
A Graph Based Algorithm for Optimal Buffer Insertion
Under Accurate Delay Models ∗

Youxin Gao D.F. Wong
Avant! Corporation Department of Computer Sciences

46871 Bayside Parkway University of Texas at Austin
Fremont, CA 94538 Austin, TX 78712
Tel: +1-510-413-7170 Tel: +1-512-471-9527
Fax: +1-510-413-8080 Fax: +1-512-471-8885

e-mail: gao@avanticorp.com e-mail wong@cs.utexas.edu

Abstract
Buffer insertion is an efficient technique in interconnect op-

timization. This paper presents a graph based algorithm for
optimal buffer insertion under accurate delay models. In our
algorithm, a signal is accurately represented by a finite ramp
which is characterized by two parameters, shift time and tran-
sition time. Any accurate delay model, such as delay mod-
els based on the transmission line model and SPICE simula-
tions, can be incorporated into our algorithm. The algorithm
determines the optimal number of buffers and their locations
on a wire such that some optimization objective is satisfied.
Two typical examples of such optimization objectives are min-
imizing the 50% threshold delay and minimizing the transi-
tion time. Both can be easily determined in our algorithm.
We show that the buffer insertion problem can be reduced to
a shortest path problem. The algorithm can be easily extended
for simultaneous buffer insertion and wire-sizing, and complex-
ity is still polynomial. The algorithm can also be extended to
deal with problems such as buffer insertion subject to transition
time constraints at any position along the wire.

1. Introduction
As the VLSI technology shrinks down to nanometer range,

interconnect delay becomes the bottleneck in achieving high
performance circuits. Techniques which are aiming at reduc-
ing interconnect delay are necessary and important. These
techniques, including buffer insertion, wire-sizing and simulta-
neous buffer insertion and wire-sizing, have been extensively
studied in recent years. By inserting buffers in a wire, not
only delay can be greatly reduced, but also the output wave-
form can be improved in terms of the reduced transition time.
Under the Elmore delay model and a linear gate model, some
efficient algorithms for simultaneous buffer insertion and wire-
sizing have been proposed in [6, 5]. van Ginneken in [15] pro-
poses a dynamic programming based algorithm for the optimal
buffer insertion. The algorithm has also been extended for si-
multaneous buffer insertion and wire-sizing in [11], and noise
avoidance in [2, 4]. However, it is well known that both the
Elmore delay model and the linear gate model are inaccurate.
Furthermore, both models are not aware of the input wave-
forms, which is becoming increasingly important in today’s
deep sub-micron design. Therefore the optimal solution under
these simple models may be inferior [1]. Only recently, the
authors in [1, 12] extend van Ginneken’s algorithm by using
both accurate interconnect and gate delay models. In calculat-
ing delay for a wire, both use the moment matching technique
based on a lumped circuit approximation. However, in [1],
the signal waveform is not actually taken into account. The
authors assume a fixed input slope in calculating delay for a
buffer. In [12], the signal waveform is considered in buffer in-
sertion. But its pruning process, which is similar to the one
in Ginneken’s algorithm, only allows one waveform to survive
to the next stage. As we already know, a signal waveform is
characterized by two parameters, the shift time and transition

∗This work was partially supported by the National Science
Foundation under grant CCR-9912390, by the Texas Advanced Re-
search Program under Grant No. 003658288, and by grants from
Avant!, Intel and IBM.

time. If two waveforms have different shift times and transi-
tion times, it is hard to tell which one is better than the other
(except for some special cases, e.g., same transition time but
different shift times). Therefore some potential non-inferior
waveforms can be removed by this pruning process. Further-
more, the lumped circuit approximation presented in [1, 12] is
not as accurate as the transmission line model or simulations
based on SPICE especially in high frequency [17].

In this paper, we present a graph based algorithm for opti-
mal buffer insertion under accurate delay models. In our algo-
rithm, a signal is accurately represented by a finite ramp which
is characterized by two parameters, shift time and transition
time. Any accurate delay model, such as delay models based
on the transmission line model and SPICE simulations, can be
incorporated into our algorithm. The algorithm determines
the optimal number of buffers and their locations on a wire
such that some optimization objective is satisfied. Two typ-
ical examples of such optimization objectives are minimizing
the 50% threshold delay and minimizing the transition time.
Both can be easily determined in our algorithm. We show that
the buffer insertion problem can be reduced to a shortest path
problem. The algorithm can be easily extended for simulta-
neous buffer insertion and wire-sizing, and complexity is still
polynomial. The algorithm can also be extended to deal with
problems such as buffer insertion subject to transition time
constraints at any position along the wire.

Comparing with previous approaches on buffer insertion,
our algorithm has the following advantages:

1. Our graph based algorithm is simpler and easier to under-
stand and implement. The optimal solution can be found
through the shortest path algorithm.

2. In our algorithm, a signal is accurately represented by a
finite ramp. Any accurate delay model such as the trans-
mission line model and the model based on SPICE simu-
lations can be used. This makes our algorithm general of
use.

3. The traditional optimization objective in buffer insertion
only aims at reducing the signal delay. Our algorithm can
not only deal with this objective, but also deal with some
other objectives, such as optimal buffer insertion for min-
immum transition time, and/or subject to transition time
constraints at any position. Both are shown as shortest
path problems.

The rest of the paper is organized as follows. Section 2 in-
troduces an analytical delay model used in our algorithm. In
section 3, we show that the optimal buffer insertion is a short-
est path problem. Section 4 presents an efficient algorithm
which combines graph construction with the shortest path al-
gorithm. In section 5, we present some experimental results.

2. Accurate Delay Models
Since a single delay value (e.g., 50% delay) in a general delay

model can not fully characterize the waveform of a signal, we
approximate each signal as a finite ramp which is characterized
by two parameters, shift time S and transition time T (see
Figure 1). Any arbitrary signal is represented by a finite ramp
by connecting two points at 10% and 90% threshold voltages,



respectively. The usual 50% delay is thus S + 1
2T . To simplify

the notation, we use a pair (S, T ) to represent a finite ramp.
In the rest of the paper, we show how to use an analytical
delay model, where wire delay is based on the transmission line
model and buffer delay is characterized by k-factor equations.

V

t0

0.1

0.9

S T

Figure 1. An arbitrary signal is represented by a finite ramp with
shift time S and transition time T .

In buffer insertion, a typical wire-buffer system is shown in
Figure 2(a), where a wire is connecting two buffers. In Figure
2(b), the buffer is represented by a circuit which contains a
input capacitance CB and a voltage source VB . The waveform
calculation is cascaded in terms of a pair (S, T ) through each
wire-buffer system.

(a)

BC V B BC V B

Buffer Model Buffer Model

Input (S, T) Output (S, T)

(b)

Figure 2. (a). A wire connecting two buffers. (b). Signal wave-
form calculation is cascaded in terms of a pair (S, T ).

We use the transmission model to model the interconnect
wire, which is found more accurate than methods based on
lumped circuit approximation [9, 17]. Under the transmission
line model, voltage and current at any position are described
by the telegraph’s equations. In modeling the interconnect
wire, we take both fringing capacitance and inductance into
consideration. Both effects are found important in today’s
design [3, 8]. The waveform calculation for a wire consists of
the following steps (details can be found in [8, 9]):

1. Use transmission line model to derive ABCD parameters
for an interconnect wire by solving telegraph’s equations.

2. Delay model is based on three pole approximation.
3. Obtain analytical forms for calculating the first three

terms b1, b2 and b3 in the transfer function H(s) =
1

1+b1s+b2s2+b3s3+··· , and derive the time domain response
by assuming a finite ramp input.

4. Use analytical delay expressions to calculate delay at any
threshold voltage [9, 10], as well as the output waveform
(Sout, Tout).

To calculate the output waveform (Sout, Tout) for a buffer,
we make use of k-factor equations. Delays at threshold volt-
ages 10% and 90% are expressed in terms of the following

empirical equations [16]:

T10 = (k1 + k2Cw)Tin + k3C2
w + k4Cw + k5 (1)

T90 = (k′1 + k′2Cw)Tin + k′3C
2
w + k′4Cw + k′5 (2)

where Tin is the transition time of an input slope, Cw =
CL/w, CL is the buffer’s load capacitance, and w is the
buffer’s channel width. Therefore the waveform of the volt-
age source VB can be calculated in terms of a pair (S, T ) as:
S = (9T10−T90)/8, T = (T90−T10)/0.8 for a rising ramp; and
S = (9T90 − T10)/8, T = (T10 − T90)/0.8 for a falling ramp.
Without loss of generality, throughout the rest of the paper we
assume that PMOS and NMOS have the same driving capabil-
ity. Therefore it is not necessary to distinguish between rising
transition and falling transition. Since k-factor equations need
a load capacitance, the interconnect wire which is connected
to the buffer has to be approximated by a load capacitance.
Because of resistance shielding, the buffer can not see the total
capacitance of its down stream interconnects [14]. Therefore
using total capacitance is not a good approximation. A widely
used method is to calculate an effective capacitance for the
wire, and connect it as a load to the buffer. The calculation
consists of following steps (details see [9]):

1. For the wire which is connected to the buffer as a load, use
analytical expressions to calculate the input admittance
Y (s).

2. Expand Y (s) into Taylor series and keep first three terms,
i.e., Y (s) = y1s + y2s2 + y3s3.

3. Use the technique in [13] to determine an equivalent CRC
Π-model which matches Y (s).

4. Calculate the effective capacitance Ceff for this CRC
Π−model using technique in [14].

For the delay model we described, we have the following
observation.
Observation 1 Shift time S is additive, i.e., if an input wave-
form (0, Tin) causes an output waveform (Sout, Tout), then an-
other input waveform (Sin, Tin) will cause an output waveform
(Sin + Sout, Tout).

For the buffer macro-model in equations (1-2), this is obvi-
ous, since delays are not depending on input shift time. In the
delay calculation for a wire, suppose the final voltage response
is: Vout(s) = Vin(s)H(s), where Vin(s) is the input voltage
response, and H(s) is the transfer function. Assume the cor-
responding voltage response in the time domain is vout(t). If
the input signal is shifted by S, the new input signal will be
V ′

in(s) = e−sSVin(s). The corresponding output voltage is
then V ′

out(s) = e−sSVin(s)H(s) = e−sSVout(s). The new volt-
age response in the time domain is thus the original voltage
response vout(t) shifted by S.

2
A direct result of this observation is that we can specify

an input waveform as (0, Tin) instead of (Sin, Tin) for either a
buffer or a wire, or a system contains both. This is especially
useful when we use SPICE simulations in our buffer insertion
algorithm. For the wire-buffer system shown in Figure 2(a),
the output waveform is uniquely determined by the wire length
and the input waveform (thus Tin only). Because of buffer in-
sertion, wires are divided into smaller segments, where each
segment is connecting two buffers. Suppose a wire has Lmax
possible buffer locations which are uniformly distributed. For
any possible buffer insertion scheme, the wire length of any
segment can be any from 1 to Lmax + 1 in some units. There-
fore we can build a lookup table for each wire-buffer system
of length from 1 to Lmax + 1. The input to the lookup table
is a set of transition times {(Tin)1, (Tin)2, · · ·}, and the out-
put is a set of pairs {(Sout, Tout)1, (Sout, Tout)2, · · ·}. For any
possible wire connection encountered in buffer insertion, given
an input waveform (0, Tin) we can easily determine its output
waveform by table lookup.



3. Buffer Insertion is a Shortest Path Prob-
lem

The problem we want to solve can be stated as follows:

Given: a wire of length L, width W , driver resistance
RD, and load capacitance CL.
Determine: the optimal number of buffers and their
positions on the wire such that delay through the wire
is minimized.

We claim that this problem can be formulated as a shortest
path problem, therefore the optimal solution can be deter-
mined through the shortest path algorithm. Although we will
use accurate delay models for buffer insertion, to illustrate
this claim, we first start from the simple Elmore delay model.
Later on in this section, we show that the claim is true under
accurate delay models.
3.1. Buffer Insertion under the Elmore De-

lay Model
For a wire shown in Figure 3(a), it has three possible buffer

locations. Buffers can be inserted at these locations depending
on whether it helps to reduce delay. We will determine the
optimal buffer insertion through a graph.

C L

R D

(a)

2 1 1 2.5

2.5

5.5

8

4.5

b c d ea

3.5 3

(b)

C L

R D

(c)

Figure 3. (a). A wire has three buffer locations. (b). Buffer
insertion is a shortest path problem. Weights on edges represent
delays. The highlighted path a-b-c-e is the shortest path. (c).
Buffer insertion scheme corresponds to the shortest path a-b-c-e.

As shown in Figure 3(b), we construct a graph where a is
the source node which represents the driver end, e is the sink
node represents the load end. Nodes b, c, d represent three
possible buffer locations. Starting from left to right, we con-
nect the current node to all the nodes on its right by directed
edges. Each edge corresponds to a possible wire connection
between two buffers (hereafter, for notational convenience, we
treat both driver and load as buffers). For each edge we are
going to connect, its wire length, driver and load are known,
so it is straight forward to calculate its delay using the El-
more delay model. We assign the delay value as a weight to
the edge. For example, the edge connecting node a and c has
weight 3.5, which means the delay for the wire connecting from
the source to the second buffer is 3.5 units. After all edges are

assigned with weights, the graph construction is complete. We
therefore obtain a direct acyclic graph (DAG).

In the DAG, each path from the source node a to the sink
node e represents a buffer insertion scheme. For example, the
highlighted path a-b-c-e represents a buffer insertion scheme
shown in Figure 3(c), where two buffers are inserted into first
two buffer locations, and there is no buffer at the third posi-
tion. By summing up all the edge weights along the path, each
path is thus associated with a path delay, which represents the
delay of the correspondent buffer insertion scheme. Among all
paths, the path a-b-c-e has the shortest delay. Therefore the
buffer insertion scheme represented by the path a-b-c-e is the
optimal solution.
3.2. Buffer Insertion under Accurate Delay

Models
Under accurate delay models, signals can not be fully char-

acterized by a single delay value like in the Elmore delay
model. As we mentioned in section 2., a signal can be ac-
curately represented by a finite ramp (S, T ). Therefore those
edge weights shown in Figure 3(b) are no longer meaningful
under accurate delay models. For the buffer insertion in Fig-
ure 3(a), we will construct a similar but more complicated
graph and show that the buffer insertion problem can still be
described as a shortest path problem.

For notational convenience, we use level 0 to represent the
driver position, and level 4 to represent the load position. Lev-
els 1 to 3 represent three possible buffer locations. Level 5
represents the position where we insert a sink node f. There
will be more than one node at each level. Note that if there is
a wire connecting from a node at level l1 to l2, the wire length
is l2 − l1.

Before we construct the DAG, we assume there are Tmax
number of transition time bins TIME[1..Tmax] which are num-
bered from 1 to Tmax. TIME[1] represents the fastest transi-
tion time, and TIME[Tmax] represents the slowest transition
time. All these transition times are in ascending order. We
then create Tmax nodes at each level from 0 to 4, and these
nodes at the same level are numbered from 1 to Tmax. Each
node with index i at a certain level is associated with an out-
put transition time for a possible connection from a node on
its left to this level. The output transition time of such con-
nection is TIME[i]. Furthermore, TIME[i] also serves as the
input transition time of a connection from this level to a node
on its right.

We construct the graph in the topological order. First we
assume a input transition time Tin for the source. We then
pick a node i as the source node at level 0 such that TIME[i]
is the closest to Tin. Assume there exist connections from this
node to a node at each level on its right. We can calculate
the output waveform (Sout, Tout) for each assumed connection
(not yet connected), since the wire length and input waveform
(0, Tin) are known. The calculation can be done either through
the analytical delay model or through the lookup table based
on SPICE simulations (see section 2.). Then we make the
real connection from the source node to a node at each level.
The node index k at each level is determined such that Tout
matches TIME[k]. The edge weight is assigned with Sout. By
repeating a similar process to nodes level by level, all the nodes
except for those at level 4 can be connected to some nodes
on its right levels. In Figure 4, all nodes which have been
connected through edges are shown as small circles, and those
nodes which are not connected by any edges are shown as dots.
Finally, we connect all small circles at level 4 (nodes e1, e2,
..., e7) to the sink node f. Since each circle really represents a
transition time, we can assign each edge with a weight which
is a half of the transition time. We thus have a DAG shown
in Figure 4.

Note that except for those edges connecting from level 4 to
level 5 where the edge weights are half of the transition times,
all the weights represent shift times. By summing up all the
weights along a path from the source to the sink, we will obtain
a delay value associated with this path, since delay is equal to
the shift time plus a half of the transition time. For exam-
ple, the highlighted path a-b1-c1-e2-f in Figure 4 has delay



2
3

2

2

1

1

2

1

1

1

2

4

3

2

4

5

7

9

10

1

2

Level 0 1 32 4 5

1

2

:

:

:

:

a
b1

c1

c2

e1

e2

e3

e4

d3

d2

d4

d1

e7

e6

e5

2

f

Tmax

Figure 4. Direct acyclic graph for buffer insertion under accurate
delay models. Except for these edges connecting from level 4 to
5 whose weights denote half of transition times, all edge weights
represent shift times.

6, which is the shortest path in the graph. Therefore its cor-
respondent buffer insertion scheme (for illustration purpose,
it is the same as the one shown in Figure 3(c)) is the optimal
solution. Note that there is no guarantee that this buffer inser-
tion scheme happens to have the fastest transition. In fact, a
different path a-b1-c1-d1-e1-f has the fastest transition time.

Comparing two DAGs shown in Figures 3 (denote it as
DAG Elmore) and Figure 4 (denote it as DAG Accurate), re-
spectively, they have the following different features.

1. DAG Accurate has a lot more nodes than DAG Elmore,
but not all of them are connected with other nodes. In
DAG Elmore, all nodes are connected with edges.

2. In DAG Accurate, edge weights represent shift times or
transition times, where as in DAG Elmore, edge weights
represent delays.

Despite these difference, both graphs can be used to determine
the optimal solution through the shortest path algorithm.

Remark 1 So far the optimization objective for buffer inser-
tion is to minimize delay. In fact since our approach has taken
both transition time and shift time into consideration, it is
easy to consider some other optimization objectives. We can
minimize the final transition time (i.e., require a fastest tran-
sition). This can be also shown as a shortest path problem.
We need modify the graph in Figure 4 such that only these
edges from level 4 to level 5 are assigned with weights (half
of the transition times), and all other edges are assigned with
weights 0. The shortest path is thus the path a-b1-c1-d1-e1-
f (see Figure 4). It corresponds to a buffer insertion scheme
where buffers are inserted at all possible locations.

Remark 2 It is also easy to consider a constraint on the final
transition time. For example, for the problem in Figure 3(a),
we require that the final transition time should be less than
14 units. In this case, nodes e6 and e7 at level 4 which have
transition times greater than 14 are not allowed in the solution
path. We assign ∞ as weights for edges connecting from e6
and e7 to f. In this example, the shortest path is still a-b1-c1-
e2-f. In fact, the transition time constraint can be considered
anywhere in the graph.

4. Efficient Algorithm for Buffer Insertion
We can follow the idea in the previous section by construct-

ing the graph in topological order, then using the shortest path
algorithm to find the optimal solution. However, as we have
already seen in Figure 4, lots of nodes are wasted in this way,
since they will not be connected to any other nodes. Those
unconnected nodes will waste lots of memory. In this section,
we present an efficient algorithm, where nodes are created only
when they are needed. At the same time, the shortest path

algorithm is implicitly implemented in our algorithm. After
the graph is constructed, we only have to look at these nodes
at level Lmax + 1 and choose one according to the optimiza-
tion objective we use. The shortest path can then be obtained
by backtracking. A pseudo-code of our algorithm is shown in
Figure 5.

Input: Lmax- # of buffer locations
TIME[1..Tmax]- transition time bins

Output: S[0..Lmax + 1]- sets of nodes
Algorithm BUILD GRAPH
1. let all sets S[0..Lmax + 1] be empty
2. create source node n0
3. S[0] = {n0}
4. for i = 0 to Lmax + 1
5. while (S[i] 6= 0 )
6. pick a node n ∈ S[i]
7. S[i] = S[i]− n
8. let l be level of node n
9. let (sin, tin) be waveform of n
10. for k = l to Lmax + 1
11. compute output (sout, tout) for a wire

of length k − l and input (0, tin)
12. if(∃x ∈ S[k] && x.(tx) = tout)
13. if(sout + sin < x.(sx))
14. x.(sx) = sout + sin
15. let n be predecessor of x
16. else
17. create node y of level k and

output (sout + sin, tout)
18. let n be predecessor of y
19. S[k] = S[k] ∪ y

Figure 5. Pseudo-code of Algorithm BUILD GRAPH.

In algorithm BUILD GRAPH, a node contains informa-
tion such as its level, the predecessor node and waveform
(S, T ), where S is the shift time, and TIME[T ] is the tran-
sition time. The waveform of a node n can be extracted as
n.(S, T ), or n.(S) and n.(T ). The running time complexity of
our algorithm is O(L2

maxT 2
max).

Remark 3 In lines 12-15, if there are two edges connecting
to the same node (i.e., these two waveforms have the same
transition time), we only keep the one which has faster shift
time. The one which has slower shift time will be removed or
not be connected, since it definitely causes inferior waveform
in later stages. As a result, we can keep as many as possible
potential good connections, and this is a better improvement
than [12]. Moreover, by doing this, the backtracking path is
uniquely determined in our algorithm.

Remark 4 It is easy to extend our algorithm for simultane-
ous buffer insertion and wire-sizing. For wire-sizing, we specify
a width library from which a width is chosen for each wire seg-
ment. For example, the width library has N different choices
{W1, W2, ...WN}. To accommodate wire-sizing, we have the
following modifications.

1. Every connection in the graph has a width which can be
chosen from library {W1, W2, ...WN}.

2. For each wire-buffer system in Figure 2(a), given the wire
length, width and an input waveform (0, Tin), we can com-
pute the output waveform (Sout, Tout). This can be done
using either the analytical delay model or a lookup table
based on SPICE simulations.

3. Modify the algorithm BUILD GRAPH by adding a
loop between step 10 and 11 as follows.

10. for k = l to Lmax + 1
11. for w = 1 to N
12. compute output (sout, tout) for a wire

of length k − l, width Ww
and input (0, tin)



By considering wire-sizing, the graph will be more compli-
cated, since each edge in the original graph will be split into
N different edges. However, the shortest path still gives the
optimal solution. The running time complexity of the al-
gorithm for simultaneous buffer insertion and wire-sizing is
O(L2

maxT 2
maxN2).

By using the similar idea, we can extend our algorithm fur-
ther to considering buffer sizing with simultaneous buffer in-
sertion and wire-sizing. The running time complexity is still
polynomial.

5. Experimental Results
In this section, we present some experimental results on

buffer insertion. The wire parameters are chosen as fol-
lows: wire width w = 1.035µm, unit square resistance r0 =
0.092Ω/2, unit area capacitance c0 = 0.03205fF/µm, driver
resistance RD = 28.3Ω, load capacitance CL = 0.016pF ,
wire length L = 16, 000µm, unit length fringing capaci-
tance cf = 0.0877fF/µm, and unit length self inductance
l0 = 0.73913pH/µm. For buffers, we choose fixed channel
width and length for the NMOS transistor as 5µm and 0.5µm,
respectively. For such a long wire, we assume it has Lmax
number of locations where we can insert buffers. We choose
Tmax = 200, i.e., there are 200 transition time bins. For the
input signal, we specify a ramp by choosing S = 0, T = 1ps.
Throughout our experiments, we use the analytical delay mod-
els outlined in section 2.. Without inserting buffers, the wire
has delay T50% = 1.6179ns and transition time T = 3.4298ns.

In the following experiments, we study two different opti-
mization objectives. One is to minimize 50% delay (i.e., short-
est delay), and the other is to minimize the transition time
(i.e., fastest transition). Both shift time and transition time
are measured at the final load end.

Lmax # T50% (ns) T (ns) Running Time(s)
7 2 1.2601 1.1394 0.01
15 2 1.2028 1.2008 0.03
31 2 1.1981 0.9734 0.15
63 3 1.1666 0.9237 1.06
127 3 1.1444 0.9237 5.90

Table 1. Optimal buffer insertion to minimize 50% delay.

For the results in Table 1, we determine the optimal buffer
insertion such that delay is minimized. As Lmax increases, the
optimal solution seems converge, and the optimal number of
buffers is 3. The optimal buffer insertion scheme for Lmax =
127 is shown in Figure 6(a). The running times shown in Table
1 do not include the time to build a lookup table. However,
since we use the analytical delay model outlined in section 2.,
building a lookup table is very fast. For Lmax = 127 which
is the most time consuming experiment, the running time is
about 6s. Notice that all problems can be solved within a few
seconds, therefore our algorithm is very efficient.

Lmax # T50% (ns) T (ns)
7 3 1.3381 0.3592
15 5 1.2815 0.1635
31 4 1.3217 0.1635
63 6 1.3018 0.0967
127 8 1.2970 0.0670

Table 2. The optimal buffer insertion to minimize transition time.

In Table 2, we summarize the result where the optimal buffer
insertion is chosen such that the final transition time is mini-
mized. It is interesting to note that if we can tolerate a little bit
longer delays, we can obtain results which have much faster
transition times than those shown in Table 1, with the cost
of adding few more buffers. The buffer insertion scheme for
Lmax = 127 is shown in Figure 6(b).

6. Conclusion
We have presented a graph based algorithm for optimal

buffer insertion. The optimal buffer insertion problem can

7.5

7.57.8

(a)

(b)

0.6

0.6 0.86.5

Figure 6. The optimal buffer insertion results. (a). Minimal
delay. (b). Minimal transition time. All lengths are in mm.

be reduced to a shortest path problem. In our algorithm, sig-
nals are accurately represented by a finite ramp which has
two parameters, shift time and transition times. Any accurate
delay model including SPICE simulations can be used in our
algorithm. Our algorithm can be easily extended to deal with
simultaneous buffer insertion and wire-sizing. Our algorithm is
very efficient, and the optimal solution can be obtained within
a few seconds.
References
[1] C.J. Alpert, A. Devgan and S.T. Quay, Buffer Insertion with

Accurate Gate and Interconnect Delay Computation, Proc.
ACM/IEEE Design Automation Conf., pp.479-484, 1999.

[2] C.J. Alpert, A. Devgan and S.T. Quay, Buffer Insertion for Noise
and Delay Optimization, Proc. ACM/IEEE Design Automation
Conf., pp.362-367, 1997.

[3] C.-P. Chen and D.F. Wong, Optimal Wire-sizing Function with
Fringing Capacitance Consideration, Proc. ACM/IEEE Design
Automation Conf., pp.604-607, 1997.

[4] C.-P. Chen and N. Menezes, Noise-Aware Repeater Insertion
and Wire Sizing for On-Chip Interconnect Using Hierarchi-
cal Moment-Matching, Proc. ACM/IEEE Design Automation
Conf., pp.502-506, 1999.

[5] C.C.N. Chu and D.F. Wong, Closed Form Solution to Simulta-
neously Buffer Insertion/Sizing and Wire Sizing, Int. Symp. on
Physical Design, pp.192-197, 1997.

[6] C.C.N. Chu and D.F. Wong, A New Approach to Simultaneous
Buffer Insertion and Wire Sizing, Proc. IEEE Int. Conf. on
Computer Aided Design, pp.614-621, 1997.

[7] W.C. Elmore, The Transient Response of Damped Linear Net-
work with Particular Regard to Wide-band Amplifier, Journal
of Applied Physics, vol.19, pp.55-63, 1948.

[8] Y. Gao and D.F. Wong, Wire-Sizing Optimization with In-
ductance Consideration Using Transmission Line Model, IEEE
Trans. on Computer-Aided Design, 1999.

[9] Y. Gao and D.F. Wong, A Fast and Accurate Delay Estimation
Method for Buffered Interconnects, Proc. IEEE Asia and South-
Pacific Design Automation Conf., 2001.

[10] A.B. Kahng and S. Muddu, Delay Models for MCM Intercon-
nects When Response is Non-monotone, IEEE Multi-Chip Mod-
ule Conf., pp.102-107, 1997.

[11] J. Lillis, C.-K. Cheng and T.-T. Lin, Optimal and Efficient
Buffer Insertion and Wire Sizing, Proc. Custom Integrated Cir-
cuits Conf., pp.259-262, 1995.

[12] N. Menezes and C.-P. Chen, Spec-Based Repeater Insertion
and Wire Sizing for On-Chip Interconnect, Proc. Intl. Conf. on
VLSI Design, pp.476-483, 1999.

[13] P.R.O’Brien and T.L. Savarino, Modeling the Driving Point
Characteristic of Resistive Interconnect for Accurate Delay Es-
timation, Proc. IEEE Intl. Conf. on Computer Aided Design,
pp.512-515, 1989.

[14] J. Qian, S. Pullela and L. Pillage, Modeling the “Effective
Capacitance” for the RC Interconnect of CMOS Gates, IEEE
Trans. on Computer-Aided Design, Vol.13, No.12, pp.1526-
1535, 1994.

[15] L.P.P.P. van Ginneken, Buffer Placement in Distributed RC-
tree Networks for Minimal Elmore Delay, Intl. Symp. Circuits
and Systems, pp.865-868, 1990.

[16] N.H.E. Weste and K. Eshraghian, Principles of CMOS VLSI
Design , 2nd Edition, Addison-Wesley Publishing Company,
1993.

[17] Q. Yu and E.S. Kuh, Exact Moment Matching Model of Trans-
mission Lines and Application to Interconnect Delay Estima-
tion, IEEE Trans. on VLSI, Vol.3, No.2, pp.311-322, 1995.


	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index


