
On-the-Fly Layout Generation for PTL Macrocells

Luca Macchiarulo z Luca Benini � Enrico Macii z

� Universit�a di Bologna

Bologna, ITALY 40136

z Politecnico di Torino

Torino, ITALY 10129

Abstract

Pass transistor logic (PTL) has been recently proposed as

an alternative to standard MOS for aggressive circuit de-
sign. Even though PTL has been successful in a few hand-

crafted designs, its acceptance into mainstream digital de-

sign critically depends on the availability of tools for logic
and physical synthesis and optimization. The automatic

synthesis of pass transistor circuits starting from BDDs has

been intensively studied in the past with promising results,
but back-end tools for PTL cell generation are still miss-

ing. We describe an automatic layout generator that has

been designed for seamless integration in a library-free PTL
design
ow. The generator exploits the distinctive charac-

teristics of pass transistor networks produced by synthesis

to achieve quality of results comparable with state-of-the
art commercial cell generation tools in a fraction of the

execution time.

1 Introduction

Pass-transistor logic (PTL) has been proposed as a viable

alternative to standard fully-complementary MOS (FC-

MOS) logic for aggressive deep sub-micron design [1, 2].

In the last few years, several pass transistor implementa-

tions of digital functional units have been presented in the

literature, showing performance, area and power advan-

tages over FCMOS [2]. Pass-transistor sub-circuits are rou-

tinely used in high-performance arithmetic units [1]. On

the other hand, usage of PTL is still con�ned to hand-

crafted solutions in highly constrained designs.

PTL has disadvantages with respect to standard FCMOS,

as detailed in [3]. The robustness of FCMOS is still unri-

valed, and its scalability is well-known. In addition, a key

feature that makes FCMOS preferable to PTL is the avail-

ability of a well-tuned design methodology and support
tools for characterization, simulation and optimization [3].

For this reason, the last few years have witnessed a
urry of

research activity on tools for supporting PTL design [4]. A
good synthesis tool for PTL would undoubtedly facilitate

its acceptance outside the circle of transistor-level design-

ers. Thus, most research on PTL tools has focused on logic
synthesis. Approaches to PTL synthesis can be coarsely

grouped into two classes, namely library-based [5, 6] and

library-free [7, 8, 9].
Library-based PTL synthesis closely follows the traditional

two-step paradigm that has gained wide acceptance in the

synthesis of FCMOS circuits [10]: A technology indepen-
dent logic synthesis phase is followed by library binding.

The intermediate form used for technology-independent

optimization is based on binary decision diagrams (BDDs)

and their many variants [4], as they can be easily mapped

onto two-way MUX networks that, in their turn, can be
e�ciently implemented in PTL. Probably, the most widely

known library-based synthesis approach is LEAP, devel-

oped by Yano et al. [5].
Library-free PTL synthesis is still based on a two-step

paradigm, but library binding is replaced by on-the-
y

macrocell layout generation. In other words, a coarsely
clustered BDD network is fed to a cell generator that di-

rectly produces an optimized layout for all the clusters.

This approach has been developed to address the key de-
sign closure challenge arising in deep submicron technol-

ogy because of the increased relative importance of wiring-

related parasitics with respect to device-related parasitics.
Wiring for a coarse-granularity hierarchical layout can be

controlled and optimized more easily than that for a �ne-

granularity layout of tiny elementary cells. On the other
hand, a fast and high quality on-the-
y macrocell genera-

tor is critical for the success of library-free PTL synthesis.

Obviously, the back-end requirements for the two PTL
synthesis paradigms are quite dissimilar. Library-based

synthesis needs standard placement and routing tools for

the �ne-granularity mapped netlist and, optionally, a high-
quality cell compactor for the library (which can also be

designed by hand). An example of such a small-scale PTL

cell compactor is ALPS [11], developed by Sasaki et al. to

support LEAP. In contrast, the critical back-end require-

ment for the library-free approach is a fast, predictable,

and good quality PTL macrocell layout generator. To the

best of our knowledge, no such tool has been developed yet.

Hence, the viability of library-free PTL synthesis remains

to be proven.

This paper addresses the missing link in the library-free

PTL synthesis
ow. We have developed a PTL macrocell

generator that takes a BDD as input and produces, as out-
put, a complete and legal layout. The tool is tailored to

on-the-
y generation of PTL structures; thus, it produces

results that are competitive with state-of-the art general-
purpose commercial cell generators and compactors in a

fraction of the time. From the physical design stand-point,

our tool adopts a 2-dimensional layout style [12], in which
the height of the macrocell is optimized jointly with its in-

ternal micro-placement, while width optimization is based

on a modi�ed left-edge algorithm. Speed and quality of the
results stem from the PTL-tailored
oorplan of the macro-

cell, providing a good starting point to optimization.

The remainder of this article is organized as follows. Sec-

tion 2 provides an overview of the library-free PTL synthe-

sis
ow in which the on-the-
y macrocell generator of this

paper must be plugged-in in order to complete the path
to layout. Section 3 constitutes the core of our contribu-

tion, since it provides details on both the implementation

style we have chosen for the PTL macrocells and on the
tool that automatically performs layout generation for the

macrocells. Section 4 collects the results of an extensive

experimentation we have performed on the complete suite
of the Iscas'85 combinational benchmarks [13]. Finally,

Section 5 concludes the paper.

2 Design Flow for PTL Circuits

As mentioned in the introduction, the focus of this paper

is on the implementation of part of the back-end (i.e., the

on-the-
y PTL macrocell generator) of a fully-automated,
library-free PTL synthesis
ow. Nevertheless, in order to

provide the reader with an outline of the complete
ow, in

this section we brie
y summarize the key steps that, start-
ing from a logic-level speci�cation (i.e., a Boolean network)

of the target design, must be taken to create an interme-

diate, library-independent description suitable to be fed
to the macrocell generator. Figure 1 depicts the
ow, in

which we can identify �ve main phases:

� Cell Creation: Due to the technological limits im-

posed by series-connected pass transistors, as well as

the scalability limitations of global BDDs, the orig-
inal network needs to be decomposed into a set of

macrocells of reasonable size. This step concerns the

strategy to be followed for the decomposition of the
network into manageable cells. The output of this

phase consists of a set of decomposition points, each

one with a multiple BDD representation to be used
in the covering phase.

� Cell Appraisal: Each cell is optimized and charac-

terized in terms of area and delay. At this stage,

internal bu�ers are also allocated.

� Covering: The set of BDDs is used to build a cover of

the entire network which is optimal with respect to

some cost function. This is carried out by solving an

implicit binate covering problem which uses a layout-

driven cost function to accurately model the e�ect

of cell area. The output of this phase consists of

a set of BDDs, one for each decomposition point,

that cover the original circuit. Each BDD has now a

simple mapping to a PTL cell, since the technological
constraint about the size and the length of a cell has

been already considered in the creation phase.

� Macrocell generation: The layout for each PTL cell

is generated using the algorithms of Section 3.

� Placement and routing: The logical structure of the

netlist of macrocells, together with the PTL macro-
cells are passed to the place and route tool for the

generation of the �nal circuit layout.

For the experiments described in Section 4, the input to the

PTL macrocell generator (i.e., the covering of the initial

Boolean network, speci�ed as a set of BDDs) is obtained
using the waves PTL synthesis tool [9].

We point out that estimates of the costs for each PTL cell

that are used to drive the covering algorithm are obtained
through models that relate size and shape of the BDD to

area and delay of the cell layout. However, using such

models may lead to inaccurate evaluations of the cost of
some cells, thus causing the generation of a sub-optimal

covering of the Boolean network. This problem may be

overcome by bringing into the synthesis
ow the macrocell
generator; in other words, since macrocell generation is

fast (see the results in Section 4), model evaluation could

be e�ectively replaced by actual data extracted from the
layout of the PTL cells produced by our generator.

Although applicable in principle, the viability of this op-

tion needs to be further investigated (for example, with
respect to its scalability to industrial-size designs). Re-

sults of Section 4 were thus obtained using the models of

[9], properly adapted to our technology and layout rules.

Covering

 Cell
Appraisal

Circuit
Descr.

Netlist
of PTL
 Cells

Circuit
Layout

 Cell
Creation

 Macrocell
Generation

Placement
& Routing

Figure 1: PTL synthesis
ow.

3 On-the-Fly PTL Cell Generator

The PTL synthesis
ow described in Section 2 has proven

to be e�ective in generating compact decompositions, in

terms of a cost function which is supposed to be related

to the real implementation of the cells. However, this re-

lation is meaningful only if two conditions are satis�ed:
(i) The logic function is realized with a technology that

maps almost exactly the computational properties of the

BDDs used in the optimization phase (that is, all nodes in
a BDD are mapped onto multiplexers); (ii) The layout of

the generated cells maintains some properties of the area

function employed. This second condition is particularly
stringent: Even if the schematic design of the cells (i.e.,

connectivity of transistors) resembles the structure of the

BDD, the physical design, as it is performed by traditional

synthesis tools (e.g., LAS by Cadence [15]), may jeopardize

the connection with the cost function. In fact, in this case,

the cost of the cell (in terms of area) is only loosely con-
nected to any logical cost that might be extracted from the

mapped BDDs. The consequence is that the optimization

process tries to minimize an incorrect function; in addi-
tion, it is impossible to take into account the very special

features of the implementations obtained at the end of the

design
ow. These considerations call for a physical design
phase that properly accounts for all the characteristics of

the data structure, so that a closer cost to the �nal imple-

mentation might be known at a very early stage. In this
contribution, we o�er a promising solution to these prob-

lems by exploiting some of the properties we identi�ed in

the functions generated by waves.

3.1 PTL Cell Features

Experiments run on standard benchmarks (see [9] for the

details) provided with a wealth of observations on the typ-

ical results produced by waves (and, likely, by any BDD-

minimizing decomposition engine). In particular, although
many of the generated functions were atypical for a library-

based technology mapping phase, as they depended on a

fairly large number of variables (the limit was set to 9), all
of them had an interesting property: The total number of

nodes per level was extremely small. In fact, only 6 out of

all 2439 generated BDDs had more than 2 nodes per level.
Another important parameter associated to a BDD level is

the number of cuts: De�ne them as the number of di�erent

edges that connect a node with index greater than i with
nodes labeled with variables equal to or smaller than i.

Two edges are considered distinct if and only if their sons

are di�erent. From the electrical point of view, the cuts
represent the number of di�erent signals that are needed

from a level above to compute the value of the function.

It is true that their number is relatively small on the aver-
age, less than 4 for most cases. This simpli�es the routing

task and has other positive consequences (i.e., bu�er re-

duction). These properties (that are likely to be shared by
all decompositions obtained through a similar process) can

be conveniently exploited in the physical design phase of

the macrocells.

3.2 General Placement and Microcells

The implementation style we used for the various functions
is based on the previous observations. Let us consider �rst

the netlist of the circuits: We chose an implementation that

uses minimal multiplexers, realized with pairs of NMOS
transistors (as in LEAP [5]). The complemented signal is

generated by a single inverter feeding all the MUXes driven

by the same variable; as the number of MUXes per level
is relatively small, it is possible to use a minimum size in-

verter without loosing much in performance. On the other

hand, it is absolutely impossible to avoid the introduction

of re-powering inverters to break long paths of pass tran-

sistors; therefore, we added a group of inverters every three

levels of nodes (the number of 3 is often considered as a
good compromise between loss in area and gain in perfor-

mance). An interesting observation is that if we uniformly

introduce inverters every three BDD levels (bu�ering all
the signals passing through) the logic functionality of the

realized cell will be preserved, provided that all the leaves

are re-assigned accordingly, as Figure 2c shows. Due to the

limited number of cuts experimentally observed, the loss
in area due to bu�er insertion is relatively small, propor-

tional to the number of cuts in the levels where the bu�ers

are placed. An output bu�er (not shown in Figures 2 and
3) is then added after the topmost MUX.

1 0 0 1

b

d

c c

d

a a a

b b

c c
c

d
d

d

Vdd Gnd Vdd Gnd

Vdd Gnd Vdd Gnd

a

b

c

d

a

Gnd Vdd Gnd Vdd

b

c

d

a) b)

c) d)

Figure 2: Mapping of a BDD onto PTL logic.

The starting point for layout generation is a netlist con-

taining three elementary microcells: (i) A MUX, consist-

ing of a pair of NMOS transistors (node cell); (ii) An in-

put inverter (complement generator): (iii) A re-powering

inverter (bu�er). The problem becomes to decide how to

place these microcells and route them according to their

connectivity in such a way that area occupation gets re-

duced and (possibly) fast area estimation is enabled. This

task is similar to that of traditional cell generators, with

the added constraint (which might turn out to be an ad-
vantage) of working on a speci�c implementation rather

than a generic arrangement of transistors.

The key idea is to take into account the \natural" ar-
rangement given by the BDD structure when setting up

the
oorplanning of the macrocell. All BDD nodes corre-
sponding to a given variable are placed at the same y coor-

dinate and fed by the same two signals, one of them being

the external input, the other the locally generated comple-
ment. Thus, the BDD layout grows \taller" as the number

of input variables increases. The BDD grows \wider" (i.e.,

it grows in the x dimension) as the number of nodes de-
pendent on a variable increases. More precisely, the width

of the layout is set by the maximum number of nodes at

any level of the BDD. Experimental data have shown that,

for functions resulting from the optimization process, the

width (i.e., the number of nodes per level) of the BDDs

is small and relatively uniform. Hence, the
oorplanning

style described above is very e�ective on typical BDDs gen-

erated by the synthesizer.

We have chosen to constrain the maximum number of BDD

nodes per physical level, and to fold all levels with a large

number of nodes, if any, into extra levels in the vertical

Figure 3: Layout generated for the example of Figure 2.

direction. Hence, one logical level in the BDDs (i.e., all

the nodes controlled by the same variable) always results
in one or more physical levels (i.e., horizontal slices) of

the layout. The resulting structures are \taller", but their

width is tightly controlled. With this strategy, we obtain
a simple rectangular layout, with uniform width (the only

variability is due to routing, as discussed in the next sec-

tions). An example of an actual layout is given in Figure 3.

The big advantage of this placement strategy is that the

�nal dimensions of the cells are determined by factors, such

as the support variable number, the node count and the

number of cuts per level, that are fairly easy to compute

from the information of the mapped BDD.

The macrocells created by the generator must be placed
and connected in standard-cell style. From the preceding

discussion, it turns out to be much easier to control the

horizontal dimension variability (caused solely by the dif-
ferent dimensions of the vertical channel) rather than the

cell height (depending on the number of support variables,

bu�er levels, horizontal routing and, in general, widely dif-
ferent from cell to cell). However, in a layout with a stan-

dard cell style, the variability in the y direction is paid

in terms of wasted area, because the height of a row is

determined by the maximum height of any macrocell in

the row. This macro layout style emphasizes the need for

keeping macrocell width under strict control. Therefore,

the cells are rotated by 90 degrees, and placed in rows (see

Figure 4).

3.3 Placement Optimization and Vertical

Routing

Based on the statistics summarized in Section 3.1, two

nodes per level are chosen. A larger number, in fact, would
result in a big waste of silicon area, as the great majority

of BDD levels had one or two nodes, while one single node

would create more problems in the routing phase. The

Input var 1

Vertical channel Area

Horizontal channel Area

Microcell Area

Input var 4

90 R
otat

e

Global layout

Figure 4: Layout abstract of a sample cell and the proposed

placement and routing style.

general
oorplan of the cells is very regular and uniform:
Each level has one or two nodes routed through a vertical

channel connecting di�erent levels and various horizontal

channels connecting the levels among each other and to the

vertical channel. Power supply and ground tracks run par-

allel to the vertical channel, while inputs are fed from the

sides of the structure, parallel to the horizontal channels.

The placement of the nodes can be divided into two sepa-

rate phases: Global placement and detailed placement. For

global placement, we intend the choice of the relative or-

dering of the variables inside the BDD, that �xes the rel-

ative positions of nodes driven by di�erent input signals.

The variable order is automatically determined by the re-
ordering tool available inside the BDD package. Detailed

placement consists of the choice of the physical level and

the position inside the level that a particular node has to
occupy; for example, if a level has four nodes (called 1,2 3

and 4), a choice has to be taken whether to place nodes 1

and 2 in the �rst physical level assigned to that variable or
to the second, as shown in Figure 5.

c

x y z

c

Vdd Gnd

Vdd

c c

c c

Gnd Vdd

c
1

3 4

2

1 0 0 1

c c
3 4

a)

1 0 0 1

c c

c c
1

1 2

3 4

c

Vdd

c

c

Gnd Vdd

c

Vdd Gnd

c

x y z

x zy

21

3 4

c c

1 z

1 2

x y

Figure 5: E�ects of detailed placement on vert. routing.

The choice has no consequence on the area occupied by the

microcells, but it can in
uence the quality of the routing.

For example, in the case of two signals coming from previ-
ous levels that need to be fed to the second physical level,

more space in the vertical channel is required. The posi-

tion (left or right) in the physical level a�ects the quality
of horizontal routing.

As we want to build cells to be used with a standard-cell

style (after a 90 degree rotation, as explained in Section
3.2), we would like to obtain cells that are as uniform as

possible in their x dimension. Therefore, we gave prece-

dence to the minimization of the vertical channel. In or-
der to do so, for each variable, each possible assignment is

tried and the one minimizing the number of vertical tracks

is used. The total number of vertical tracks is a global
property of the cell, as it traverses the entire length of the

structure. When the physical level is decided, the position

inside the level (left or right) is assigned through a heuris-
tics that tries to simplify the horizontal routing. When all

variables are considered in this phase, we can e�ectively

route the vertical channel and compact it.

3.4 Horizontal Routing

After the vertical routing is �xed, it is still necessary to
bring all the signals to the inputs of the multiplexers, and

to connect their outputs either to the nodes of the following

level or to the vertical tracks. Conversely from the vertical
case, horizontal routing is local to a pair of levels, even if its

quality is also dependent on how the vertical tracks have

been assigned. We solved the problem with a constrained
version of the left edge routing algorithm [14], that takes

into account some limits on track assignment that arise

from the interaction between horizontal and vertical rout-
ing to prevent wrong shorts. This phase completes the

physical design of the cell.

In conclusion, the area of the �nal cell can be easily deter-
mined. The height (e.g., the width of the layout of Figure

3) is a constant (width of two nodes plus one complement

generator) plus the width of the vertical routing channel.
The width is equal to the sum of the heights of all the

levels, the bu�ers and the sum of the horizontal routing

tracks.
We observe that, except for the routing information, all

other contributions to the area are known in advance by

considering the BDD structure. Since a simple upper limit
to the routing space can be determined before e�ectively

doing the routing, a very fast way of estimating the size of

a cell is available for usage as a replacement of the models
developed in [9].

4 Experimental Results

To assess the feasibility of the approach described above,

we applied it to the generation of a number of macrocells,

as obtained by running waves on a set of standard bench-
marks. Our goal was that of quantifying the e�ciency

of macrocell layout generation alone; therefore, we set up

a comparison methodology that was able to characterize
our generator in terms of two design variables, namely cell

area and generation time. The rationale behind this is that

a useful tool will need to be competitive with traditional

ows in terms of areas and, at the same time, extremely

fast. We therefore imported two layouts per cell: One with

our tool, the other with the commercial automatic syn-

thesizer LAS, a state-of-the-art generic automatic layout
generator [15]. The two cells had to be generated starting

exactly from the same netlists, since we wanted to analyze

the performance of the layout tool alone. The BDDs repre-
senting the functions obtained through decomposition are

converted into an electrical netlist of PMOS and NMOS

transistors. These netlists are imported into the Cadence
environment, and LAS is run on them with its default op-

tions to obtain a legal layout in a 0.25 micron technology.

On the other hand, the same netlist is mapped onto a lay-
out by our tool, then imported into Cadence to verify DRC

compliancy w.r.t. the same technology. Both our cells and

LASs' have the same VDD and GND track height, laid out
in metal 1, while inputs and outputs are routed in metal 2

tracks and accessed on both upper and lower sides. Gen-

eration time of the cells (stripped of the time necessary
to read/write the I/O �les) is calculated and compared to

the Cadence generation time (only the cell generation and

compaction times were used, stripped of the I/O and data-
base creation times). The comparison (see Table 1) shows

that our tool is at least 1 order of magnitude faster than

LAS, the reason being that it has to experiment on a small
number of cases to obtain a good placement and routing,

while LAS uses a more complicated algorithm working on
the entire connectivity graph of the netlist. Time compar-

isons are even more favorable when we consider that LAS

compaction phase is more expensive than layout genera-
tion, giving a di�erence of up to 400 times in CPU time

(Table 1). It is important to note, however, that the gen-

erated cells are relatively small, and the absolute times
needed for their production is negligible if considered at

the end of a design
ow. The time is no longer negligible

if the generation (or estimation) has to be used at an early
stage, within an optimization loop.

Also from the point of view of area our tool produces a

much more compact realization w.r.t. the uncompacted
view. Clearly, this comparison is unfair to LAS as the un-

compacted view is typically used as an intermediate step

of a
ow that leads to the compacted layout. The com-

paction phase, which is relevant in terms of computation

time, manages in greatly reducing the cells' dimensions,

giving results that match closely those obtained with our

tool. Even after compaction, however, the overall dimen-

sion of the cells is bigger than in our case, with percentage

di�erences ranging from 0 to 15 (see Table 2).
The improvement becomes even more dramatic if we con-

sider that the generated cells are intended to be placed and

routed with a standard cell style, so that cell height vari-
ation is material in determining an area increase (all cells

have to be matched in terms of their widths, and therefore

the maximum x dimension must be considered). In this
case (see Table 3), our cells are better with a percentage

going from 13 to 49.

These results led us to conclude that our tool provides a
good solution to the problem of fast generation of cells that

are needed for a PTL synthesis
ow as the one suggested

in [9]. Aim of the comparison was to prove the speed and
e�ectiveness of our generator in creating PTL macrocells.

Circuit CPU Time (seconds)

Unc. C. Our

C432 6.22 29.52 0.076

C499 4.32 44.24 0.1

C880 12.73 63.58 0.22

C1355 4.17 44.27 0.12

C1908 10.93 81.29 0.27

C2670 16.13 104.39 0.29

C3540 37.07 212.38 0.6

C5315 41.19 223.84 0.49

C6288 48.89 329.36 0.75

C7552 45.68 341.48 0.93

Total 227.33 1375.35 3.85

Table 1: Time for cell generation.

Circuit Area(�m2) Impr. (%)

Unc. C. Our

C432 42017 11177 10725 4

C499 69338 17196 15137 11

C880 95214 24200 24312 0

C1355 69338 17196 15137 11

C1908 96545 24254 21114 15

C2670 139417 36539 32797 11

C3540 291644 76347 74002 3

C5315 326456 84974 81602 4

C6288 562067 146554 139932 5

C7552 423265 106093 99785 6

Total 2115301 544530 514633 6

Table 2: Area for cell generation.

Circuit Area (�m2) Impr. (%)

Unc. C. Our

C432 53305 13625 11562 18

C499 74507 19331 15725 23

C880 115134 29464 25990 13

C1355 74507 19331 15725 23

C1908 106303 29442 23845 23

C2670 160555 43740 35928 22

C3540 483738 133113 86324 54

C5315 426322 120527 92451 30

C6288 772055 221124 149235 48

C7552 1075190 276288 129814 113

Total 3341616 905985 586599 54

Table 3: Area (Standard Cell) for cell generations

It is obvious that the tool cannot provide e�cient solutions

to the case of arbitrary cell generation, for which LAS is
certainly best targeted.

5 Conclusions

Although several researchers in the logic and physical syn-

thesis domains have addressed the problem of automati-

cally generating netlists using PTL technology instead of

FCMOS, a complete top-to-bottom
ow is nowadays still

missing. Most of the investigation has been done in the

front-end of the
ow, wherein a decomposition of a given

logic function can be obtained using sophisticated and pow-

erful tools. Also the technology for placement and routing

can be easily found in both the academia and the EDA
market. On the other hand, algorithms and tools that

enable the automatic generation of the layouts for all the

PTL macrocells in which the original design is decomposed
constitute the missing ring of the chain.

In this paper, we have addressed the problem of automat-

ically generating the layout for logic functions represented
as BDDs. The target is using the generator on-the-
y;

therefore, besides the usual capabilities required to any

layout generator (i.e., ability of generating compact macro-
cells), the tool must guarantee short execution times.

We have benchmarked the performance of the PTL macro-

cell generator on a set of standard examples, i.e, the Is-
cas'85 circuits. The results we have obtained are very

promising, since the size of the macrocells created by our

tool are, on average, as compact as those generated using
a commercial layout generator. Layout generation time,

however, is much shorter.

References

[1] V. Oklobdzija, \Di�erential and Pass-Transistor CMOS Logic
for High Performance Systems," Microelectronics Journal,
Vol. 29, No. 10, pp. 679-688, 1998.

[2] T. Kuroda, T. Sakurai, \Low-Power Circuit Design Techniques
for Multimedia CMOS VLSIs," Electronics and Communica-

tions in Japan, Part 3, Vol. 81, No. 9, p. 67-74, 1998.

[3] R. Zimmermann, W. Fichtner,i \Low-Power Logic Styles:
CMOS versus Pass-Transistor Logic," IEEE Journal of Solid-

State Circuits, Vol. 32, No. 7, pp. 1079, 1997.

[4] K. Taki, \A Survey for Pass-Transistor Logic Technologies,"
ASPDAC-98, pp. 223-225, 1998.

[5] K. Yano, Y. Sasaki, K. Rikino, K. Seki, \Top-Down Pass-
Transistor Logic," IEEE Journal of Solid-State Circuits,
Vol. 31, No. 6, pp. 792-803, 1996.

[6] R. Chaudhry, T.-H. Liu, A. Aziz, J. Burns, \Area-Oriented
Synthesis for Pass-Transistor Logic," ICCD-98, pp. 160-167,
1998.

[7] V. Bertacco, S. Minato, P. Verplaetse, L. Benini, G. DeMicheli,
\Decision Diagrams and Pass Transistor Logic Synthesis,"
IWLS-97, Paper 3.1, 1997.

[8] P. Buch, A. Narayan, A. R. Newton, A. L. Sangiovanni-
Vincentelli, \Logic Synthesis for Large Pass Transistor Net-
works," ICCAD-97, pp. 663-670, 1997.

[9] F. Ferrandi, A. Macii, E. Macii, M. Poncino, R. Scarsi, F.
Somenzi, \Symbolic Algorithms for Layout-Oriented Synthesis
of Pass Transistor Logic Circuits", ICCAD-98, pp. 235-241,
1998.

[10] G. De Micheli, Synthesis and Optimization of Digital Cir-

cuits, McGraw Hill, 1994.

[11] Y. Sasaki, K. Rikino, K. Yano, \ALPS: An AutomaticLayouter
for Pass-Transistor Cell Synthesis," ASPDAC-98, pp. 227-232,
1998.

[12] M.A. Riepe, K.A. Sakallah, \Transistor level Micro-Placement
and Routing for Two-Dimensional Digital VLSI Cell Synthe-
sis," ISPD-99, pp. 74-81, 1999.

[13] F. Brglez, H. Fujiwara, \A Neutral Netlist of 10 Combina-
tional Benchmark Circuits and a Target Translator in Fortran,"
ISCAS-85, pp. 785-794, 1985.

[14] M. Sarrafzadeh, C.-K. Wong, An introduction to VLSI phys-

ical design, McGraw Hill, 1996.

[15] S. Chow, H. Chang, J. Lam, Y. Liao, \The Layout Synthesizer:
An Automatic Block Generation System," CICC92, pp. 11.1.1-
11.1.4. 1992.

[16] S. I. Minato, Binary Decision Diagrams and Applications for

VLSI CAD, Kluwer, 1996.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

