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Abstract

In today’s deep submicron technology, the coupling ca-
pacitances among individual on-chip RC trees have essen-
tial effect on the signal delay and crosstalk, and the intercon-
nects should be modeled as coupled RC trees. We provide
simple explicit formulas for the Elmore delay and higher
order voltage moments, and a linear order recursive algo-
rithm for the voltage moment computation for lumped and
distributed coupled RC trees. By using the formulas and
algorithms, the moment matching method can be efficiently
implemented to deal with delay and crosstalk estimation,
model order reduction and optimal design of interconnects.

1 Introduction

The RC tree is a typical model for on-chip interconnects.
The Elmore delay and the moment matching method have
been successfully used for the delay estimation, model order
reduction and interconnect optimization [1]. These tasks can
be very efficiently implemented as there are explicit formu-
las and a linear order algorithm for the moment computation
of such RC trees [2]. In today’s deep submicron technology,
due to the dense placement of the interconnect wires and
the large aspect ratio of wire height over wire width, the
coupling capacitance between two wires may be even larger
than the ground capacitance of each wire and can never be
neglected. In this case, the interconnects should be mod-
eled by several RC trees with floating capacitors connected
among the tree nodes. We call such kind of interconnect
model coupled RC trees.

It is well known that the capacitive coupling has signif-
icant effects on the signal delay and crosstalks. Unfortu-
nately, no simple formulas and linear order algorithms have
been published for the computation of the Elmore delay and
higher order voltage moments of such coupled RC trees so
that these effects cannot be as efficiently dealt with as in the
single RC tree case. In the literature, three ways are often

used. The first one relys on the decoupling technique, which
is typically restricted to some very simple cases [6, 7]. The
second one relys on the general methods for RC interconnect
networks [8, 9], where the advantage of the tree structure is
not taken so is not efficient enough. The third one uses very
rough model, e.g., using the length of overlap between two
wires as the metric of the crosstalk[10], which is far from
accurate.

In this paper, we provide explicit formulas and a linear
order recursive algorithm for the computation of the Elmore
delay and higher order voltage moments of coupled RC trees
consisting of lumped and/or distributed elements. They are
based on the moment model of a capacitor, which is a current
source with a known value. We use the technique of source
splitting to split each floating current source into two ground
sources so that the coupled RC trees are decoupled during
moment computation and the algorithm for a single RC tree
can be applied. For distributed RC lines, by using the same
model and technique for distributed capacitances, we show
that the moments of voltage and capacitive current along a
line are polynomials of the coordinate of the line. We derive
recursive formulas for the coefficient of these polynomials
and set up an exact moment model for RC lines. With these
models, we extend the linear moment computation algo-
rithm for a single RC tree with lumped elements to coupled
RC trees with both lumped and distributed elements with-
out the need of discretization of the distributed lines. This
algorithm is exact and very efficient. It is useful in the delay
and crosstalk estimation, model order reduction and optimal
design of such type of interconnects.

2 Coupled RC trees with lumped elements

2.1 Definitions

A set of coupled RC trees is an RC network, which
consists of a number of RC trees with floating capacitors
connected among the non-ground nodes of individual trees.
Let ������	��
 be the node voltage at the j-th node of the i-th tree,



and
� �� ��� 
 its Laplace transform. Let

� �� ��� 
������	�

0

� �� 	 � 	 ,
then

� �� 	 is called the k-th order moment of
� �� ��� 
 . The

moments of currents are similarly defined.

2.2 The Elmore delay

2.2.1 Formula

It is well known that when a unit impulse voltage is applied
to the root of the i-th tree and all other roots are grounded, the
negative of the first order moment � � �� 1 is called the Elmore
delay of node voltage � �� �	��
 . From the i-v characteristic of
a capacitance 
 : � ��� 
���� 
 � ��� 
 , and let � 	 and

� 	 be the
k-th order moment of � ��� 
 and

� ��� 
 , respectively, we have� 0 � 0 and � 	 � 
 � 	�� 1; i.e., the capacitor behaves as an
open circuit when the 0-th order moment is concerned, and a
current source 
 � 	�� 1 when the k-th ( ��� 1) order moment
is concerned. Therefore, when we are concerned about the
Elmore delay of � ���� ��
 , all the 0-th order voltage moments
on the trees are equal to their root voltages. Let � � be the
tree node set of the i-th tree, and � �� be the p-th node in � � ;
then,

� �� 0
� 1 ��� ���� � � and

���� 0
� 0 ��� ���� � �! #"%$�'& .

For the first order moment, each capacitor 
 connected to� �� , either grounded or floating, behaves as a current source
valued 
 . Let 
 �( � be the total capacitance connected to the
node � �� , and � �) � ��� 
 be the total capacitive current flowing
out of � �� , then its first order moment � �) �+* 1 � 
 �( � . Let, �� be the path from the root of the i-th tree to node � �� ,, �� � � , ��.- , �� and / �� � the total resistance on the path

, �� � .
Then, the current � �) �0* 1 flows along path

, �� and causes a
component �1/ � � 
 �( � for

� �� 1. Also, note that
� �2 1 � 0.

Therefore, we have� �� 1
� �43 � / �� � 
 �( � (1)

Denote the Elmore delay of � �� � ��
 as 5 �6 � , then

5 �6 � � 3 � / �� � 
 �( � (2)

It can be seen that the coupling capacitances in the active
tree have the same contributions to the Elmore delay as the
ground capacitances do, and the formulas of the Elmore
delay are the same for both the single tree and coupled RC
trees.

2.2.2 Effect of non-zero initial states on signal delay

It is well known that the signal delay in a net is affected
by the signals at its neighbour[3], especially when the two
nets are supplied by complement digital signals at the same
time, i.e., one net’s source voltage goes up from 0 to 1, and
another one’s from 1 to zero. In the extreme case that the

source voltage of the second net is a step down function,
it is equivalent to the case that the voltage supply for the
second net is zero but its initial states are 1. Now we give a
formula to show the effect of the non-zero initial states on
the Elmore delay of the signal propagation in the first net.
Suppose that the i-th tree is in the zero initial state and
supplied by a unit impulse voltage, and let 7 � be its ca-
pacitively coupled trees with unit valued initial states and
zero valued voltage supplies. Recall that from the i-v char-
acteristic of a capacitor C: &8� 
49#:9<; , when � � 0 
�� 1,� ��� 
=�>� 
 � ��� 
 �?
 � � 0 
=�>� 
 � ��� 
 �%
 , where a cur-
rent source valued 
 and in the opposite direction of the
capacitor voltage represents the effect of the initial state.
Let 
 �@A� be the total coupling capacitance connected among� �� and the nodes in the trees in 7 � , i.e., 
 �@A� � � � 1 BDCFE 
 � � 1�#�

1
,

where 
 � � 1�#�
1

is the coupling capacitance connected between
nodes � �� and � � 1�

1
; then there are total capacitive current
 �@A� going along the path

, �� from its source to node � �� ,
whose contribution to the zero-th order moment of

� �� 0 is�1/ �� � 
 �@A� , and the component of the zero-th order moment
of
� �� 0 caused by the effect of the nonzero initial states of

the coupled neighbouring trees is

� � * �HG � ;�
0

� � 3 � / �� � 
 �@A� (3)

and the component of
� �� caused by the source is

� � * 2� � 1 �I3 � / �� � 
 �( � �KJMLNLOL (4)

where the superscripts "init" and "s" refer to the effect of the
initial states and the source voltage, respectively.
Now suppose that a unit step voltage is applied to the i-th
tree, then by superposition,

� �� � 1� � � * 2� J � � * �PG � ;� �
� 1� � 1 � 3 � / �� � 
 �( � ��J%LOLNL 
 � 3 � / �� � 
 �@A� JMLNLOL

� 1� � 1 � � 3 � / �� � � 
 �( � J 
 �@A� 
QJMLNLOL 
 (5)

Now the negative coefficient of � in the parentheses� � / �� � � 
 �( � J 
 �@A� 
 is an "equivalent Elmore delay" of
���� �	��
 . Note that for each 
 � � 1�#�

1
� 
 �@A� , it is in the set of 
 ( � ,

too, and the effect of the coupling capacitance to the Elmore
delay due to the nonzero initial states in the worst case is
equivalent to doubling the capacitance value.
Example 1.

For the coupled trees show in Fig.1, tree 1 is supplied by� 12 � 1 and tree 2 is supplied by
� 22 � 0. When tree 2 is in



zero initial states, the Elmore delays of � 1, � 2 and � 3 are as
follows:

5 6 1 � / 1 � 
 1 J 
 7 J 
 2 J 
 8 J 
 3 J 
 9 

5 6 2 � / 1 � 
 1 J 
 7 
QJ � / 1 J / 2 
 � 
 2 J 
 8 J 
 3 J 
 9 


5 6 3 � / 1 � 
 1 J 
 7 
 J � / 1 J / 2 
 � 
 2 J 
 8 

J � / 1 J / 2 J / 3 
 � 
 3 J 
 9 


When the initial states of tree 2 are 1, the "equivalent Elmore
delays" � 5 �6 
 of � 1, � 2 and � 3 are as follows:

5 �6 1
� / 1 � 
 1 J 2 
 7 J 
 2 J 2 
 8 J 
 3 J 2 
 9 


5 �6 2
� / 1 � 
 1 J 2 
 7 
 J � / 1 J / 2 
 � 
 2 J 2 
 8 J 
 3 J 2 
 9 

5 �6 3

� / 1 � 
 1 J 2 
 7 
 J � / 1 J / 2 
 � 
 2 J 2 
 8 

J � / 1 J / 2 J / 3 
 � 
 3 J 2 
 9 


Compared with the first case, it can be seen that the coupling
capacitances 
 7, 
 8 and 
 9 are doubled in the second case.

2.3 Higher order moments

Consider the k-th order voltage moments with �%� 1.
As mentioned in Sec.2.2, each ground capacitance 
 ��
connected to node � �� is equivalent to a current source
 �� � �� * 	0� 1, and each coupling capacitance 
 � 1 � 2�

1
�

2
connected

between nodes � � 1�
1

and � � 2�
2

is equivalent to a current source
 � 1 � 2�
1
�

2
� � � 1�

1
* 	�� 1 � � � 2�

2
* 	0� 1


 with direction from node � � 1�
1

to

node � � 2�
2
. Using the source splitting technique in circuit

theory, this floating current source can be split into two
ground sources, with one from node � � 1�

1
to ground valued� 	 � 
 � 1 � 2�

1
�

2
� � � 1�

1
* 	0� 1 � � � 2�

2
* 	�� 1


 , and the other from node � � 2�
2

to ground valued � � 	 � 
 � 1 � 2�
1
�

2
� � � 2�

2
* 	�� 1 � � � 1�

1
* 	0� 1


 , as shown
in Fig.2. It is obvious that the two sources contribute to
the k-th order voltage moments in the & 1-th and & 2-th tree
respectively in the way similar to that the ground sources
 � 1�

1

� � 1�
1
* 	�� 1 and 
 � 2�

2

� � 2�
2
* 	�� 1 do. The splitting of the floating

current source into two ground sources is equivalent to de-
coupling the coupled RC trees during moment computation,
and for each decoupled RC tree, the moment formulas and
moment computation algorithm for a single RC tree can be
applied. Based on this reasoning, we have the formulas for
the moments of a set of coupled trees as follows, where 
 
 ��
is the set of coupling capacitances connected to node � �� :

� �� 0
� � �2  1

� & ���
(6)

� �� 	 � 3 � �1/ �� ��� 
 �� � ��+* 	�� 1
J 3) E E 1���

1 B ) ) E�

 � � 1�#�

1
� � ��+* 	�� 1 � � � 1�

1
* 	�� 1


	�

� 3 � �1/ �� ��� 
 �( � � ��+* 	�� 1 � 3) E E 1���
1 B ) ) E�


 � � 1�#�
1

� � 1�
1
* 	0� 1


  � � 1

(7)
In the last expression of the above equation, the first term in
the summation �1/ �� � 
 �( � � ��0* 	0� 1 is the same as in the single
RC tree case, and, in addition, each coupling capacitance has
a contribution / �� � 
 � � 1�#�

1

� � 1�
1
* 	�� 1 to the moment

� �� * 	 , which
is particular for the coupled RC trees.

Example 2.
For the coupled RC trees shown in Fig.1, for � � 1, we
have�

1 * 	 � �1/ 1 
 � 
 1 J 
 7 
 � 1 * 	�� 1 � 
 7
�

4 * 	�� 1 J � 
 2 J 
 8 
 � 2 * 	�� 1

� 
 8
�

5 * 	�� 1 J � 
 3 J 
 9 
 � 3 * 	0� 1 �I
 9
�

6 * 	�� 1 ��
2 * 	 � �1/ 1 
 � 
 1 J 
 7 
 � 1 * 	�� 1 � 
 7

�
4 * 	�� 1 � � � / 1 J / 2 



 � 
 2 J 
 8 
 � 2 * 	�� 1 � 
 8
�

5 * 	�� 1 J � 
 3 J 
 9 
 � 3 * 	�� 1 � 
 9
�

6 * 	�� 1 ��
3 * 	 � �1/ 1 
 � 
 1 J 
 7 
 � 1 * 	�� 1 � 
 7

�
4 * 	�� 1 �

� � / 1 J / 2 
 
 � 
 2 J 
 8 
 � 2 * 	�� 1 � 
 8
�

5 * 	�� 1 �
� � / 1 J / 2 J / 3 
 
 � 
 3 J 
 9 
 � 3 * 	�� 1 � 
 9

�
6 * 	�� 1 �

3 Coupled RC trees with distributed lines

3.1 Moment model of distributed RC lines

An RC line located in Tree & and connected between
nodes � �� and its father node � � ��
 �	� is denoted by � & ��� �� .
For simplicity, we consider two coupled lines � & ��� � 1�

1
and

� & ��� � 2�
2
, and the result is easily extended to multiple coupled

lines. Assuming that the length of the two lines is normalized
to 1, and � � 0 and � � 1 correspond to the near and far
end of each line. For � & ��� �� , let 
 �� and / �� be its total
ground capacitance and resistance, respectively,

� �� 	 � � 
 the� -th order voltage moment at coordinate � , � �) * � 	 � � 
�� � the
total k-th order moment of capacitive current at coordinate z
with an infinitesimal interval � � , � �� 	 � 0 
 and � �� 	 � 1 
 the k-th

order current entering and leaving the line. Let 
 � 1 � 2�
1
�

2
be the

total coupling capacitance between � & ��� � 1�
1

and � & ��� � 2�
2
.

We first show by induction that
� �� 	 � � 
 and � �) * � 	 � � 
 are

polynomials of � , and give recursive formulas to compute
the coefficients of the polynomials.

Starting from order 0, it is known that � �) * � 0
� � 
 � 0 which

is denoted by � �� * 00
� 0. Similarly,

� �� 0
� � 
 � � �� 0

� 0 
 � � �2
is a constant, and is denoted by � �� * 00.
For the ��� � " order moment with ��� 0, for � & ��� �� , we
have

� �) * � 	 � � 
 � 
 �� � �� * 	�� 1
� � 
 J 
 � ���� � � �

� �� * 	�� 1
� � 
 � � ���� � * 	�� 1

� � 
 

(8)



where when & �%& 1 and
� � �

1, & � �%& 2 and
� � � �

2, and vice
versa, and

� �� 	 � � 
 � � �� 	 � 0 
 � / �� � � �� 	 � 1 
 � J ���
0 � � �) * � 	 � � 
�� �

J �
� 1

� � �) * � 	 � � 
�� � 
 (9)

It can be seen from the formulas that when
� �� 	 � � 
 is a

polynomial of � of order
�

, � �) * � * 	�� 1
� � 
 is a polynomial of z

of the same order, and
� �� * 	�� 1

� � 
 is of order
� J 2. It can be

derived that
� � 2 � � � 1 
 . Let � �) * � 	 � � 
 � � 2 
 	�� 1

�
G � �� * 	 G �

�
and

� �� 	 � � 
 � � 2
	� 


0 � �� * 	 G �
�
. From Eq(8), we have

� �� * 	 G � 
 � � �� * 
 	�� 1
� G J 
 � � �� � � � � �� * 
 	�� 1

� G � � � �� � * 
 	�� 1
� G 
 (10)

and from Eq(9), we have we have

� �� * 	 0
� � �� 	 � 0 
 (11)

� �� * 	 1
� �1/ �� � � �� 	 � 1 
 J 2 
 	�� 1

�
3
G 
 0

� �� * 	 G� J 1

 (12)

and

� �� * 	 
 G � 2
� � / �� � �� * 	 G� � J 1 
 � � J 2 


 
0
� � �

2 � � 2 (13)

Eqs(10)-(13) form a set of recursive formulas to compute
the parameters � ’s and � ’s. When the k-th order ’s � ’s are
known, � �� 	 � 0 
 � � �� 	 � 1 
 J�� �� 	 (14)

where

� �� 	 � � 1

0
� �) * � 	 � � 
�� � � 2 
 	�� 1

�
3
G 
 0

� �� * 	 G� J 1
(15)

is the total k-th order capacitive current moment contributed
by � & ��� �� , and

� �� 	 � � �� 
 �	� * 	 ��/ �� � �� 	 � 1 
 �
	 �� 	 (16)

where

	 �� 	 � � 1

0
� � �) * � 	 � � 
�� � � 2

	
3
G 
 0

� �� * 	 G� J 2
(17)

is the total k-th order moment of the voltage drop on the
line contributed by its k-th order capacitive current moment.
From the above two equations, the moment model of an RC
line can be presented by Fig.3 .

3.2 Equation of voltage moments

The voltage moment
� �� 	 is contributed by both lumped

and distributed elements. The component corresponding to
the contribution of lumped elements is given by Eq(7). From
Fig.3, it can be seen that the current source � �� 	 is connected
to node � � � 
 � � so that the contribution of the current source� �� 	 is �1/ �� 
 � � * � � �� 	 , and for each � & ��� �� on the path

, �� ,

the voltage source 	 �� 	 contributes an amount of ��	 �� 	 . We
introduce a function � & ��� � &  �
 
 such that � & ��� �A&  �
 
 � 1 iff
the branch connected between � �� and � � ��
 � � is a line; and
� & ��� �A&  �
 
 � 0, otherwise. We define a function


�� � " � &  �  �
 

such that


�� � " �A&  �  �
 
 � 1 if
, �� � , �� ; and


�� � " �A&  �  �
 
��
0, otherwise. Then, we have the formula for the voltage
moments with order ��� 1 as follows, where 
 �� 0 is the
lumped ground capacitance connected to � �� .
� �� * 	 � 3 � � �1/ �� � 
 
 �� 0

� ��+* 	�� 1
J 3) E E 1���

1 B ) ) E�

 � � 1�#�

1
� � ��+* 	�� 1 � � � 1�

1
* 	�� 1


 �

J � & ��� �A&  �
 
 
 �1/ ���
 � � * � � �� 	 � 
�� � " �A&  �
  � 
 	 �� 	 � � (18)

4 Algorithm for moment computation

From the principles described in the previous sections,we
provide an efficient recursive algorithm for the computation
of moments in coupled RC trees. The computation is done
from order 0 up to some specified maximum order � with
the use of KCL and KVL of the moment model of the circuit.
With order � , the computation is carried out by computing
current moments from the leaves of each tree upstream to
its root, then computing the voltage moments from the root
of each tree downstream to its leaves. The algorithm is
described as follows.
��� � ��� � 
 � � 
�� � � � & � � � ������� /���	 / 

� � �"! � � ! � �"! ��� � ��� � � 
 ;# � ! � � � 1; � � ���$��� /���	 / ; � J J 


� if(RC lines exist) ��� � � 
 ;
for each tree 5 � do� 
 � !%! ��� � �A&  / � � � �A& 
  � 
 ;�&� � � �(' � �A&  / � � � � & 
  O � 
 ; � ��� �"! � � ! � �"! ��� � ��� � � 
� for each tree 5 � with source voltage

� �2 do
for each node � �� in 5 � do� �� 0

� � �2 ;�
� � � � 
� for each � & ��� �� do

Compute � �� * 
 	0� 1
� G , � � 0

 LNLOL  2 � � � 1 
 ;
for each � & ��� �� do



� Compte � �� * 	 G , � � 0
 LOLOL  2 � � � 1 
 ;

Compute � �� 	 and 	 �� 	 ; ��
 � !%! ��� � ( � ! � � & , � � � � � ,
� ! � �"! � )� � � !%! ��� � =0;

if( � �� $� / � � � �A& 
 )
� � � !%! ��� ��� 
 �� 0

� � �� * 	�� 1;

for each coupling capacitance 
 � � 1� �
1
� 
 
 �� do

� � ! ��� � J�� 
 � � 1� �
1

� � � �� * 	�� 1 � � � 1�
1
* 	�� 1


 ; �
for each � �� � of the son node of � �� do
� � !"! ��� � J�� 
 � !%! ��� � � &  �%�  � 
 ;� �� 	 � 1 
 � � � !%! ��� � ;

if( � & ��� � &  � 
 � � 1)
� � !"! ��� � J���� �� 	 ;

return( � � !%! ��� � ); �� � � � �(' � ( � ! � � & , � � � � � , � � � � � � � 
 , � ! � �"! � )� if( � �� � � / � � � � & 
 )� �� 	 � 0;
else� � �� 	 � � �� 
 �	� * 	 ��/ �� � � �� 	 � 1 
 ;

if( � & ��� � &  � 
 � � 1)
� �� 	 � � 	 �� 	 ; �

for each � �� � of the son node of � �� do�&� � � � ' � �A&  �%�  �  � 
 ; �
When applying the algorithm to lumped RC trees, for each
order, each grounded capacitor is visited once and each float-
ing capacitor visisted twice in the call of function 
 � !%! ��� � ,
and each floating node is visited once in the call of function� � � � �(' � . Therefore, the computation cost is proportional
to the total number of capacitors times the maximum or-
der of interest. In practical cases, the number of capacitors
connected to each node is limited by a constant, and the
computation complexity of the algorithm can be expressed
as

� � � � 
 , where � is the number of the nodes in the net-
work, and � is the maximum order required. This is a linear
order algorithm and is very efficient.

When applying the algorithm to distributed RC trees, sup-
pose that there is an RC line connected between each floating
node and its father node, then the computation complexity is� � � � 2 
 , as the number of � ’s and � ’s grows linearly with
the order. However, if discrete model is used to represent
each RC line as used in RICE [11], if for each line there are�

sections in the model, then the computation cost will be� � � � � 
 . It has been shown [2] that in order to get exact
moment matching by a nonuniform discrete model,

� � � ,
and it is often seen in the literature, e.g. in [12], that a large
number of uniform RC sections are used to model a line and
the number of sections is proportional to the length of the
line, but in our algorithm the computation cost is indepen-
dent of the line length. Therefore, this algorithm runs both
more accurately and much faster than the using of discrete
model for RC lines.

error 1 2 A1 S2P NEW
max(%) 25.9 18.4 ( � ) 67.2 65.3 25.1

average(%) 17.5 8.93 ( � ) 12.4 17.7 5.63
large items 29 0(5) 9 17 2

Table 1. Test data for coupled RC lines

error 1 2 A1 S2P NEW
max(%) 66.4 41.7 ( � ) 93.2 154.3 39.9

average(%) 23.5 6.57 ( � ) 15.0 37.3 7.41
large items 45 2(10) 14 56 4

Table 2. Test data for coupled RC trees

5 Examples

Based on the efficient algorithm for moment computa-
tion, we developed a new crosstalk model for coupled RC
trees. The model is based on the moment matching model
with slight modifications so that the model is more accurate
and always stable. Because of the limitation of the paper,
there is no space for its detailed description, which can be
found in [5]. We have tested 140 examples, and the results
are summerized in Table 1 and 2 for coupled RC lines and
trees, respectively. In the first line of each table, "1", and
"2" refer to the one pole and two pole model generated by, � � ´� approximation with moment matching up to the order
of 2 and 3. "

�
1" refers to the model by [13], which is an

approximated second order
, � � ´� model. " 7 2

,
" refers to

the model of [12], and " � 	�� " refers to our new model.
The item "large items" refers to the number of tests that the
absolute error exceeding 20%. It can be seen that our new
model works better than the models marked "1", "A1" and
"S2P". Compared with the model marked "2" (the 3rd order, � � ´� model), note that there are 5 cases in the RC line tests
and 8 cases in the RC tree tests that the 2-pole model is
unstable, the data listed outside the parentheses only refer to
the stable tests and those inside the parentheses refer to all
the tests. It can be seen that the new model performs better
than existing models thus far.

6 Conclusions

We have provided simple explicit formulas for Elmore
delay and higher order voltage moments and a linear order
recursive algorithm for the moment computation for coupled
RC trees with lumped and/or distributed elements. As there
is no discretization for distributed EC lines, it is exact and
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very efficient. With the explicit formulas, the formulas for
the sensitivity of moments w.r.t. the circuit parameters can
be easily derived, which will be very useful when intercon-
nect design and optimization is concerned. These formulas
and algorithms provide an efficient way to deal with the de-
lay and crosstalk estimation and model order reduction, and
will be beneficial for the interconnect design, optimization
and simulation. These formulas and algorithms can also
be easily extended to RLC trees with both capacitive and
inductive coupling.
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