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Abstract 
We report the very first fully automatic datapath tile 

layout flow. We subdivided the placement process into 
two steps: a global placement step using simulated an-
nealing, and a new detailed placement step based on ex-
tensive modifications we made to the O-tree algorithm. 
The modifications have enabled the extended O-tree al-
gorithm to handle the rectilinearly shaped transistor 
chains and gates common in datapath tile layout. We 
show that datapath tiles can be placed and routed auto-
matically at the transistor level or at the mixed transis-
tor/gate level, achieving results for the very first time that 
are competitive to those obtained manually by a skilled 
designer.  

1. Introduction 

Circuits implemented in high-performance logic fami-
lies and frequent technology changes have increased mo-
tivation for finding alternatives to manual layout of digi-
tal datapaths. High performance datapath design is still 
very time consuming. Commercial design tools available 
today cannot produce datapath circuits comparable to 
skilled manual design. A datapath is a highly regular 
structure with its own constraints and the physical design 
stage is traditionally performed manually.  
 We assume that floorplanning at the system level was 
already performed and the estimated area for the datapath 
design is one of the results of this process. The datapath 
circuits perform bit-wise data operations in parallel on 
multiple bits, so the estimated area can be divided into 
identical bit-slices as shown in Fig. 1.  
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Detailed view of one possible tile is given in Fig. 2.
 

Fig. 1. Global view of a regular datapath structure.  

 There are two signal flows in perpendicular directions 
as shown in Fig. 1. One is data flow, which runs verti-
cally along the power rails. The other is control flow, 
which goes horizontally (such as a CLK signal or SEL of 
a MUX). Since a tile is replicated across an entire row, it 
is sufficient to optimize the area of a single tile at a time. 
This is indeed the focus of this paper.  

The tiles within a row of the datapath array are typi-
cally mirrored. Therefore, devices should be placed such 
that geometry sharing is possible between adjacent tiles 
in a datapath array. In Fig. 2 the transistor chain shares 
the diffusion contact over the left reflection line and the 
single transistor shares the poly/metal1 contact over the 
right reflection line. This generates the first constraint 
where one bit of the datapath layout has  to fit into a hori-
zontally constrained region, while the height of the layout 
tile should be min imized.    
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Fig. 2. Possible placeable devices within a datapath 
tile: single transistor with one or more fingers (folds), 
a transistor chain and a pre-designed gate.  

 The input to our tool is a netlist for a tile and a library 
containing device sizes and pre-designed gates. Netlist 
may be completely at the transistor level, or at the mixed 
transistor/gate level. The input also includes the set of 
design rules and constraints. Our goal was to automati-
cally produce tile layouts comparable to skilled manual 
design.  

Recently there have been several attempts to automati-
cally generate datapath cell layouts at the transistor level. 
A geometry-based, greedy approach for digital datapath 
cell design was presented in [13]. In this constructive 
placement procedure, all components are represented as 
rectangles with fixed height and width. This method pro-



 

duced layouts that were up to 30% worse than manual 
layouts. 
 A mixed integer linear programming technique was 
applied in [14] in order to solve the same problem. This 
solution has the advantage of being computationally effi-
cient, producing a deterministic output. Unfortunately, 
this implementation is limited by the number of integer 
variables that it can handle and is therefore limited to 
smaller size circuits. This method can handle only rec-
tangular and L-shaped components. 

The authors from [15] proposed a non-row-based 2-D 
style placement tool based on simulated annealing algo-
rithm. Placeable components were allowed to merge or 
change shape during the placement process. The comp u-
tation times were modest and the experiments showed 
that this tool provides competitive results when compared 
to skilled manual design.  

Fig. 3a shows the flowchart of the physical design flow 
applied in all previous works. The work presented in [13-
15] addressed only the placement stage; routing was per-
formed manually.  

Automatic Placement

Manual Routing

Global Placement

Detailed Placement

Automatic Routing

(a) (b )  
Fig. 3. Physical design flowchart used in: (a) [13-15] 
(b) this paper. 

We would like to be able to guarantee that the final 
placement is within the given tile width and without any 
overlap, something that could not be achieved with the 
approach presented in [15]. We saw the possibility to 
solve these problems using an ordered tree (O-tree) algo-
rithm that recently was proposed in [1,2] to represent 
non-slicing floorplans. The O-tree representation was 
developed to replace the commonly used constraint 
graph.  

The O-tree representation has several advantages. The 
run-time to generate the placement from its correspond-
ing O-tree is linear in the number of blocks. The O-tree 
needs a smaller amount of encoding storage and also it 
has a smaller search space, when compared to the other 
topological representations such as sequence pair [3-8] 
and BSG [9-12]. The sequence pair and BSG approaches 
were enhanced for floorplanning in order to handle L and 
T-shaped, as well as other complex non-rectangular 
blocks, while in previous work the O-tree approach was 
applied only for rectangular shapes. 
 The O-tree structure was applied in a floorplanning 
process in [1,2]. The enhanced perturbation algorithm 

from [2] determines the position that minimizes the cost 
function without constructing entire new placements at 
every insertion position, which improves the running time 
of the algorithm.  

In this paper we propose a new application of the O-
tree algorithm. In order to handle the complex non-
rectangular shapes typical of transistor chains and pre-
designed gates (black boxes), we added new features to 
the O-tree algorithm.  

2. Datapath Tile Layout Flow 
 In order to mimic skilled manual design, a tool has to 
be able to explore the options that a human would take 
into account. We would like to be able to create transistor 
chains dynamically during placement as well as to change 
the number of fingers of the single transistor or transis-
tors within a transistor chain. This possibility increases 
the search space for an optimal result. It is therefore use-
ful to base the placement engine on simulated annealing, 
which is more dynamic and flexible in nature. Device 
folding, transistor chaining and placement of the devices 
straddling the reflection line are supported directly in the 
move set [15].  
 On the other side, the simulated annealing approach 
applied in [15] doesn’t guarantee that the final placement 
will be within a given bin width and without any overlap. 
It would be therefore useful to consider a topological 
approach such as the O-tree method to guarantee that the 
tile width and design rule constraints are met. However, 
applying only the O-tree algorithm, without using simu-
lated annealing, wouldn’t give us satisfying results. The 
O-tree, like the BSG or sequence pair data structure, is 
not a flexible framework. Within the O-tree algorithm, 
the number and the shape of devices during the place-
ment process must be fixed.  
 Fig. 3b shows the flowchart of the physical design 
process we used to generate datapath tile layouts. Know-
ing that one algorithm won’t be able to handle all of the 
constraints for datapath tile layout generation, we applied 
simulated annealing as the global placement algorithm 
and our modified O-tree algorithm as the detailed place-
ment algorithm.   
 The last step in our layout flow is routing. It was per-
formed automatically in four metal layers by applying an 
industrial router.  
 The global placement engine is described in [15], and 
an industrial tool performs the routing. Therefore, the 
remainder of this paper focuses on the implementation of 
the detailed placement algorithm. We will show that the 
layout results we achieved are quite competitive with 
manual layouts of the same datapath tiles. 

3. The Detailed Placement Algorithm 
 The goal of the detailed placement algorithm was to 
guarantee that the final placement result obeys all design 



 

rules. If the global placement result exceeded the given 
tile width constraint (W), then the detailed placement 
algorithm has to find a solution where all devices are 
placed within that given W. Our detailed placement ap-
proach is based on modifications to the O-tree algorithm 
presented in [2].  

3.1. Overview of the O-tree Structure and Initial 
O-tree Generation from Global Placement  

 A n-node O-tree is a tree with n+1 nodes and is en-
coded by (T,?), where T is a 2n-bit string that identifies 
the branching structure of the tree, and ? is a permutation 
of the n node labels (excluding the root) [1]. Placement 
blocks are represented as the nodes in (T,?). The edges in 
(T,?) determine the horizontally related positions be-
tween blocks. The root of the horizontal O-tree represents 
the left boundary of the placement area. While traversing 
the O-tree, we write a ‘0’ for descending each edge and a 
‘1’ for subsequently ascending that edge in the T string. 
For each node in the order of traversal, we write one 
component in the ? set. The permutation ? determines the 
vertical position of the component when two blocks have 
overlap in their x-coordinate projections. Visiting the O-
tree in a depth first manner, we can construct the corre-
sponding placement. Fig. 4 shows an example of an en-
coded O-tree (Fig. 4a) and its matching placement (Fig. 
4b). Notice that in Fig. 4 all blocks are placed with zero 
separation distance. In our case, all devices have to be 
placed such that all design rules are obeyed. 

The first difference comparing to the previous applica-
tions of the O-tree is in the initial configuration. In [1,2] 
the initial O-tree was generated at random. In our case, 
the initial O-tree must correspond to the global placement 
result with positions determined for each device. So our 
first problem was how to transfer the global placement 
result into the O-tree algorithm, without losing any in-
formation.  

For construction of an initial O-tree, we already have 
an admissible global placement result. Given an admissi-
ble placement, from the corollary of the lemma 3 in [1], 
we can construct a horizontal adjacency graph (HAG). In 
order to find a shortest path spanning tree of the HAG, 
which represents the horizontal O-tree of the placement, 
we traversed the HAG in a depth first manner.  

The HAG retains information about the devices in the 
horizontal direction (x-coordinates). In order to preserve 
the vertical relationships between blocks, we have to con-
sider the y coordinates of the lower left corners of the 
devices. While traversing the HAG, if there is more than 
one branch going out from the current node of the graph, 
we have to check the y placement coordinate and first 
traverse the node with the lower y coordinate. For the 
placement shown in Fig. 4b, the HAG should look like 
the O-tree given in Fig. 4a without information about 
vertical relationships between devices. Starting from the 

left side, this check is first performed for nodes a and b. 
After this check we know that a is placed below b and in 
? we recorded first a and then b. The second branching 
happens after node b is processed, and this check is per-
formed again for nodes c and e. If we don’t perform this 
check, it can happen that in ? we first recorded e, and 
then c and d. In this case, (T,?) = (0100100111,abecd) 
wouldn’t correspond to the starting placement from Fig. 
4b. The corresponding placement for this wrong O-tree 
shown in Fig. 4c is given in Fig. 4d, which is different 
from the starting placement given in Fig. 4b. 
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Fig. 4. O-tree examples and their corresponding 
placements.  

3.2. Original O-tree Algorithm  

 Before explaining the modifications that we developed, 
a quick overview of the enhanced perturbation algorithm 
[2] will be given. Given an initial O-tree, a new place-
ment configuration can be generated by deleting a com-
ponent from the O-tree and placing it in another insertion 
position. For n components there are 2n-1 possible per-
turbed positions. If the component a from the O-tree 
given in Fig. 4a is chosen first to be deleted and per-
turbed, then the possible insertion positions for this com-
ponent are shown in Fig. 5. To simplify the algorithm, the 
insertion positions are considered only at the external 
nodes of the tree. The numbers next to the insertion posi-
tions indicate the visitation order.  

5
9

8

2
1

e

dc

b

7

3

6

4

 
Fig. 5. The numbers indicate the possible insertion 
positions for component a, which was deleted from 
the O-tree given in Fig. 4a.  



 

 Once the component is deleted and its insertion posi-
tions are determined, the rest of the components are slid 
to the ceiling corresponding to the top of the placement 
area (the bottom of the placement area is called the floor) 
as shown in Fig. 6a. The first insertion position for a, 
which is actually its original position, is shown in Fig. 6a. 
After virtually placing a component at the new insertion 
position, the cost function (a weighted sum of total area 
and wirelength) is evaluated. The total area is given as 
Width*(H-Gap), where all these variables are shown in 
Figs. 6a and 6b. The ceiling and floor contours are used 
to speed up the insertion (and peeling) process. Following 
the cost function evaluation, the next insertion position is 
evaluated. Fig. 6b shows the virtual floor placement of 
perturbed component a at insertion position 2, after com-
ponent b was peeled from the ceiling and placed on the 
floor. In general all components prior to the insertion 
position must be peeled from the ceiling and placed on 
the floor. The procedure iterates until all insertion posi-
tions for a are evaluated. The algorithm given in [2] de-
termines the best insertion position without constructing a 
whole new placement for each new O-tree.  
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Fig. 6. Two subsequent steps in the enhanced pertur-
bation O-tree algorithm. Component a inserted at the: 
(a) first insertion position, (b) second insertion posi-
tion after b was peeled from the ceiling. 
 

Detailed_placement_algorithm() 
1. Generate the initial O-tree (OT) from the 
global placement as described in section 
3.1 /* initially all the components are 
on the floor */  

2. Set the initial cost as 
Best_cost = ?  * Wire_length + (1-? ) * H 

  /* The wire length is calculated as the 
half parameter bounding box. ?  is  de-
termined experimentally */ 

3. If the placement width exceeds W, try to 
meet the constraint by changing the num-
ber of folds for devices exceeding W 

 If W is still exceeded  
   Best_cost = infinite  

 If Best_cost is infinite do steps 4-
21 in two passes 

     else do steps 4-21 only in one pass  
4. For each component K from OT do steps 5-21 
5. Delete K from OT and create resulting OT1(T1, ?1) 
6. Slide remaining components from floor to ceiling 

For each component C slid to the 
ceiling do Adjustment(C) 

7. /* floor_contour variable will be used to point to the 
current insertion position for K and now it points to 
the root, which is the lower left tile corner  */ 
floor_contour->xcur = 0 

8. Insert K at the first insertion position (floor_contour-
>xcur) and evaluate the new cost function as done 
in step 19; evaluate the cost function for a rotation 
of K and pick better result  /* in this case all other 
components are on the ceiling, so we don’t have to 
perform the steps below as for all other insertion 
pos itions */  

9. index = 1 
10. For T1[j] , j=1,...,2n do steps 11-20 
11. If T1[j] is 0  
12. Peel one component L from OT1 ->?1[index] 

down to the floor and do Adjustment(L) 
/*proceeding with the placement on the floor, 
we create a new insertion position for K */ 

13. Increment index 
14. Update the contour structure of the ceiling 

and floor, and set:  
floor_contour->xprev = floor_contour->xcur 

 floor_contour->xcur=floor_contour->xprev + WL 

 /* WL represents the width of L */ 
15. If any component under contours 

has non-rectangular shape do 
     Extract_contour() 

16. else  
17. /* Update floor contour to point to previous */ 

floor_contour->xcur = floor_contour->xprev 
18. Virtually place K at the current insertion position 

(floor_contour->xcur) and do Adjustment(K)  
19. Evaluate this insertion pos ition: 

  Cost = ?  * Wire_length + (1-? ) * (Hceiling-Gap) 
 If (Cost < Best_cost and W is not exceeded)  

 Best_cost = Cost 
Best_insert_position = index+1 

20. Rotate K, and repeat steps 14, 15, 18 and 19. /* 
swap WL with HL, the height of L */ 

21. Place the deleted component K at the best insertion 
position and construct OTnew 

  OT = best (OT, OTnew)  

Subroutine Adjustment(K) 
1. Vertical_component_adjustment(K) 
2. Horizontal_component_adjustment(K) 
3. Place K on a reflection line, if possi-

ble. 

Fig. 7. Detailed_placement_algorithm 

 

 After evaluating all possible insertion positions for a 
component, the lowest cost result is chosen to create the 
new initial O-tree. From this new O-tree, the next com-



 

ponent is deleted and perturbed. The algorithm iterates 
until all components have been perturbed.  

3.3. Detailed Placement Algorithm  

 From the global placement result we have the esti-
mated height H. If the global placement result exceeds W, 
the goal of our detailed placement algorithm is to place 
all components within W, along with the possibility to 
improve H.  
 Our detailed placement algorithm can run in one or two 
passes. In the first pass it tries to find an acceptable O-
tree where the tile width constraint is met, while in the 
second pass only the height may be improved. If the ini-
tial placement doesn’t exceed W, the algorithm will only 
try to reduce H in one pass. In the first pass, components 
that are out of the tile width will be placed inside and the 
first O-tree where all the components are within the given 
W will be saved as the best. At that  point the initial O-tree 
will be formed for the second pass and the emphasis will 
be on the minimization of the height and wire length. 
 In order to mimic manual design and save area, poly or 
diffusion contacts may straddle the reflection line as seen 
in Fig. 2. If a device position is not in the vicinity of the 
reflection lines, this kind of area savings is not possible. 
In the detailed placement algorithm (Fig. 7), steps 6, 12 
and 18 contain the test for possible reflection line place-
ment. 
 The outline of the detailed placement algorithm  is given 
in Fig. 7, where the modifications are written in cou-
rier font.  
 The main difference between the enhanced perturba-
tion O-tree algorithm given in [2] and our modified ver-
sion is in the ability to handle the wide range of con-
straints that are characteristic for datapath tile layout 
(fixed tile width, placement on the reflection line, and the 
ability to handle non-rectangular shapes). In the follow-
ing sub-sections the detailed implementation of the sub-
routines (Vertical and horizontal component adjustment 
and contour extraction) that deal with non-rectangular 
device shapes will be given. 

3.3.1. Extracting the contour for non-rectangular 
shapes. The O-tree algorithm in [1,2] dealt only with 
rectangular blocks, but in our case components (pre-
designed gates or transistor chains) can have non-
rectangular shapes. Fig. 8a shows one possible situation 
where the contour on the ceiling was extracted such that 
the non-rectangular shape of a pre-designed gate was 
ignored. In this example transistor T1 is the perturbed 
component and X0 is the current insertion position. In this 
case the new calculated gap is smaller than it can be and 
this potentially good insertion position has higher than 
necessary cost.  
 To get the contour segments along the component’s 
edges and to get the correct new gap for the cost function, 

the following new subroutine was developed and applied 
in step 12 of the Detailed_placement_algorithm .  

Extract_contour() 
1. For each component (on either the floor or ceiling) 

whose x-span overlaps the consideration range 
(X0,X0+Wcomponent) where X0 is the current insertion posi-
tion of the perturbed component and Wcomponent is the 
width of the perturbed component (Fig. 8a) do steps 2-
5: 

2. Add the component’s vertical edges to the array Av and 
its horizontal edges to array Ah ; Sort Av 

3. For j = 1 to num_edges -1 in array Av  do steps 4-5 
4. Within the segment bounded by the X coordinates of 

vertical edges j and j+1 (XAv[j], XAv[j+1]) (Fig. 8b) do 
step 5 

5. Case 1: For ceiling contour extraction, find the 
smallest Y coordinate within array Ah and record 
it   
Case 2: For floor contour extraction, find the big-
gest Y coordinate within array Ah and record it   
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Fig. 8. Extracting the ceiling contour where a compo-
nent has a non-rectangular shape. 

 The range (X0,X0+Wcomponent ) is marked in Figs. 8a and 
8b for perturbed component T1 where component G1 is 
on the ceiling within this range. In Fig. 8b notice that 
there are 4 vertical edges (dashed lines) of the pre-
designed gate G1 that create 3 segments, drawn with dif-
ferent shades. The segments will be examined in sorted 
order. Within each segment bounded by the X coordinates 
of vertical edges, the horizontal edge with the smallest y 
coordinate was recorded, and it  is drawn as a bold line in 
Fig. 8b. At the end of this subroutine, the list of recorded 
horizontal edges will represent the ceiling (floor) contour 
along the component’s edges. The new gap found in Fig. 
8b is bigger than the gap found in Fig. 8a which results in 
a lower value of the cost function. This promotes this 
insertion position as a possible good placement choice for 
T1.  



 

3.3.2. Handling non-rectangular shapes. Fig. 9 shows 
one example with a pre-designed gate a and a transistor 
chain c placed above each other and what would happen 
if we applied the O-tree algorithm for detailed placement 
without any modifications. 
 The idea from previous approaches for the sequence 
pair and BSG data structures [5,10] on how to handle 
non-rectangular shapes was to break the component into 
rectangular pieces, place them separately and later make 
adjustments to recover the original shape. This method 
would increase n (the number of components to perturb) 
and the overall running time of the algorithm. Plus, re -
covering the original shape can significantly perturb the 
placement.   
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Fig. 9. O-tree and its corresponding placement apply-
ing the algorithm from [2], which handles only rectan-
gular shapes and doesn’t consider design rules. 

 In this section we will demonstrate that it is possible to 
handle non-rectangular shapes within the O-tree algo-
rithm without breaking the component into rectangular 
pieces. Furthermore, we will show that our proposed 
method doesn’t disturb the existing placement (it doesn’t 
need any post placement adjustments). 
 The goal is to place the components as close as possi-
ble to each other (i.e., compact them), without violating 
design rules. Instead of having the placement shown in 
Fig. 9, we would like to have the placement shown in Fig. 
10c.  Our compaction routines will be applied whenever 
we are placing a non-rectangular component or if any 
surrounding component of the current placeable comp o-
nent has a non-rectangular shape.  
 A conventional constraint-graph compaction approach 
could be employed. However, in our problem, only a 
single new component is introduced (i.e., is initially un-
compacted) at each step and there will be very many such 
steps. While rebuilding the various constraint graphs 
many, many times is technically possible, it would be 
overly complex and quite expensive in terms of comp uta-
tion time. We therefore developed a new problem-
specific approach, especially for the case when only one 
additional new component must be compacted. 
  For any non-rectangular component, at the moment of 
placement (compaction), we will extract edges into verti-
cal and horizontal sets. In the vertical adjustment direc-
tion, vertical edges will be used for probing in order to 
get the right spacing. In Fig. 10a or Fig. 10b, we extend 
each vertical edge until it hits the closest horizontal edge. 

This intersection and the starting point from vertical edge 
will give us the distance, which will be recorded. The 
smallest distance found, reduced by the design rule dis-
tance, represents how close we can place the two adjacent 
components with non-rectangular shapes. Using these 
ideas, we developed the subroutines: Vertical component 
adjustment (and Horizontal component adjustment).  
 Fig. 10 shows the application of procedure Verti-
cal_component_adjus tment to the example shown in Fig. 
9. In Fig. 10a the procedure found how much we could 
slide pre-designed gate a towards the transistor chain c in 
the vertical direction. Fig. 10b shows the application of 
the same procedure between single transistor b and tran-
sistor chain c. The final placement shown in Fig. 10c 
shows the area savings achieved by applying this proce-
dure. This subroutine for the vertical direction can be 
summarized as follows: 

Vertical_component_adjustment(C) 
1. Initially a current component is placed as if it had rec-

tangular shape, including the design rule spacing 
2. If the current component C (with width Wc and height 

Hc) which is going to be placed at position X0 is not a 
rectangle or if any of the components covered under 
the contour in the range R(X0, X0 + Wc) have a non-
rectangular shape do steps 3-8 /* if there is more than 
one component in R, consider them one at the time in 
steps 3 – 8 */  

3. Extract in the set S1 vertical edges of C and hori-
zontal edges in set S2 of the component covered in 
R  

4. For each extracted edge from S1 with coordinates  
 ((XS1 ,Y1S1 ), (XS1 ,Y2S1)), do steps 5-7 
5. From S2 find the edges with coordinates 

((X1S2 ,YS2), (X2S2 ,YS2)) where X1S2  ?   XS1  ?  
X2S2  

6. From this set of edges within S2, pick the one 
with the largest YS2 (the smallest YS2 if the 
procedure is performed on the ceiling) 

7. In a set D memorize the difference: 
  ?  = |Y2S1 - YS2|    

8. Repeat steps 4-7 where we extract horizontal 
edges of C in S2 and extract vertical edges of the 
component within R in S1   

9. From set D choose minimum ?  and reduce it by a 
legal design rule distance; this is the amount that C 
can be moved down in the vertical direction for floor 
placement (or can be slid up for ceiling placement) 

 
 The vertical and horizontal bold edges shown in Fig. 
10a were recorded in two different sets. In Fig. 10a, start-
ing from the left side, all vertical bold edges are within 
the range R. While examining vertical edges 1 and 2, 
steps 5 and 6 of the subroutine will choose horizontal 
edge 4 in order to determine ? . For vertical edge 3, steps 
5 and 6 will find horizontal edge 5 in order to determine 
the new ? , which is larger than the one previously found. 
Thus, step 9 of the subroutine will choose the ?  found by 



 

examining edges 1, 2 and 4, which determines the spac-
ing between these two devices. (The probes generated in 
step 8 from the component in R to component C are not 
shown in either Figs. 10a or 10b.) 

In Fig. 10b only one vertical bold edge (1) plays a sig-
nificant role in determining the spacing in step 9. While  
examining edge 2, step 5 of the subroutine won’t find any 
horizontal edges and therefore this edge is out of further 
consideration. The final placement shown in Fig. 10c has 
a reduced overall height compared to the placement 
shown in Fig. 9. 
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Fig. 10. Application of the vertical component adjust-
ment subroutine between: (a) a pre-designed gate and 
a transistor chain, and (b) a single transistor and a 
transistor chain. The final placement is shown in (c). 
 

In general, it is necessary to probe both from C’s verti-
cal edges to the component in R’s horizontal edges, and 
vice versa. For example, in Fig. 11a vertical probing from 
edges 1, 2 and 3 will miss horizontal edges 4, 5 and 6. 
However, as shown in Fig. 11b, vertical edges 4 and 6 
will be able to determine the right spacing with horizontal 
edge 2. 
 For the horizontal direction, the idea is the same, only 
the method of edge extraction is the opposite, i.e. the 
roles of x and y are reversed. This subroutine is applied if 
a perturbed component or a component to the left of the 
insertion position has a non-rectangular shape.  
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 Fig. 11. Example that shows how to extract the 
edges. 

 As it can be noticed in this subroutine, there is no need 
to break the component into smaller rectangular pieces. 
In our approach, all shapes are considered at once, with-
out any need for later adjustments.  

3.3.3. Detailed Placement Summary. In this section we 
proposed a detailed placement algorithm for transistor 
and mixed transistor/gate level netlists, part of a complete 
automatic layout flow for datapath tiles. The algorithm 
handles rectilinear shapes using our modified O-tree al-
gorithm. Also, this algorithm allows us to place comp o-
nents on reflection lines as well as obeying design rules. 
Furthermore this algorithm produces a detailed placement 
within a given tile width, while minimizing the height.  
 In our detailed placement algorithm, a constant amount 
of work proportional to the number of edges is needed 
whenever a device with non-rectangular shape is placed 
either on the floor or towards the ceiling. This constant 
amount of work doesn’t change the upper bound of the 
whole algorithm. The modifications in creating the initial 
O-tree in step 1 of the algorithm don’t increase the upper 
bound either. All modifications add a constant amount of 
work to the worst case, so that the whole detailed place-
ment algorithm still runs in O (n2), where n is the number 
of components.   

4. Results 

 Our physical design flow for datapath tile layout has 
been applied to Compaq Computer Corp. benchmark 
circuits. An experienced Compaq designer did the manual 
layouts for all of our benchmark circuits. Routing was 
performed in four metal layers. To automatically route all 
our placement results, we used the detailed router pro-
vided by InternetCAD.com. Since our global placement 
is based on a stochastic optimization algorithm, it is 
likely that it will achieve a different result every time it is 
run. Our results summarized in Table 1 use the smallest 
height obtained in 100 diffe rent trials.  
 C1 has a mixed transistor/gate level netlist, and con-
tains pre-designed gates and transistor chains with vari-
ous rectilinear shapes. Each run lasted less than one min-
ute on a DEC AlphaStation. The automatic routing was 
done within the automatically produced placement area. 
The manual layout is only 8% better than our automati-
cally generated result.  



 

 C2 is also an example with a mixed transistor/gate net-
list. This example has considerably more placeable com-
ponents than C1. The run time for this example was 8 
minutes. The overall layout is 17% worse than skilled 
manual design. 
 For benchmark circuit C3, the overall height was the 
same as the reported manual design. Meanwhile, for cir-
cuit C4, the height of the layout was only 3.8% worse 
than manual. C3 and C4 are very similar in size and their 
run times are similar - around 5minutes. For the four 
benchmark circuits, the fully automatic flow generated 
tile layouts that were within 7% of the skilled manual 
layouts, on average. 
 

Table 1. Experimental Results 
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 C1 10 4 15 108 175 190 +8 
C2 70 4 43 126.5 191.5 225 +17 
C3 30 0 25 108 85 85 0 
C4 32 0 32 108 80 83 +3.8 

 
 
5. Conclusion 

In this paper we have presented the very first automatic 
design flow for datapath tile layout. Our new approach 
uses a simulated annealing based global placer and an 
extensively modified O-tree algorithm as the detailed 
placer. All of our benchmark circuits were automatically 
routed, in contrast to previous work where routing was 
done manually. Our fully automatic approach provides 
results that are competitive with those obtained manually 
by a skilled designer. 
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