
Full Chip False Timing Path Identification: Applications to the PowerPCTM

Microprocessors

Jing Zengyz, Magdy S. Abadiry, Jayanta Bhadrayz, and Jacob A. Abrahamz
yEDA Tools and Methodology,

Motorola ASP Somerset Design Center, Austin, TX 78729, U.S.A.
zComputer Engineering Research Center,

The University of Texas at Austin, Austin, TX 78712, U.S.A.

Abstract

Static timing analysis sets the industry standard in the
design methodology of high speed/performance micropro-
cessors to determine whether timing requirements have
been met. Unfortunately, not all the paths identified using
such analysis can be sensitized. This leads to a pessimistic
estimation of the processor speed. Also, no amount of engi-
neering effort spent on optimizing such paths can improve
the timing performance of the chip. In the past, we demon-
strated initial results of how ATPG techniques can be used
to identify false paths efficiently[1]. Due to the gap between
the physical design on which the static timing analysis of
the chip is based and the test view on which the ATPG tech-
niques are applied to identify false paths, in many cases
only sections of some of the paths in the full-chip were an-
alyzed in our initial results. In this paper, we will fully an-
alyze all the timing paths using the ATPG techniques, thus
overcoming the gap between the testing and timing analysis
techniques. This enables us to do false path identification
at the full-chip level of the circuit. Results of applying our
technique to the second generation G4 PowerPCTM will be
presented.

1. Introduction and motivation

Static timing analysis is an important component of tim-
ing verification of high speed, high performance ASIC de-
signs such as microprocessors. The facts that it does not
need a supply of vectors and that it considers all possible
paths make it an excellent choice for this purpose. The in-
puts to it are the circuit models, the information about the
circuit primitives and macros along with their pin-to-pin de-
lays. The circuit models are extracted from the layouts tak-
ing into consideration of noise and interconnect delays in

the circuits.
However, since most of the static timing analyzers do not

consider the dynamic behavior of the circuit, they might re-
port paths as critical when such paths are not sensitizable.
Usually a critical path is defined to be one which does not
meet the timing requirement of the circuit and is character-
ized by boolean transitions on all the nodes along the path.
In this paper the definition of false critical path is the same
as in [1]: a critical path for which the specified signal tran-
sitions at the nodes on the path cannot happen for any input
combinations.

Usually an iterative approach is used by the designers
where only a small percentage of the slowest structural crit-
ical paths are identified, analyzed and optimized. In each
iteration, timing analysis is performed to identify a new
set of critical paths for optimization. The number of paths
identified may be very large, normally in the hundreds or
sometimes thousands. The amount of engineering efforts
involved in speeding up such a non-trivial number of paths
is huge, and not necessarily well spent since many of the
paths are not sensitizable. Previous research [2] indicated
that for most circuits a good percentage of structural critical
paths are not sensitizable. A technique, which is effective
in identifiying the false paths, is needed to shorten the cycle
of this iterative process. Once the false paths are identi-
fied, the designers can ignore them from the list of paths
to be optimized. In [1] we demonstrated such a technique
by using simple ATPG techniques. In this paper we show
that the analysis can be done on full-chip circuit models and
demonstrate its effectiveness by applying it on a state of the
art custom-made microprocessor.

Different approaches have been attempted at solving the
false path detection problem. [3],[4] used satisfiability-
based algorithm and heuristics to check if the sensitizability
functions can be satisfied or not. In [5] a path sensitization
method is proposed. Work has been done at the transistor
level [8] [9]. Also, once the false paths have been identified,

there are algorithms to identify them from the timing graph
[10] [11]. In [6] and [7], model checking and bounded
model checking techniques are attempted at resolving false
paths in synthesized logic blocks in a chip. We make use
of a commercial ATPG tool at our design center which can
handle design models of size close to the chip level. Since
our approach is not binary decision diagram(BDD)-based,
we do not encounter BDD blowups while analyzing timing
paths for a full chip.

Our initial results [1] demonstrated the effectiveness of
our technique, though they were limited by the different
approaches used in test generation and in timing analysis.
Gate-level model is used for test generation with all the dif-
ferent design hierarchies flattened to a handful of gate-level
primitives. On the other hand, transistor-level simulation
for the custom blocks is needed for accurate timing to get
worst case pin-to-pin delay estimation with different tran-
sition, loading types at the pins. A timing analyzer treats
these pre-characterized design blocks as functional black-
boxes and indicates the transitions on the pins of these de-
sign blocks on the timing paths. Unfortunately, many of
these design blocks in timing analysis are of higher-level
than the gate-level primitives understood by the ATPG tool,
thus the ATPG tool does not understand the pins of these
design blocks directly. We implemented a path extractor
which analyzes all the custom designs treated as black-
boxes by the timing analyzer and extracts all the paths asso-
ciated with pin to pin pairs of a design block.

In the next section we provide a review of our false path
detection methodology. We will also describe the gap be-
tween test generation and timing analysis technologies and
our approach to overcome it in section 3. In section 4, we
present our experiments and results. Section 5 concludes
the paper.

2. Detection of false critical paths

A critical timing path (P) is characterized by a set of
n nodesx1; x2; : : : ; xn and a set,T = ft1; t2; : : : ; tng,
of signal transitions such thatti 2 T represents the sig-
nal transition on nodexi. Each transitionti is character-
ized by a pair of booleans< bi; ai > where bi and ai
are the initial (orbefore) and final (orafter) boolean val-
ues at nodexi, respectively. Note thatbi and ai are al-
ways complementary to each other, since we are concerned
with the signal transition on every node along the path. We
call the setfb1; b2; : : : ; bng as theBefore set and the set
fa1; a2; : : : ; ang as theAfter set and test for their satisfia-
bility.

For example, in the following figure, there are 8 library
cells and/or custom macros in the circuits, nodesx1, x2, ...,
x7 go through transitions< 0; 1 >, < 1; 0 >, < 1; 0 >,
< 1; 0 >, < 0; 1 >,< 1; 0 > and< 1; 0 >.

g3g2g1

g4

g5
g7

g6

g8

x1
x2

x3

x4
x5

x6

x7

Figure 1. Critical timing path

The timing paths are considered to start from the pri-
mary inputs or latch outputs, often called the launch point,
and end with the primary outputs or input to latches, or
called the capture points. Each nodexi is either the pri-
mary input or output of a latch, circuit primitive or cus-
tom macro. Each node depends combinationally upon a
set of latches and primary inputs. Let the boolean func-
tion fi represent the cone of logic which feeds the node
xi. For any nodexi to have transitionti, the correspond-
ing fi needs to assume valuesbi andai, respectively, in
two successive time instances. Thus in order to test for a
whole combinationally false path, the two boolean func-
tions (f1 = b1) ^ (f2 = b2) ^ : : : ^ (fn = bn) and
(f1 = a1) ^ (f2 = a2) ^ : : : ^ (fn = an) need to be
satisfied. Failing to satisfy the second function implies that
P is combinationally false, but it is not necessarily true for
the first function.

i1

i2
out

i1
1->0

0->1

1->0out

i2

Figure 2. Effect of side-inputs

For example, for a 2-input AND gate, having inputsi1
andi2 and outputout. Let us take the critical pathfi1; outg
and the1! 0 transition on bothi1 andout. If i1, which is
on the critical path, is undergoing a1 ! 0 and the side in-
put,i2, is undergoing a0! 1 transition then the above first
function is not satisfied. But if the transition oni2 happens
before the transition oni1 (which is a possibility since the
pathfi1; outg is the critical path) then there exists a func-
tional test for this delay path.

To account for all such cases, we test the simultaneous

satisfiability of the values in theBeforeset unioned with the
non-controllingvalues on the side inputs of all the gates on
the path.

If we let:

1. ea = True iff xi = ai, for all i can be justified simulta-
neously

2. eb = True iff xi = bi for all i can be justified simultane-
ously

3. en = True iff respective non-controlling values can be
assigned simultaneously at all side-inputs.

Thus the following is our algorithm:

Given a pathP with ea, eb anden
if ea = false, then

P is a false path
else

if en = true then
P is a true critical path

else if
eb = false thenP is a false path

elseP maybe a true critical path

This takes care of those paths which do not satisfy the
Beforesets but have functional tests for them.

Note that our algorithm is also general enough to con-
sider the kind of paths which satisfy bothea andeb, but not
en.

I1

I2 out

Case I:

I1

I2

out

1->0

1->0

1->0

Case II:

I1

I2

out

1->0

1->0

1->0

Figure 3. Path considered for timing purpose

For theAND gate in the figure 3, even though the tran-
sition obtained at the output of the gate is not necessarily
associated with the transition of the input on the path of con-
sideration(POC, indicated by the arrowed line), it still helps
the performance of the circuit to speed up the POC. There
are two cases here. In case I, the POCIS the critical path,
even though the transition propagated is associated with the

side path. Optimizing POC would allow propagation of the
transition on POC to the output of the gate and allow the
timing of the path to be met. In case II, even though POC
is not the most critical path since it meets the timing earlier
than its side path, it is still a critical path and needs opti-
mization.

Based on our algorithm, only those critical paths which
are truly false are safely removed. Note that in this paper
we are concerned with only combinationally false paths.

3. Methodology

A reasonably accurate way of estimating the perfor-
mance of a processor is through the transistor-level sim-
ulation. Unfortunately transistor-level simulation is pro-
hibitively expensive for large designs. The realistic ap-
proach in the industry is to perform circuit-level simulation
on all the custom circuits(including gate primitives and cus-
tom macros), characterizing the worst case pin to pin delays
for all of them, then the structural timing analysis is per-
formed on the whole processor with the pre-characterized
custom blocks treated as black-boxes.

To identify a false path identified by a timing analyzer,
we can check the satisfiability ofea, eb anden for the path
by setting the corresponding values at the nodes along the
path simultaneously using the commands in the ATPG tool.

There are 4 kinds of return status after running ATPG
tool:

1. a set of node values is returned satisfying the condition
under check.

2. abort.

3. redundant.

4. ATPG untestable

In case 3 and 4, the ATPG tool finds the logic expression
unsatisfiable either due to the redundant nature of the logic
or under the given constraints. In either of these cases, the
POC is not sensitizable and thus can be eliminated from
consideration safely.

Most of the pre-characterized design blocks are not gate
level primitives understood by the ATPG tool. To spec-
ify the nodes on the POC which are ports for these design
blocks, we analyze the gate-level models for the blocks to
figure out the gate primitives inside the blocks which are
connected to these ports.

We implemented a path extractor which analyzes all the
custom designs and extracts all the paths associated with a
pin to pin pair for a custom design.

For example, for the design block in the figure 4, which
is not a gate-level primitive. It contains gate-level primitives
I1, I2 andI3 along with inputsIN1,IN2 and outputOUT .
The design block would then be specified as:

Design Block(XNOR2)

IN1

IN2

I1(AND2)
din0

din1

din0

din1

I2(NOR2)

out

out

din0

din1

I3(OR2)

out
OUT

Figure 4. Ports of custom design blocks

1. IN1: /I1/din0, wheredin0 is an input port forI1.

2. IN2: /I2/din0, wheredin0 is an input port forI2.

3. OUT : /I3/out, whereout is an output port forI3.

There are 2 paths betweenIN1 andOUT , one is acti-
vated whenIN2 is 0, the other whenIN2 is 1. Our path
extractor would extract both.

The flow of our methodology is shown in the figure 5.
We use the set of critical paths identified by the timing an-
alyzer as the starting point of our false paths identification
technique.

FASAD

Set of Critical Paths
Gate-Level

Core Model MSS Model
Gate-Level

Full-Chip Physical Model

ATPG command files

ATPG Log Files

FASAD Post-Processor/
Path Categorization

FASAD(Path Extractor)

ATPG tool

List of False Paths

Timing Analyzer

Figure 5. The flow in the method

4. Experiments and results

We ran our experiments on the second G4 PowerPCTM

microprocessor with its statistics shown in the following ta-
ble.

Table 1. The Second Generation G4
PowerPC TM Microprocessor Statistics

of transistors # of signal pins # of LSSD
latches

33 million 484 91263

Due to the size of the design, separate core and memory
test models were created for this chip even though the struc-
tural timing analysis was carried out at the chip-level. We
utilized both models identifying false paths in the full-chip.

Custom designed blocks are characterized at the
transistor-level before running timing analysis. Timing
analysis is run at the chip-level to obtain a list of critical
timing paths. The output of the timing analysis consists of a
set of critical paths along with the transition for every node
on each path. Our toolFAlSle pAth Detector (FASAD)
post-processes the paths generated by the timing analyzer
using information from its path extraction capacity. It takes
the processed critical paths as input and generates command
files for the ATPG tool to perform a combinational false
path analysis on the critical paths. The results of the ATPG
runs are analyzed by FASAD and the false paths are identi-
fied.

All our runs were performed on a Sun Solaris with 4GB
memory. We generated 557 most critical paths on the sec-
ond generation G4 PowerPCTM processor using the timing
analyzer. We ran FASAD along with its post-processor on
them as shown in the figure 5 on these 557 paths. Out of
these 557 paths, 111 are multi-cycle paths utilizing cycle
stealing technique and will not be considered in the scope
of this paper. That leaves us with a total of 446 paths to
analyze.

The time taken to generate the command files for the
ATPG tool is around 5 minutes. The core and memory
models are loaded in different ATPG sessions and run in
parallel (it takes about 20 minutes to load each model). The
ATPG tool takes around 30 minutes to run the command
files for all the 446 paths and analyze them. The ATPG
tool produced a log file which is then analyzed using the
post-processor of FASAD. It identified 95 paths as unsen-
sitizable. The time taken for this classification is around 5
minutes. It takes around 1 hour to identify 95 paths from
446 initial timing paths.

Comparing to our initial results[1](where about only 5%
false paths were identified), it underlies the importance of
path extraction of custom blocks allowing the false path

identification analysis on all types of design blocks on the
chip.

5. Conclusions and future work

To overcome the difference in ATPG and timing analysis
techniques, we implemented a circuit-level path extractor to
extract paths between input and output pin pairs for custom
designed blocks. We were able to analyze full-chip paths
and identified 21% of these as false paths.

So far we have worked on identifying false paths us-
ing scan test vectors. Future work will include identifying
non-functionally false paths taking into consideration the
sequential behavior of the circuits.

It is desirable for the characterization tool to keep record
of the activation vector associated with the pin to pin delay
since there are generally multiple paths associated with a
particular input and output pair of the design block. Unfor-
tunately, currently the characterization process only records
worst case pin to pin delays of blocks, but not the activa-
tion vectors associated with them. Circuit-level analysis and
test generation tools can be used to help the characterization
process to capture both the delay and activation vector effi-
ciently.

6. Acknowledgments

We acknowledge the valuable help from Mike Figley,
Bruce Long, Robert Bailey, George Joos, Ashu Razdan,
Dawit Belete of Motorola Inc. PowerPC is a trademark of
the International Business Machines Corporation, used un-
der license therefrom.

References

[1] J. Bhadra, M. S. Abadir, J. A. Abraham. “A Quick
and Inexpensive Method to Identify False Critical
Paths Using ATPG Techniques: an Experiment with
a PowerPCTM Microprocessor” inProceedings of the
IEEE 2000 Custom Integrated Circuits Conference,
71-74, May 2000.

[2] K. T. Cheng, H. C. Chen. “Classification and Identifi-
cation of Nonrobust Untestable Path Delay Faults” in
IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 15(8):845–853, August
1996.

[3] H. C. Chen, D. and H. C. Du. “Path Sensitization in
Critical Path Problem,” inProceedings of the Interna-
tional Conference Computer-Aided Design, 208-211,
1991.

[4] S. T. Huang, T. M. Parng and J. M. Shyu. “A
Polynomial-Time Heuristic Approach to Solving the
False Path Problem”, inIEEE Transactions on Cir-
cuits and Systems I: Fundamental Theory and Appli-
cations, 43(5)386-396, May 1996.

[5] H. Chang. “Strategies for Design and test of High Per-
formance Systems”,Ph.D. Dissertation, The Univer-
sity of Texas at Austin, August 1993.

[6] R. Raimi and J. A. Abraham. “Detecting False Tim-
ing Paths”, inProceedings of the Design Automation
Conference, 737-741, 1999.

[7] R. Raimi and J. A. Abraham. “False Timing Paths
and Environment Modeling: Experiments on Pow-
erPC Microprocessors”, inProceedings of High-Level
Design, Validation and Test, 1998.

[8] C. P. R. Liu. “Transistor level Synthesis and Hierar-
chical Timing Optimization for CMOS Combinational
Circuits”,Ph.D. Dissertation, The University of Texas
at Austin, August 1999.

[9] K. T. Lee and J. A. Abraham. “Critical Path identifica-
tion and Delay Tests of Dynamic Circuits”, inPro-
ceedings of the International Test Conference, 421-
430, 1999.

[10] K. P. Belkhale, A. J. Suess. “Timing Analysis with
known False Sub-graphs” inProceedings of the Inter-
national Conference on Computer-Aided Design, 736-
739, 1995.

[11] D. Blaauw et al. “Removing user-specified false paths
from timing graphs”, inProceedings of the Design Au-
tomation Conference, 270-273, 2000.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

