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ABSTRACT

We propose a new, efficient and accurate localized in-
ductance modeling technique via windowing in a manner
that is analogous to localized capacitance extraction. The
stability and accuracy of this process is made possible by
twice inverting the localized inductance models, and in
the process exploit properties of the magnetostatic inter-
actions as modeled via the susceptance (inverse induc-
tance). Application of these localized double-inverse
inductance models to actual IC bus examples demon-
strates the significant improvement in simulation effi-
ciency and overall accuracy as compared to alternative
methods of approximation and simplification.

I. INTRODUCTION

For modern digital ICs the logic path delays can be dom-
inated by the influence of parasitic capacitive and inductive
coupling among the metal interconnect wiring. As technolo-
gies push the performance to its limits, it is necessary to find
increasingly more detailed interconnect models to predict
the signal delay more accurately. The growing complexity
of today’s integrated systems, however, makes this computa-
tionally very expensive. Increasing system size makes effi-
cient analyses of parasitics and performance imperative.
Reconciling these two contradicting requirements is an
extremely difficult task. Full three-dimensional interconnect
models are generally of unmanageable size and density suct
that they are not useful for analysis and simulation purposes
without additional approximations and simplifications.

Of particular focus is the modeling of on—chip induc-
tance and its interactions with on—chip capacitance. While
operating frequencies are making on—chip inductance evi-
dent, localizing the magnetic couplings for efficient extrac-
tion and analysis is challenging. Localized extraction
techniques have been used with some success in the past fc
reducing the size of interconnect models. It has been dem-
onstrated, however, that simple truncation — merely dis-
carding long range couplings — can destroy the stability of
the electromagnetic (EM) model. Shell models [4] have
been applied successfully for stable localized extraction, but
finding the correct shell sizes for a particular target accuracy
is not straightforward.
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In this paper we propose a novel localized extraction
technique for inductance modeling via windowing --- cap-
ture local interactions within small windows, then combine
these localized models into a complete inductance matrix.
This approach does not localize couplings in the inductance
matrix directly, but begins with partial inductance models
for small localized windows. These small, localized induc-
tance matrices are inverted individually to generate the cor-
responding localizedusceptance matrices 8s we will
show in this papers has properties similar to the capaci-
tance matrix, such as shielding, which can be exploited to
combine the localized window models into a complete,
sparse susceptance matrix. We then invert this sparse sus-
ceptance matrix and produce a complete inductance matrix
that we can further sparsify in an accurate and stable man-
ner.

In [7] the direct use of the inverse of inductance for sim-
ulation has been suggested, but widespread commercial
support for these models is not yet available.

Il. WINDOWING FOR INDUCTANCE EXTRACTION

The inductance extraction flow we are proposing in this
paper consists of the following steps:

* Generate a partial inductance matti® for active con-
ductorj and all conductors within a window around it.

Find the current flowing through these conductors for
which the total flux for active conductgrthrough its
loop with infinity is unity and for each other conductors
in the window the total flux is zero. This produces the
susceptive couplings?; between active conductgr
and the group of conductors within a window around it.

Repeat these two previous steps for all conductors in
turn as active conductors.

Merge all S(j)ij submatrices into one complete, sparse

susceptance matrix that approximates the magnetic
interactions for the entire interconnect system.

The combined susceptance matrix will be asymmetric,
since§j)ij is typically not equal tcs(i)ij. By choosing the
value with thesmaller magnituddor both entries, we

can prove that the complete susceptance model can be
rendered symmetric and stable.



* Invert the sparse, symmetric susceptance matrix to gen-and must be non-negative (see [2][pg. 237]). In our matrix
erate an inductance matrix. The truncation in the suscep-notation we then have
tan main makes this matrix much ier t rsi
ance doma akes this ma uch easier to sparsify ?TK?ZO ®)

than the original inductance model.
which is zero if and only if no electric and magnetic sources

. . . . are present. It follows thd, as well asS, must be positive
This double—inverse inductance matrix can then be useddefir?ite S P

for timing analysis or simulation without loss of generality. . e . '
We present examples of the efficacy of these models in Sec- .D|agonal Elements of5 are positive:K is positive defi-
tion V. But we will first begin by describing some important hite, S0 we know
properties of capacitance and susceptance matrices which 0y#0 7TKV>0 (6)
facilitates this extraction methodology.

lll. PROPERTIES OFEM INTERACTION MATRICES to exist and be unique), wheegis the unit vector with 1 as

We assume a boundary .eIe.ment approach where Fhelth element, then we haye= Se.  and with (6) find
source (charge/current) density is constant for each section '

If we choosey to be the solution &fy = ¢, (which has

(panel/filament). PN
) | | | Oe, : € S KSe>0 (7)
Wi =@ A Ay AL 1) With SK=1 we get
is the vector of average potentials for seciiohhe field type T.T
gep yp Oe : €S g=S;>0 (8)

a is O for the electrostatic and 1, 2 or 3 for thgzmagneto- |
static cases. Thdiscretesource vector is This equates to all diagonal elementsSdfeing positive,
sinceSis a square matrix.

.
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whereq; andl; sy, are the charge and the three current com-

ponents for this section. Thgy,, 1 are the dimensions of

sectionj. We can write the discretized electromagnetic inter-
connect interactions as

i -
Fig. 1: Current in segmeritin positivex—direction creates
Kiz1 11 [ 1 aw® gw® ®) vector potential irj in positive x—direction as well. Com-

pensating current inmust flow in negative—direction.

by defining the matrice&®. wo . Off—D|agon.aIs ofS are negative or zero:Ngxt we shoyv
. o _ that all off-diagonal elements & must be either negative
or filament volume) of sectiorfor field typea. These inturn oy zero. For the electric case € 0) this is shown in

form the four diagonal blocks of thelectromagnetic inter-  [g][pg. 223]. If we have unit potential at conductbrand

is the content (panel area

action matrix Kin zero potential everywhere else, then (8) tells us that we will
P=Ky 4) have a positive charge on conductofhis positive charge
a o will create a positive potential at the locations of all other

where) andy are formed by concatenating yor . conductors and negative charge needs to be added to all

The capacitance matrixC = &°, can be found by invert- those grounded conductors to ensure zero potential. Thus,
: . . . . - , L 0
ing thepotential matrix P = K. The inverses of theartial for a = 0 (electric fields), we find thatj #i : S;<0
; ; —kl | —g2 — k3 i .
inductance matrices,l= K-, Ly =K< andL,=K*? are the Fora = 1,2,3, we have defined the currents to be directed
susceptance matrices, 2 andS® of the system. Together  in the positivexyzdirections. So, similar to the electric case
these four blocks form thiaverse interaction matrix.S above, if we, for instance, require a unit vector potential

« Positive Definiteness ok: The term Ky  represents along conductor in x—direction, there must be, because of

(within the accuracy of the discretization) the electric scalar (8). a current flowing through conductorin positive x

and magnetic vector potential. The combined energy storedd'.re?t'on (see Fig. 1). This creates magnetlc vector potential
within the loops of the other segmefntgo get a zero vector

in the electromagnetic field ig[p(1)o(f) + j(*) TAMI/2 . potential for all other segmenfs currents innegative x
directions must flow through those segments. Similaryfor



andz—directions. So the off—diagonal elementsSsfiust be Diagonal dominance and positivity of the diagonal ele-
negative here as well (for the given current direction con- ments ofShave been shown previously. With (13) the posi-
vention). So for the entire inverse interaction matrix we find tive definiteness of the sparsifi§dollows.

Oj#i @ §;<0 9) * Shielding Effect inS: To assist in understanding the

) i i physical interpretation of susceptance, we agkiatis the

- Diagonal Dominance ofS: Since sourcesl are only .~ th th .
significance of™' column of S? Thej™ column ofSis the

found on or within the conductors in the system, we find amount of source (charge or current) necessargr flow-
that the electrostatic and magnetostatic potentials in the, 9 v

insulator satisfy Laplace’ equation with the surfaces of the ing throughthe conductors to force conducido unit (elec-

conductors and infinity being the boundaries of the domain: tric or 'magnetl'c) pqtenUaI and all other'condu.ctors to zero
potential. An individual termS;, wheni andj are far

0?9 = 9 (10) removed, must include shielding effects for the electrostatic
as well asfor the magnetostatic fields. The ‘source neces-
sary’ in some conductarto force it to zero potential already
to be unity for all conductors, then each elemengbf  must takes into account that some of the original field of the ref-
be maximal on each conductor. This is a fundamental prop- erence (unit potential) conductphas been compensated by
erty of harmonic functions — solutions of Laplace’ equa- charges/ currents on zero potential conductors closgr to
tion (see [9]). It follows that the gradient of each of the four This in turn means that the magnitude of the elemeng in

elements ofP on the surface of each conductor must bedrops off much faster with distance betweieandj. This
pointing into the conductors. For the electric case this enhances sparsification, since elements which are ‘large
means all surfaces are positively charged, because the elecenough’ inS are easier to distinguish from those that are
tric field points into the dielectric material everywhere. ‘too small’, thereby forming a much smaller set than for the

For the magnetic case this means that the vector potentiafinteraction matrix.

componentsA,, A, and A, are positive everywhere, since * Stability of S under Window Inversion: Since the shiel-
solutions of Laplace’ equation are maximal and minimal on ding effect renders all but a few short-distance couplings
the boundary of their definition domain. Here the maximum negligible, the idea to exploit this to make the inversion
(by construction unity) are the combined conductor sur- from K to S more efficient by only including those few
faces, the minimum is infinity where the vector potential is neighbors of the current unit potential conductor in the
zero by convention. Finally, since the vector potential com- inversion. That is, the inversion is restricted @gtraction
ponents are positive everywhere, currents must flow in the Windows around each conductor, thereby replacing the
positivexyzdirections in all the conductors as well, since if inversion of a huge, dens¢x N matrix —N being the total
not, there would be locations with negative vector potential Number of conductors in the system —ytimes an inver-

If we require the (electro— or magnetostatic) poten#al

components, creating a contradiction. s?on of much smallt.anj X nj. matrices. This results iN indi-
So combining the electrostatic and magnetostatic case vidual, small matricesS(j), where ny is the number of
we find conductors to which segmdrtas significant couplings.
The S(j) are all diagonally dominant, since the proof
J=sp=s 1 > so for each rows S. >0 (11) above applies to each of the small conductor subsets indi-
TR T % 1j vidually. Clearly, for this approach the couplirgy(j) need
1

not be equal t&;(i), since the set of ‘significant neighbors’
The ‘greater as’ in the first part of (11) acts element for s ysually different for different segmeriteindj. However,
element. With (8) and (9), which give the signs of tHe  when we assemble our spaenatrix for the entire system
(diagonals positive, off—diagonals negative!), we find diago- from the individualS(j), we need to ensure symmetry 9t
nal dominance fo& To guarantee positive definitenessSgfwe choose
SER A (12) S’ij = Sjji = max{§;((),S; ()} (14)
J#1 Since we know that all off-diagonal elements of any
* Positive Definiteness of Truncated: Swas shown to be  jnyerse interaction matrix are non—positive, this means we
positive definite. Due to its diagonal dominance, the positive gglect the element with tremallest magnitudd his ensures
definiteness of is preserved when off-diagonal elements tpe diagonal dominance & when assembling it from ele-
are set to zero — a property not available forFor thiswe  ments of theS(j), while preserving the largest degree of
use the following theorem from linear algebra [12][pg. 349] accuracy. With (13) we then find that the sparse approxima-
for a matrixA: tion S’ is positive definite.
If all A; >0 andA, AT diagonal dominant
then Ais positive definite. (13)



IV. DOUBLE—INVERSEINDUCTANCE MODELS The resulting double—inverted partial inductance matrix

generally contains far fewer significant elements than the

magnetic interactions for on—chip interconnect are: 1) the original mdu_ctance m_atnx, making further sp_arS|f|ca_1t|_on of
L much easier (see Fig. 2). To preserve positive definiteness

slow, logarithmic decay of the couplings with the distance . _ . .
between the filaments: and 2) the absence of any shielding°f the doubly inverted inductance matrix, we add the magni-

effect. This makes localizing partial inductance difficult. In tude of off—d|agon_als Wh'Ch we cancel during sp_arS|f|cat|on
the previous section we have shown, however, that usingto the corresp(_)r_ldmg d_|a_gonal el_ements. That this proce_dure
susceptance rather than inductance for modeling the magpreserve_s positive deﬂmtenes_s I easy to Sh.O\.N‘ We define a
netic field interactions is much more beneficial. Usigg  SYMMetric matrixM;(p,q) which is +1 fori=j=p, and
directly in simulators and timing analysis tools as proposed 1=j=0 , &ither +1 or 1 for bothi¥p,j=q) and {=q,j=p), and

in [7], however, is not readily supported by most programs O everywhere else.

available today. x"M(p,q)xis always greater or equal to zero, which can
We have shown in the last section that it is possible to be shown by explicitly calculating the expression. If a sym-
ensure the stability of sparse susceptance matrices. Wemetric matrix A is positive definite, then the matrix
apply a windowing approach, solving many local induc- B=A+|A,[*M(p,q) must be positive definite as well. If we
tance systems rather than one large problem. When assemehoose the sign of the off-diagonalsM(p,q) opposite to
bling all partial results into a sparse global susceptancethe sign Oprq, theanq:quzo_
matrix, we have shown that the stability of the symmetric
result is ensured by choosing the off—-diagonal with the
smaller magnitude.

Two major drawbacks using partial inductance to model

Since most of the off-diagonal terms of the double—
inverse inductance matrix are very small (see Fig. 2), this
) ) ] procedure ensures the positive definiteness of the resulting

The window size can be chosen to include only long— sparse double—inverse inductance matrix while not signifi-
range susceptive couplings above a given magnitude thresheantly changing the diagonal elements. We use the same

old relative to the self terms. One percent cutoff means, for ¢toff percentage threshold for the double—inverse induc-
instance, that the window size was chosen such that increasiapnce matrix as for the susceptance matrix.

ing the window only added new susceptive couplings less
than 1% of the self term for a given active conductor. The
window sizes necessary are much smaller for susceptanc
than for the initial inductive model, due to the shielding

This sparse inductance model can now efficiently and
accurately represent magnetic interactions within intercon-
$ect without compromising stability. Examples will be pre-
sented in the following to demonstrate the efficacy of this

effect forS. - _ approach.
The global, sparse susceptance matrix is then positive
definite, as shown in Section Ill, so inverting this spasse V. EXAMPLES

matrix back into an inductance representation, using sparseA. Single Layer 2 x 128 Bit Bus
matrix solving techniques [10], yields again a positive defi-

h 4 We demonstrate our inductance modeling method on a
nite matrix.

bus consisting of two blocks of 128 lines (Wuin, H 2 um,

Sp 1ym, L 1000um) with 16 um additional gap between

the two blocks (see Fig. 3). The driver resistanag R

70Q and the load capacitancadds 2 fF. Every sixteenth
line is a return line (no driver resistance).

0003564 96128160183 224 %56

Line Index

Fig. 2: Comparison of original inductive couplings with Fig. 3: 2x128 bit bus. Leftmost line is active. Line num-
double—inverse L. Shown are couplings of all bus lines of  bering from left to right.
example in Fig. 3 to line 64 (middle of first block). Solid

line for original partial inductance, dotted line for dou- In Fia. 4 the f d nod it for two i
ble—inversd. (all elements of susceptance matrix smaller nFg. € far end noce voltage responses for two lines

than 1 % of maximum were discarded). of the structure are shown for 1V step and 10 ps ramp
inputs. As expected, the far end response reduces in magni-
tude with increasing distance from the active line. The refer-

2.0

Partial Inductance [nH]




ence results (white circles) are obtained by including all simple truncation we merely set to zero all off-diagonals
individual couplings, leading to high runtimes and memory which are zero for the double—inverse with the given cutoff
consumption (see Table 1). Double—inverse inductancethreshold to ensure fair comparison of the efficiency and
models are sparsified as described in Section IV dependentccuracy of the different methods.

on cutoff percentage (the smaller, the more accurate). For

Step Response — Far End Line 1 10 ps Ramp Response — Far End Line 1
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Fig. 4: Voltage responses at far ends of lines 1 and 4 of 2x128 bit bus. CurveOwith  are reference results for full L and C
matrices. Approximations: Double—inverse inductance with cutoff 6 ( ); double—inverse L with cutoff 5% ( ); simple
truncation cutoff 1%M ); stabilized simple truncation cutoff 14 ( ).

The waveforms for our double—inverse inductance local- inductive effects have the most impact and predominantly
ization method are very close to the corresponding referencedetermine the ringing and overshoot for timing analysis. For
results, and especially the time interval containing the first lower frequencies the damping of double inverse is less,
few minima and maxima is captured very well by the dou- therefore a low—amplitude, low—frequency oscillation
ble—inverse approximation leading to very high accuracy for around steady state remains while ringing is damped much
interconnect timing analysis. The runtime and memory quicker for the reference result. Overall, our double—inverse
requirements, however, are significantly smaller than for the inductance model shows excellent agreement with the exact
reference case. Speedup factors are shown in Table 1. result.

It should be noted that the double-inverse inductance For comparison we also tried to generate a corresponding
model is effective at higher frequencies, which is where waveform using simple truncation on the original partial



inductance. However, this creates an ill-conditioned induc-  Due to the higher density of surrounding conductors for
tance model which leads to diverging waveforms. A more each wire and the resulting lower sparsity of the inductance
extensive study of this is available in [4]. This is observed in approximations, the speedup across the board is lower than
the results in Fig. 4 (squares) which coincide with the refer- for the previous example, but still quite significant.

ence solution for about the first picosecond of simulation Symbols see Fig. 6: o) ° P ] A
time, then diverge towards positive or negative infinity. Runtime (step) [3] 9390 77 310 1700 43
Symbols see Fig. 4: @) o P ] A Spee_dup Factor (step) 1.0 130 30 5.5 220
Runtime (step) [3] 17550 38 87 580 32 Runtime (ramp) [s] 8950 75 310 1790 45
Speedup Factor (stef]) 10 460 200 26 |550 |SPeedup Factor (ramp) 10 120 29 50 [200
Runtime (ramp) [s] 20050 a1 s 530 30 |Memory [MByte] 87230 7650 16070 29150 7450
Speedup Factor (ramp) 1.0 490 230 38 670 Capacitance El. 25424 3125 4662 3125 3125
Memory [MByte] 112800 5760 10040 14510  5ye0 |IMductance El. 25200 6962 12459 6962  B962
Capacitance El. 32481 3280 4823 3280  g2so [SParsity [%] 00 800 661 800 800
Inductance El. 32896 4201 6392 4201  4boy |HSpice internal El. 51073 10536 17570 27620 10536
Sparsity [%] 0.0 88.5 82.8 88.5 88.5 Table 2: Simulation cost comparison for three layer bus
HSpice internal EL. 65890 7994 11728 19190 7994 example in Fig. 5.

Table 1: Simulation cost comparison for 2x128 bit bus

example in Fig. 3. VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a novel and accurate windowing tech-
fnique for inductance extraction. This approach provides for
sparsification of the inductance matrix in a manner that is
more robust and accurate as compared with other simplifica-
tion schemes. It is also shown to preserve model stability
while avoiding high memory consumption and runtimes.
This localization process requires efficient inversion of the
small L and S submatrices that correspond to the applied

It is possible to avoid this stability problem by simply
adding the truncated mutual partial inductances to the sel
term, much as described for our double—inverse inductance
model in Section IV. However, since the off-diagonal terms
aresignificant in magnitudéor the partialL matrix during
simple truncation, this will grossly overestimate the mag-
netic self coupling leading to much lower response wave-
form frequencies and very low accuracy (triangles in

Fig. 4). windows.
Although this inductance localization approach provides
B. Three Layer Bus Structure for a substantial improvement over existing methods,

Our second example consists of three parallel bus struc-neglecting long distance couplings or merging them into
tures with the leftmost wire of the middle layer being active. short distance couplings will always limit the modeling
All wires are 100Qum long (cross—section in Fig. 5). Layer accuracy. To efficiently create accuracy beyond the level
1: W 1pm, H 2pm, Sp 1um, Ror 70Q, Cua 2 fF. Layer 2:  which can be provided by localized extraction requiries-

W 3um, H2um, Sp 1um, Ror 50Q, Cud 2 fF. Layer 3: W archical models Efficient extraction of a hierarchical sus-
6 um, H 3um, Sp 2um, Ror 25Q, Cud 2 fF. Every eighth  ceptance and double-inverse inductance model appears to

line is a return line. be viable using existing hierarchical extraction approaches
EENENNENNENNNNNNENNENNNNNNNNNNEE Layer 3 [5]. To integrate these hierarchical models into circuit
OR R i Layer 2 netlists will be the focus of future research.
TR nnnnnnnnnnnnnnnwmn,m Layer 1
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