
Architecture Driven Partitioning

Joachim Küter
Infineon Technologies AG

MP TI CS ATS
D-81541 Munich, Germany

Erich Barke
Institute of Microelectronic Systems

University of Hannover
D-30167 Hannover, Germany

Abstract

In this paper, we present a new algorithm to partition
netlists for logic emulation under consideration of the
targeted emulator architecture. The proposed algorithm
allows the flexible use for a wide variety of applications
because the description of the architecture is part of the
input data. It combines a new approach of finding and
improving an initial solution with existing algorithms to
cluster the netlist and optimize the number of cut nets
between blocks. As a result, the algorithm ensures that the
cut nets between the created blocks can be connected
within the emulation system, even without a full intercon-
nect structure. Experiments on a number of designs and
architectures demonstrate that the algorithm is competi-
tive for architectures with full interconnect and that it is
unique for architectures with limited interconnect re-
sources.

1 Introduction

The partitioning of netlists is a standard procedure in
order to use logic emulation as a means for functional
verification. After partitioning, the resulting blocks are
mapped onto Field Programmable Gate Arrays (FPGAs).
Plenty of partitioning algorithms have been presented.
Most of them are focused on cost minimization (e.g. num-
ber of created blocks, number of cut nets). In general, they
incorporate the assumption that the required resources to
connect the cut nets will be provided by the emulation
system. Therefore, the used model of the underlying ar-
chitecture is that of completely connected FPGAs.

Architectures of existing emulation systems usually do
not provide such a kind of complete interconnect struc-
ture. Often, groups of FPGAs (e.g. on a PCB) are wired
by an approximation of complete interconnect. However,
the entire system mostly comprises several of such groups
which have only a limited number of connections between
them. Those limitations in system level routing resources
are usually not taken into account by partitioning algo-
rithms.

Several published methods focus on limited routing re-
sources. However, they are mostly fixed to a special type
of architecture or lack the capability of handling real
world constraints, like emulation systems being subdi-
vided into several boards. It is not possible to apply those
algorithms to freely defined emulator architectures.

This paper presents a partitioning algorithm which
takes the architecture of the targeted emulation system
into account. The formal description of the architecture is
part of the input data and can be freely modeled to easily
address different target systems. It takes care of limited
routing resources and heterogeneous FPGA types.

The described algorithm combines existing methods
with novel aspects and forms a new partitioning flow.
Experimental results on a number of benchmarks and
emulation system architectures demonstrate the benefits of
the proposed algorithm for architecture driven partition-
ing.

2 Problem Description

In order to consider the architecture of an emulation
system during the partitioning process, it is essential to
use a formal description of the structure of the system, i.e.
the basic building blocks, the routing resources and hier-
archy of the system.

2.1 Structure of Emulation Systems

The basic building blocks of emulation systems fall
into two categories. Programmable chips for logic ele-
ments, usually FPGAs, will each contain a portion of the
netlist. In some cases they may also be used for routing
purposes. The second category comprises chips which are
solely used for routing purposes, e.g. FPICs (Field Pro-
grammable Interconnect Circuit) [1]. They mostly contain
a switch matrix which can create connections between any
of their pins. FPGAs which are dedicated to routing pur-
poses belong to the same class as specific routing circuits.

The pins of the basic chips are connected at board and
at system level via interconnect nets. The simplest ones
are two point nets, which connect exactly two pins of two

different basic chips. Nets which connect more than two
pins will be referred to as multi-pin-nets. Their main pur-
pose is to form interconnect for the distribution of low
skew signals like clocks, which will be distributed to a
larger number of basic chips.

The structure of existing emulation systems comprises
different basic chips and direct interconnect. FPGAs may
be interconnected via a fixed topology or via programma-
ble routing circuits. With the help of routing chips, it is
possible to form a crossbar connection, or with a more
limited hardware effort, a partial crossbar structure [2]
between the FPGAs. In both cases it can be assumed that,
while not exceeding the available pin numbers, there are
unlimited interconnect resources. It is possible to create
connections between any two pins.

If there are only direct connections between FPGAs
available, some pins will be required for connections
between FPGAs which are no direct neighbors. In these
cases the already pin limited partitioning process requires
even more of the scarce pin resources.

In many cases, the structure is subdivided into different
hierarchical levels. Often, a board contains fully con-
nected FPGAs and a couple of boards is combined in
racks. These racks can again be combined to larger enti-
ties. Frequently, within one level there are almost com-
plete interconnect structures, but between different levels
there are strong limitations.

2.2 Formal Description of the Netlist

The netlist which shall be partitioned, can be described
as a hypergraph, like in most partitioning algorithms. To
facilitate the partitioning process, it is reasonable to keep
the internal hierarchy of the netlist. In this case, the initial
graph contains the top level cell of the netlist. During the
partitioning process it is possible to expand the nodes,
which means that they are replaced by nodes which repre-
sent the subcells of the original cells. The edges have to be
adapted accordingly. One possible realization of such a
graph has been described in [3].

2.3 Formal Description of the Emulator Archi-
tecture

The formal description of the architecture is also based
on a hypergraph. The basic chips and the interconnect are
represented as nodes which will be displayed as squares,
marked with ‘F’ for FPGAs and ‘R’ for routing chips.
Direct interconnect structures are represented as hyper-
edges.

In order to describe a hierarchical structure, there are
special nodes which represent the interfaces and the inter-
nal nets of hierarchical structures, marked with ‘i’ and ‘n’
respectively.

The algorithm which will be described in the next sec-
tion, will subdivide the complete partitioning problem into
smaller problems, based on hierarchy. Each must contain
all applicable information about routing resources be-
tween the contained entities. This requires the graph to be
constructed in a special way.

The requirement shall be illustrated by the following
example: A system containing a couple of boards, each
with two FPGAs, connects all FPGAs via a backplane.
Taking a board as a subproblem, it would comprise two
FPGAs with no common interconnection. This would
obviously result in a non solvable subproblem. This situa-
tion may be avoided by following rules for hypergraph
construction.

First of all, the hierarchical structure is represented by a
hypergraph which fulfills the condition of chordality.

Definition: A graph is chordal, if it does not contain in-
duced subgraphs in the form of circles with more than
three nodes.

The resulting structure has similarities to a tree, which
is a typical representation of hierarchy. In order to be able
to identify distinct subproblems, a sufficient condition for
the creation of the graph has to be applied:

Sufficient Condition: Higher levels of hierarchy are
connected to contained basic elements solely over not
more than one crossbar node or one multi-pin-net
which is not connected to all basic elements or one di-
rect connection and any number of multi-pin-nets which
are connected to all basic elements.

One typical result of a formal description is presented
in Figure 1. The described emulation system consists of
two racks with three boards each. On every board there
are two FPGAs and the various entities are connected via
crossbar chips.

Figure 1: Chordal hypergraph

2.4 Partitioning Problem

Using the previous description of the emulator archi-
tecture and the netlist, the partitioning problem can be
formulated as follows:

An assignment has to be found for every node of the
netlist graph to those nodes of the architecture graph,
which represent a basic cell of the type ‘FPGA’.

This assignment has to fulfill three conditions:
 i. The total size of cells assigned to an FPGA may not

exceed the FPGA’s gate capacity.
 ii. The pins of the cells are connected via nets to other

cells. The placement of cells in different FPGAs re-
sults in cut nets. The number of cut nets connected
to an FPGA must not exceed the available number
of pins of the FPGA.

 iii. The cut nets have to be connected on system level
via the routing resources of the emulation system.
The required routing resources must not exceed the
available routing resources.

While the first two conditions are common for most
partitioning problems, the third one is additionally consid-
ered by the presented algorithm.

3 The Architecture Driven Partitioning
Algorithm

3.1 Overview

The presented architecture driven algorithm delivers a
partitioning result which will fit into the available re-
sources. It is not the primary intention to minimize the
number of used chips or cut nets, as long as the required
numbers are below the available ones. It focuses instead
on the routing resources to ensure that the cut nets may
finally be connected. If such a valid solution has been
found, the algorithm stops without further optimization
effort because it means that the partitioned netlist may
already be emulated by the hardware.

The algorithm subdivides the partitioning problem into
several smaller problems, each comprising only a subset
of the architecture graph and the netlist graph. As already
described, it is important that the problems are separate
and do not depend on each other. This will be ensured by
the way the chordal hypergraph is created to describe the
emulator architecture.

The first step is to identify subproblems. This is done
following a top down approach. For an emulation system
consisting of FPGAs which are distributed over several
boards, the netlist is divided into parts which are assigned
to boards. On every board a partitioning process takes
place, which forms the blocks that are put into the FPGAs.

To formalize this approach, it is possible to identify an
elimination order for the chordal hypergraph. This creates
a sequence in which the nodes may be removed while the
remaining graph will still be chordal. The inverse elimi-
nation order can then be used to determine the order in
which the subproblems will be solved.

To every subproblem the same procedure is applied.
Initially, a prepartitioning step is performed: The netlist

graph is clustered and the resulting nodes are assigned to
the nodes of the architecture graph after they have been
placed geometrically. Then, the borders of the blocks are
optimized until the limits are satisfied.

Finally, the separately solved subproblems will be re-
combined. At this time, the assignment to the FPGAs is
completed.

The last step is the assignment of routing resources of
the emulator in order to connect the cut nets. If this step
can be completed successfully, the algorithm has created a
valid solution.

The structure of the algorithm is shown in Figure 2.
The following paragraphs expand on various steps.

Figure 2: Structure of the algorithm

3.2 Prepartitioning Approach

The prepartitioning shall lead to a good basis for the
further optimization steps. It is intended to group together
parts of the netlist which are closely connected.

In order to reduce the complexity of the problem, the
nodes of the netlist graph will represent clusters of cells.
These clusters can be formed by keeping hierarchical
elements of the original netlist as entities or by applying a
standard partitioning algorithm. In this case the created
blocks are later used as clusters. The Hierarchy Driven
Partitioning (HDP) algorithm is well suited for this pur-
pose [4]. It keeps the internal hierarchy structure of the
created blocks, which allows an expansion of nodes to
increase granularity. It will be shown that based on such

Work on Subproblems

Architecture

Identification

Optimization

Prepartitioning

Combine Solutions of Subproblems

System Level Routing

Netlist

an initial solution, it is possible to find an improved solu-
tion with a superior quality. This is even valid for archi-
tectures with full interconnect.

The initial solution of the partitioning problem is cre-
ated by a two-dimensional placement of the nodes of the
architecture graph and the netlist graph. It commences
with a ranking of the nodes. In a second step, the branches
of a spanning tree, called sequences, are isolated. These
sequences are then ordered, realizing a (local) minimum
of the required interconnection length between the nodes.

In the next step, both representations are scaled to the
same size values. For the nodes of the architecture graph,
target areas are determined which cover the complete area
between minimum and maximum coordinates in both
directions. Then, the nodes of the netlist graph are as-
signed to the target areas, thus creating an assignment to
the architecture nodes.

This results in closely connected nodes to be placed to-
gether. At the end of this step, the size limits of the target
blocks are met, but the number of cut nets may still ex-
ceed the available number of pins.

The described procedure is illustrated in Figure 3 by an
example, comprising a small netlist and an emulation
system consisting of a 3x3 array of FPGAs. The two-
dimensional placement is the actual result of the imple-
mented version of the described algorithm.

Figure 3: Prepartitioning process

3.3 Optimization Steps

In order not to exceed the maximum number of cut nets
and available routing resources, the preliminary solution
has to be optimized.

To determine the areas to optimize, two matrices are
calculated. One describes the available connections be-
tween the involved target elements and a second describes
the cut nets between the blocks.

To satisfy the conditions, a sequence of optimizations
between two blocks is executed. With each optimization
exactly two borders between blocks are involved. The
Fiduccia Mattheyses (FM) algorithm is ideally suited for
this purpose [5]. It requires a modification to take into
account nodes that may have connections to other blocks.
A move which might be good under the isolated view of
the two blocks might not be ideal considering the addi-
tional nets.

The optimization is performed until the limits are not
exceeded or until it can be stated that no solution can be
found. Before every iteration, nodes of the hypergraph are
expanded, i.e. they are replaced by nodes for cells of a
lower hierarchy, to increase the granularity of the prob-
lem.

3.4 System Level Routing

When every basic cell of the design is assigned to an
FPGA of the emulation system, the partitioning process is
completed. To ensure that the blocks can be connected, an
actual routing process has to take place. In this context,
routing means the assignment of resources to the cut nets
of the netlist. For this purpose the Lee-algorithm [6] has
been chosen. It has originally been designed for two-pin-
nets and it had to be modified to route nets with more than
two pins. The algorithm is executed until all nets have
been routed or until it is determined that at least one cut
net cannot be routed. In this case, the partitioning process
would have failed.

4 Experimental Results

The presented algorithm has been implemented in a
program called ‘Adaptive Partitioning with Architecture
Consideration’ (APA). The results of APA are compared
to the partitioning results of two different algorithms who
have been proven as strong in various publications with
respect to fully interconnected FPGAs. The first one is the
Hierarchy Driven Partitioning (HDP) algorithm [4]. It
uses hierarchy information contained in a netlist and re-
spects the pin and gate limits of the target FPGAs while it
minimizes their required number. The second one is
hMETIS [7]. It works on a flat netlist and finds a solution
for a given number of blocks while it minimizes the sum
of cut nets, not exceeding a balance value for the sizes of
the blocks.

As these algorithms are not able to take limited archi-
tectures into account, the created blocks were randomly
assigned to FPGAs. The same routing algorithm as in
APA was used to interconnect the blocks on system level.

The comparative results of HDP and hMETIS will
demonstrate, whether the high quality of the partitions,
resulting in low pin counts, will be in itself sufficient for
addressing limited architectures.

All measurements were done on a SUN SPARC with
167 MHz. The designs used as benchmarks are listed in
Table 2. We used hierarchical netlists in the EDIF 2 0 0
format [8], many of them taken from industry projects.

Table 2: Benchmark designs

name size [gates] primary ports
watch 2752 16
sab 4858 149
se 9184 94
iir 12357 52
fidct 30445 170
t17 30960 136
sp7 51285 157
parpe 73472 94
t18 79914 61
s4md 180900 112

In the following sections, partitioning results are pre-
sented for a selection of different emulator architectures.
They represent typical scenarios from real life applica-
tions. If an algorithm was unable to find a solution or if
the final routing step failed, the results are shown in
brackets. The value of b describes the number of blocks,
øp the average number of pins per block and t gives the
elapsed time.

4.1 Complete Interconnect

These structures connect FPGAs via crossbar chips or
via a partial crossbar structure. This is the only architec-
ture which is directly addressed by the comparative algo-
rithms. The results presented in Table 1 indicate the com-
petitiveness of APA even for this kind of interconnect
structure. This is applicable to the number of created

blocks as well as to the required runtime. One exception is
the case where no solution may be found, in this case for
the design ‘sp7’. APA tries to optimize the result until all
steps in the algorithm are completed. This results in a
significantly longer time.

4.2 Limited Interconnect Resources

One common example for limited interconnect re-
sources is the division of emulation systems into several
boards. For example, in order to increase the capacity of
an APTIX emulation system [1], two of them may be
combined as shown in Figure 4, where the squares repre-
sent FPGAs and the circles FPICS. The following results
of HDP and hMETIS show, that neglecting the limita-
tions, valid partitions are not guaranteed. In Table 3, the
first two systems contain 10 FPGAs, the second two sys-
tems 16 FPGAs.

Figure 4: Combination of two APTIX systems

Table 3: Connected APTIX-Systems

APA HDP hMETISdes.
b øp t[min] b øp t[min] b øp t[min]

parpe 8 106 1:17 8 94 0:32 (10) (178) (3:58)
t18 9 146 2:01 (8) (148) (1:10) (10) (180) (3:43)
sp7 (./.) (./.) (2h23) (11) (395) (1h02) (16) (283) (3:22)
s4md 11 370 10:24 (11) (356) (3:57) (16) (250) (11:22)

Table 1: Completely connected FPGAs

APA HDP hMETISdesign FPGA
Type b øp t[min] b øp t[min] B øp t[min]

watch 220 pins 2 21 0:19 2 14 0:06 2 14 0:02
sab 2.5 kgates 7 203 23:21 5 212 15:48 7 154 0:14
pe 7 181 17:06 7 191 45:10 25 87 0:43
iir 7 101 1:25 7 101 0:18 7 112 0:27

fidct 240 pins 4 215 6:19 4 199 2:05 4 183 0:30
t17 20 kgates 3 145 0:24 3 145 0:29 3 141 0:46
sp7 (./.) (./.) (8h0) (40) (225) (3h31) (25) (150) (4:05)

parpe 4 94 0:21 4 94 0:33 4 118 1:43
t18 6 200 1:46 7 160 1:11 6 176 2:58

s4md 25 225 8:12 (26) (113) (3:47) (25) (181) (13:00)
sp7 440 pins 11 391 1h12 11 395 1h02 (25) (150) (4:05)
t18 40 kgates 3 144 3:09 3 135 0:46 3 165 2:03

s4md 9 394 6:08 8 402 3:58 (25) (181) (13:00)

The netlist ‘sp7’ is too complex to be partitioned suc-
cessfully by any of the three algorithms. The other netlists
could all be successfully partitioned by APA, wheras out
of the six runs of HDP and hMETIS only one resulted in a
partition which could be mapped onto the emulation sys-
tem.

4.3 Directly Connected Chips

The WEAVER board [9] is a system with an architec-
ture consisting of FPGAs which are connected directly
without programmable routing circuits. In the following
example two boards have been combined as shown in
Figure 5. The partitioning results are presented for the
design ‘iir’. It is assumed that pin multiplexing will be
applied to virtually increase the number of available pins
while sacrificing emulation speed [10].

Figure 5: Combination of two WEAVER boards

Table 4: Directly connected chips

APA HDP hMETISx
b øp t[min] b Øp t[min] b øp t[min]

1 (./.) (./.) (2:53) (7) (103) (0:42) (8) (108) (0:26)
2 7 181 1:49 (7) (101) (0:19) (8) (108) (0:26)
4 6 247 4:44 6 112 0:19 8 108 0:26

The results in Table 4 demonstrate that without the
help of pin multiplexing (x=1), neither of the three algo-
rithms is able to find a valid partition. With the use of
multiplexing, for APA a factor x=2 is sufficient, while the
other two algorithms require a factor x=4. The maximum
achievable emulation frequency, under neglection of other
effects, will be twice as high with the use of APA than
with the use of HDP or hMETIS.

4.4 Heterogeneous Systems

In the following example, an APTIX system has been
equipped with two different types of FPGAs. This is a
realistic situation, as the system enables the user to reuse
existing hardware in combination with more recent types
of FPGAs to provide enough capacity for larger designs.
In this case, each FPGA has 240 pins and the size as indi-
cated in Figure 6.

Figure 6: Heterogeneous system

Table 5: Partitioning for heterogeneus systems

APA HDP hMETIS
FPGA Pins Gates Pins Gates Pins Gates

1 139 33950 132 20802 157 23682
2 168 11067 132 20802 200 15765
3 217 19093 203 16804 156 9497
4 224 15804 117 10158 91 10081
5 0 0 232 11348 141 20889

Σ 748 79914 816 79914 745 79914
pro FPGA 187 19979 163 15983 149 15983
time 1:42 1:11 2:45
result succesful failed failed

Neither HDP nor hMETIS are able to specifically ad-
dress this case. As shown in Table 5, APA achieves a
valid partition with only four FPGAs. In this case, the
exceeding of the maximum values was comparably small.
For heterogeneous structures with larger differences in
FPGA sizes or more than two different types, the advan-
tage for APA will be even bigger.

4.5 Example of Improvement by Combination

The following case gives an example for the initially
stated hypothesis that overestimating given pin restrictions
will yield better results than just using the exact limits.

In the described subproblem, there are two FPGAs pre-
sent, with 120 pins each. The graph is clustered by apply-
ing HDP, using the given FPGA parameters as limits. As a
result, the six cluster nodes of Table 6 have been created,
which have to be distributed into the two FPGAs.

Table 6: Blocks created by HDP

Name Pins Gates
/IIR/MAIN_ADD_88_PLUS_1 114 2587
/IIR/MAIN_MUL_83_MULT 115 4618
/IIR/MAIN_MUL_71_MULT 104 4596
/IIR/INST1 89 251
/IIR/INST3 108 199
/IIR/INST4 70 106

Σ 600 12357

The demonstrated result of clustering the graph would
be the final result when using HDP to partition the netlist.
This means that six FPGAs would be required.

APA uses the created blocks as nodes and places them
into the two target FPGAs. After the placement, the re-
sulting blocks exceed the allowed pin limits (see Table 7).

Table 7: Result after prepartitioning

Block Pins Gates
1 168 7404
2 169 4953

Σ 337 12357

This is the basis for the optimization step. It finally
leads to a number of cut nets, which is clearly beneath the
allowed limit as shown in Table 8.

Table 8: Result after optimization

Block Pins Gates
1 75 7211
2 78 5146

Σ 153 12357

As a result, two FPGAs are sufficient for emulating the
netlist instead of six FPGAs, required by HDP. This
shows that it is advantageous to initially exceed the num-
ber of available pins and reduce them later in optimization
steps. The demonstrated effect can regularly be observed
with various designs and architectures.

5 Conclusions

We presented a novel approach for partitioning netlists
for emulation. The algorithm is able to take the formal
description of the target architecture into account and can
adapt the partitioning result to this exact description. It
makes use of existing algorithms to cluster the netlist and
to optimize the result in combination with a new approach
of finding a starting solution with the help of a two-
dimensional placement.

The experimental results show that the algorithm is
competitive for architectures with full interconnect with
respect to the required runtime and FPGAs. The special
strength of the algorithm lies in the application for archi-
tectures with limited interconnect resources, where the
other algorithms are not able to consistently deliver parti-
tions. Results for a variety of different architectures have
demonstrated the advantages.

The algorithm facilitates the use of emulation and rapid
prototyping, as it is not necessary to have a full intercon-
nect structure between FPGAs. Instead, it is possible to
reuse existing hardware or create architectures which
require a reduced hardware effort.

References

[1] Aptix: “MP4 System Explorer User’s Manual”,
1998.

[2] Varghese, J.: “An Efficient Logic Emulation Sys-
tem”, in: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 1, No. 2, June
1993, pp. 171-174.

[3] Harbich, K.; Hoffmann, H.; Barke, E.: “A New
Hierarchical Graph Model for Multiple FPGA Par-
titioning”, Proceedings of WDTA, June 1998.

[4] Behrens, D.; Harbich, K.; Barke, E.: “Hierarchical
Partitioning”, ICCAD ’96: International Confer-
ence on Computer Aided Design, San Jose, 1996,
pp. 470-477.

[5] Fiduccia, C.; Mattheyses, R.: “A Linear-Time
Heuristic for Improving Network Partitions”, Proc.
Design Automation Conf., 1982, pp. 175-181.

[6] C. Lee, "An Algorithm for Path Connections and
its Applications", IRE Transactions on Electronic
Computers, Sept. 1961, pp. 346-365.

[7] Karypis, G.; Aggarval, R.; Kumar, V.; Shekhar, S.:
“Multilevel Hypergraph Partitioning: Application
in VLSI Domain”, 34th IEEE/ACM Design Auto-
mation Conference, 1997, pp. 526-529.

[8] EDIF Version 2 0 0. EIA Interim Standard No. 44,
1987.

[9] Koch, G.; Kebschull, U.; Rosenstiel, W.: “The
Weaver Prototyping Environment for Hard-
ware/Software Co-Design and Co-Debugging”,
DATE 98, Designer Track, Paris, 1998.

[10] Babb, J. et al.: “Logic Emulation with Virtual
Wires”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 16,
No. 6, 1997, S. 609–626.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

