty buff
(EmptyB). The second column shows its probability of usin
the CPU (IDCTW) that would be obtained assuming no
correlation between macroblocks. The third shows the actu
probability of theConsumerprocess using the CPU that is
depending on the input patterns, (CPUA). The columns in the
Bufferstate show the probability distribution of the length o
the buffer ranging from 0 to 4.

In run one of the first scenario, we observe that thePro-
duceris active only 70% of the time, and it is waiting for the
buffer 30% of the time, while theConsumer is waiting
because the buffer is empty for 32% of the time. In the seco
run, we find that theProducer is active 88% of the time,
because theConsumeris consuming at a faster rate. More
over, theConsumerremains in the wait state for 60% of the
time because the buffer is empty. We observe that slowi
down theProducerimproves CPU utilization (as CPU-time =
0.88 in second run). In the third run, where theProduceris
producing at a slightly faster rate, we observe that not only
it blocked because theConsumeris accessing the buffer, but
also because the buffer is full. Moreover, it remains blocke
for more that 50% of the time.
• The second scenariocorresponds to running a clip of with
very high correlation (>90%) between adjacent macro-bloc
and frames (e.g., playing an MPEG-coded video of the stoc
exchange report or weather channel). In terms of steady-s
probabilities, because of the very different nature of the inp
stream, we see a very different set of plots in Fig.5 compar
to the previous case (Fig.4).

Comparing Fig.4 and Fig.5, we observe that there is n
much change for theProducer (most probably because the
bit-rate is same). However, the CPU-active time forCon-
sumerchanges drastically depending on the inputs. As th
correlation increases, fewer IDCT’s need to be comput
because of very little change in the scenes of the vid
stream. Further, it is interesting to note that the buffer requir
ments actually increase in the second scenario. Although
computation on average is low, abrupt changes in the sce
of the movie cause an increase of the buffer utilization. The
are reflected in the buffer length changes, particularly notic
able when we reduce the speed of computation ofConsumer
in the third run, after seeing the low CPU-utilization. Furthe
we observe that the buffer length is about 1.33 on an avera
and may eventually reach length 4 (as would be predicted
a worst-case analysis) in less than 5% of the time.
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Fig.4. Probability distribution forProducer, ConsumerandBuffer in Scenario 1

Fig.5. Probability distribution forProducer, ConsumerandBuffer in Scenario 2
4. Implications in the design process
Once we know the steady-state regime, by using the proper
cost functions for each state, the performance measures of
interest can be easily derived. Since there are no limitations
on the cost functions that can be attributed to the states, this
kind of analysis has a lot of potential. For instance, the utili-
zation of the buffer (channel) can be easily computed from
the average number of frames weighted with their corre-
sponding probabilities. It must be emphasized that, to calcu-
late performance figures (like throughput, latency), we need
the true rates for the activities. For instance, in the second
scenario, although the data from the IDCT state of theCon-
sumergets directly displayed at the specified display rateλC,
the actual (true) display rate will be only 0.07⋅λC; that is, 14

times less than the specified rateλC when the IDCT is
assumed to run in a stand-alone mode. This is the correct rate
that the designer should use during the optimization process.

4.1 System-level power estimation
Theaverage system-level powercan be obtained by summing
up all the subsystem-level power values. For any subsystem
k, the average power consumed is given by:

(6)

wherePi and Pij represent the power consumption per state
and per transition, respectively, andπi is the steady-state

probability andλij is the transition rate associated with the
transitions between statesi andj. Having already determined
the solution of eqn. (4), theπi value (for a particulari) can be

find by summing up the appropriate components of the glob
probability vectorπ. ThePi andPij costs are determined dur-
ing an off-line pre-characterization step where other propos
techniques can be successfully applied [13].

To obtain the power values, we simulated the MPEG
decoder, using the Wattch [23] architectural simulator th
estimates the CPU power consumption based on a suite
parametrized power modes. By specifying a low-powe
Strong-Arm like processor, we obtained an average pow
value of 4.6W for the VLD module, and 4.8W for the IDCT
Using these the power figures, it is easy to obtain the avera
power characterization for the entire system under varyi
loads. This is useful to trade-off performance and power.
our example, using eqn. (6), we have obtained the avera
power values of 3.5W (Producer), 3.2W (Consumer) and
3.7W (Producer), 0.43W (Consumer), for scenarios 1 and 2,
respectively. Furthermore, we can multiply these power va
ues with the average buffer lengths from Figs. 4 and 5 (0.
and 2.0, respectively), and get thepower✕delaycharacteriza-
tion of the system; that is, 4.42J for scenario 1 and 8.2
(almost double!) for scenario 2.

4.2 Mapping Applications based on Clustering effects
The second aspect that we would like to consider is the effe
of probabilities clustering, as a function of the characteristi
of the input video stream. To study this, we consider th
global probabilities rather than the local probabilities that w
have presented so far. The global probabilities present
probability of the whole system being in a certain
configuration. For example, a configuration may consist

P
k( ) πi Pi⋅

all i
� λi j Pij⋅

all i j,
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the Producerbeing blocked because theBuffer is full or the
Consumeris reading theBuffer.

For simplicity, we map the states of the processes into
two broadly defined states R (run) and I (idle). The process is
in state R if it is actively computing and using the CPU,
otherwise it is in state I. This means that for theProducer
process the state (CPUV) gets mapped into R, while all other
states mentioned get mapped into I.

In Table 1, we present some of the important global
probabilities corresponding to two runs (A and B), and show
their importance in the mapping process. Runs A and B are
two typical cases where theProducerand theConsumerhave
balanced rates and the input stream corresponds to scenario 1
and 2 respectively. (The local probabilities for these cases
have been presented as Run 1 for scenario 1 in Fig.4 and Run
1 for scenario 2 in Fig.5.)

In Table 1, the first row shows that the both theProducer
and Consumerare running simultaneously with probability
0.26 for run A, and 0.60 for run B. The second row shows
that theProduceris running alone with probability 0.62 for
run A and 0.22 for B, while the third row shows that both the
processes are idle with probability 0.11 for run A and 0.12 for
run B.

Having this information about the global probabilities,
we can put processes with similar running probabilities in the
same cluster, and define a mapping of such processes to a set
of architectural resources. For instance, in our example, we
may want to assign all processes that are active more than
50% of the time (that is, probability greater than 0.50) onto a
low-power processor, and those which are active around 25%
of the time into some ASIC. Using such a strategy, the pro-
cesses can be mapped onto the processors as shown in the
Fig.6. (The size of the states of the processes in the figure is
proportional to the value of probability of being in that state.)

The above case is especially useful if the designer is
ready to have a processing element for each process. How-
ever, the number of resources/processing elements available
may be less that the number of processes. It turns out that the
derived steady-state probabilities can help us to partition the
set of automata based on the available resources, such that
processes mapped onto a particular processing element com-
pete minimally. From Table 1, we observe that in Run A, the
probability that theConsumeris in state R and theProducer
in state I, simultaneously, is greater than 0.6, while the proba-
bility of both being in state R is 0.26. This may be useful to

the designer, to map processes that compete with each o
onto different processing elements as shown in Fig.7, a
assign the corresponding task priorities so that they can
scheduled without too much overheads.

Finally, to complete the discussion, we present in Fig
the global picture of resource utilization for 36 runs in th
two scenarios discussed above and a third scenario where
correlations were set in-between. For each run we observe
global state probabilities, as a permutation ofVLD state
(Running_CPU, Idle_CPU), with IDCT state (Running_CPU,
Idle_CPU) andBufferstate ({0,1},{2,3}{4}).

From Fig.8, we see that, from a large number of case
S4 is the predominant one.S4 corresponds to the case (R, I
0-1), i.e., VLD is in Running_CPU state, IDCT is in
Idle_CPU, and theBuffer is either empty or contains one
item. Moreover, it shows thatS5 to S9 andS11 are very rare.
This indicates that the two components can be mapped o
the same processing elements.

On the other hand,S12 shows that if the buffer speed is
greatly reduced (as was done for some runs), the (I, I, 4) st
becomes prominent. From the figure it is possible to get
idea as to what bus/buffer speed should we choose such
the power/performance trade-off becomes acceptable. Si
larly, S10, corresponding to (I, I, 0-1) is seen to predomina
in some cases, indicating that the system resources exceed
requirement, and then the system is idle.

Fig 7. Mapping processes to processing elements using second strat

It is easy to see that this approach can be very useful,
more complicated cases, involving a larger number of auto
ata. This is of interest to any system designer wanting
trade-off power and computing speed. We point out tha
unlike the local probabilities, theglobal probabilitiesgive a
much better insight into the behavior of the system an
should be used for optimization purposes.

Probabilities Producer Consumer Buffer
Run A Run B

0.26 0.60 Ra

a. R means the process is actively computing

R 0-1

0.62 0.22 R I 0-1
0.11 0.12 Ib

b. I means the process is idle and is not computing

I 0-1

0.01 0.01 All others

Table 1: Global Probability Distribution

Fig 6. Mapping processes to processing elements using first strate
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Fig.8. Probability distributions showing the clustering of processes for 36 runs
Finally, the CPU time needed for our analysis is less than
a few seconds in each of the runs, while the error remains
smaller than 5% compared to the simulation results. This is at
least 2-3 orders of magnitude faster than the active simulation
time required to obtain the same results. Hence, the approach
can significantly cut down the design cycle and, at the same
time, enhance the opportunities for exploring the entire
design space.

5. Conclusion

We have presented a formal technique for system-level analy-
sis based on SANs. Using this formalism, we have shown
that, under various input traces, the steady-state behavior of
the application can be characterized by very different ‘clus-
terings’ of the probability distribution values. This informa-
tion is essential for obtaining efficient mappings of the
applications onto a chosen platform. Experimental results
have been presented for an MPEG-2 video decoder.
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