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ABSTRACT

We propose a new, efficient and accurate localized in-
ductance modeling technique via windowing in a manner
that is analogous to localized capacitance extraction. The
stability and accuracy of this process is made possible by
twice inverting the localized inductance models, and in
the process exploit properties of the magnetostatic inter-
actions as modeled via the susceptance (inverse induc
tance). Application of these localized double–inverse
inductance models to actual IC bus examples demon-
strates the significant improvement in simulation effi-
ciency and overall accuracy as compared to alternative
methods of approximation and simplification.

I. INTRODUCTION

For modern digital ICs the logic path delays can be dom
inated by the influence of parasitic capacitive and inducti
coupling among the metal interconnect wiring. As technol
gies push the performance to its limits, it is necessary to fi
increasingly more detailed interconnect models to pred
the signal delay more accurately. The growing complexi
of today’s integrated systems, however, makes this compu
tionally very expensive. Increasing system size makes e
cient analyses of parasitics and performance imperati
Reconciling these two contradicting requirements is a
extremely difficult task. Full three-dimensional interconne
models are generally of unmanageable size and density s
that they are not useful for analysis and simulation purpos
without additional approximations and simplifications.

Of particular focus is the modeling of on–chip induc
tance and its interactions with on–chip capacitance. Wh
operating frequencies are making on–chip inductance e
dent, localizing the magnetic couplings for efficient extrac
tion and analysis is challenging. Localized extractio
techniques have been used with some success in the pas
reducing the size of interconnect models. It has been de
onstrated, however, that simple truncation — merely di
carding long range couplings — can destroy the stability
the electromagnetic (EM) model. Shell models [4] hav
been applied successfully for stable localized extraction, b
finding the correct shell sizes for a particular target accura
is not straightforward.
† This work was supported by the MARCO/DARPA Gigascale Sil-
icon Research Center (GSRC), the National Science Foundatio
and a grant from Intel Corporation.
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In this paper we propose a novel localized extractio
technique for inductance modeling via windowing --- cap
ture local interactions within small windows, then combin
these localized models into a complete inductance matr
This approach does not localize couplings in the inductan
matrix directly, but begins with partial inductance mode
for small localized windows. These small, localized indu
tance matrices are inverted individually to generate the c
responding localizedsusceptance matrices S. As we will
show in this paper,S has properties similar to the capaci
tance matrix, such as shielding, which can be exploited
combine the localized window models into a complet
sparse, susceptance matrix. We then invert this sparse s
ceptance matrix and produce a complete inductance ma
that we can further sparsify in an accurate and stable m
ner.

In [7] the direct use of the inverse of inductance for sim
ulation has been suggested, but widespread commer
support for these models is not yet available.

II. WINDOWING FORINDUCTANCE EXTRACTION

The inductance extraction flow we are proposing in th
paper consists of the following steps:

• Generate a partial inductance matrixL(j) for active con-
ductorj and all conductors within a window around it.

• Find the current flowing through these conductors f
which the total flux for active conductorj through its
loop with infinity is unity and for each other conductor
in the window the total flux is zero. This produces th

susceptive couplingsS(j)
ij between active conductorj

and the group of conductors within a window around i

• Repeat these two previous steps for all conductors
turn as active conductors.

• Merge all S(j)
ij submatrices into one complete, spars

susceptance matrix that approximates the magne
interactions for the entire interconnect system.

• The combined susceptance matrix will be asymmetr

sinceS(j)
ij is typically not equal toS(i)

ij . By choosing the
value with thesmaller magnitudefor both entries, we
can prove that the complete susceptance model can
rendered symmetric and stable.
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• Invert the sparse, symmetric susceptance matrix to gen-
erate an inductance matrix. The truncation in the suscep-
tance domain makes this matrix much easier to sparsify
than the original inductance model.

This double–inverse inductance matrix can then be used
for timing analysis or simulation without loss of generality.
We present examples of the efficacy of these models in Sec-
tion V. But we will first begin by describing some important
properties of capacitance and susceptance matrices which
facilitates this extraction methodology.

III. PROPERTIES OFEM INTERACTION MATRICES

We assume a boundary element approach where the
source (charge/current) density is constant for each section
(panel/filament).

 = (φi ; Ai,x ; Ai,y ; Ai,z) (1)

is the vector of average potentials for sectioni. The field type
α is 0 for the electrostatic and 1, 2 or 3 for thexyzmagneto-
static cases. Thediscrete source vector is

 = (qj/ε ; µIj,xlj,x ; µIj,ylj,y ; µIj,zlj,z) (2)

whereqj andIj,{xyz} are the charge and the three current com-
ponents for this section. Thelj,{xyz} are the dimensions of
sectionj. We can write the discretized electromagnetic inter-
connect interactions as

(3)

by defining the matricesKα. is the content (panel area

or filament volume) of sectioni for field typeα. These in turn
form the four diagonal blocks of theelectromagnetic inter-
action matrix K in

(4)

where  and  are formed by concatenating  or .

Thecapacitance matrix, C = S0, can be found by invert-

ing thepotential matrix P = K0. The inverses of thepartial

inductance matrices Lx = K1, Ly = K2 and Lz = K3 are the

susceptance matrices S1, S2 andS3 of the system. Together
these four blocks form theinverse interaction matrix S.

• Positive Definiteness ofK: The term represents
(within the accuracy of the discretization) the electric scalar
and magnetic vector potential. The combined energy stored

in the electromagnetic field is ,

and must be non–negative (see [2][pg. 237]). In our mat
notation we then have

(5)

which is zero if and only if no electric and magnetic source
are present. It follows thatK, as well asS, must be positive
definite.

• Diagonal Elements ofS are positive:K is positive defi-
nite, so we know

(6)

If we choose to be the solution of (which ha

to exist and be unique), whereei is the unit vector with 1 as

ith element, then we have  and with (6) find

(7)

With SK= I we get

(8)

This equates to all diagonal elements ofSbeing positive,
sinceS is a square matrix.

• Off–Diagonals ofS are negative or zero:Next we show
that all off–diagonal elements ofS must be either negative
or zero. For the electric case (α = 0) this is shown in
[8][pg. 223]. If we have unit potential at conductori and
zero potential everywhere else, then (8) tells us that we w
have a positive charge on conductori. This positive charge
will create a positive potential at the locations of all othe
conductors and negative charge needs to be added to
those grounded conductors to ensure zero potential. Th

for α = 0 (electric fields), we find that .

Forα = 1,2,3, we have defined the currents to be direct
in the positivexyzdirections. So, similar to the electric cas
above, if we, for instance, require a unit vector potenti
along conductori in x–direction, there must be, because o
(8), a current flowing through conductori in positive x–
direction (see Fig. 1). This creates magnetic vector poten
within the loops of the other segmentsj. To get a zero vector
potential for all other segmentsj, currents innegative x–
directions must flow through those segments. Similar fory
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Fig. 1: Current in segmenti in positivex–direction creates
vector potential inj in positivex–direction as well. Com-
pensating current inj must flow in negativex–direction.

j i≠∀ : Sij
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andz–directions. So the off–diagonal elements ofSmust be
negative here as well (for the given current direction con-
vention). So for the entire inverse interaction matrix we find

(9)

• Diagonal Dominance ofS: Since sources are only
found on or within the conductors in the system, we find
that the electrostatic and magnetostatic potentials in the
insulator satisfy Laplace’ equation with the surfaces of the
conductors and infinity being the boundaries of the domain:

(10)

If we require the (electro– or magnetostatic) potential

to be unity for all conductors, then each element of must
be maximal on each conductor. This is a fundamental prop-
erty of harmonic functions — solutions of Laplace’ equa-
tion (see [9]). It follows that the gradient of each of the four

elements of on the surface of each conductor must be
pointing into the conductors. For the electric case this
means all surfaces are positively charged, because the elec-
tric field points into the dielectric material everywhere.

For the magnetic case this means that the vector potential
componentsAx, Ay and Az are positive everywhere, since
solutions of Laplace’ equation are maximal and minimal on
the boundary of their definition domain. Here the maximum
(by construction unity) are the combined conductor sur-
faces, the minimum is infinity where the vector potential is
zero by convention. Finally, since the vector potential com-
ponents are positive everywhere, currents must flow in the
positivexyzdirections in all the conductors as well, since if
not, there would be locations with negative vector potential
components, creating a contradiction.

So combining the electrostatic and magnetostatic case,
we find

 so for each row: (11)

The ‘greater as’ in the first part of (11) acts element for
element. With (8) and (9), which give the signs of theSij

(diagonals positive, off–diagonals negative!), we find diago-
nal dominance forS:

(12)

• Positive Definiteness of TruncatedS: S was shown to be
positive definite. Due to its diagonal dominance, the positive
definiteness ofS is preserved when off–diagonal elements
are set to zero — a property not available forK. For this we
use the following theorem from linear algebra [12][pg. 349]
for a matrixA:

If all Aii > 0 andA, AT diagonal dominant
then A is positive definite. (13)

Diagonal dominance and positivity of the diagonal ele
ments ofShave been shown previously. With (13) the pos
tive definiteness of the sparsifiedS follows.

• Shielding Effect inS: To assist in understanding the
physical interpretation of susceptance, we ask:What is the

significance ofjth column ofS? Thejth column ofS is the
amount of source (charge or current) necessaryon or flow-
ing throughthe conductors to force conductorj to unit (elec-
tric or magnetic) potential and all other conductors to ze
potential. An individual termSij , when i and j are far
removed, must include shielding effects for the electrosta
as well asfor the magnetostatic fields. The ‘source nece
sary’ in some conductori to force it to zero potential already
takes into account that some of the original field of the re
erence (unit potential) conductorj has been compensated b
charges / currents on zero potential conductors closer toj.
This in turn means that the magnitude of the elements inSij

drops off much faster with distance betweeni and j. This
enhances sparsification, since elements which are ‘la
enough’ inS are easier to distinguish from those that a
‘too small’, thereby forming a much smaller set than for th
interaction matrixK.

• Stability of S under Window Inversion: Since the shiel-
ding effect renders all but a few short–distance couplin
negligible, the idea to exploit this to make the inversio
from K to S more efficient by only including those few
neighbors of the current unit potential conductor in th
inversion. That is, the inversion is restricted toextraction
windows around each conductor, thereby replacing th
inversion of a huge, denseN x N matrix — N being the total
number of conductors in the system — byN times an inver-
sion of much smallernj x nj matrices. This results inN indi-
vidual, small matricesS(j), where nj is the number of
conductors to which segmentj has significant couplings.

The S(j) are all diagonally dominant, since the proo
above applies to each of the small conductor subsets in
vidually. Clearly, for this approach the couplingSij(j) need
not be equal toSji(i), since the set of ‘significant neighbors
is usually different for different segmentsi and j. However,
when we assemble our sparseS’ matrix for the entire system
from the individualS(j), we need to ensure symmetry ofS’.
To guarantee positive definiteness ofS’, we choose

S’ij = S’ji = max{Sij(j),Sji(i)} (14)

Since we know that all off–diagonal elements of an
inverse interaction matrix are non–positive, this means w
select the element with thesmallest magnitude. This ensures
the diagonal dominance ofS’ when assembling it from ele-
ments of theS(j), while preserving the largest degree o
accuracy. With (13) we then find that the sparse approxim
tion S’ is positive definite.

j i≠∀ : Sij 0<

Γ

∇2Ψ 0=

Ψ

Ψ

Ψ

γ Sψ S
1

…

1

= = 0> Sij
j

∑ 0>

Sii Sij
j i≠
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IV. DOUBLE–INVERSEINDUCTANCE MODELS

Two major drawbacks using partial inductance to model
magnetic interactions for on–chip interconnect are: 1) the
slow, logarithmic decay of the couplings with the distance
between the filaments; and 2) the absence of any shielding
effect. This makes localizing partial inductance difficult. In
the previous section we have shown, however, that using
susceptance rather than inductance for modeling the mag-
netic field interactions is much more beneficial. UsingS
directly in simulators and timing analysis tools as proposed
in [7], however, is not readily supported by most programs
available today.

We have shown in the last section that it is possible to
ensure the stability of sparse susceptance matrices. We
apply a windowing approach, solving many local induc-
tance systems rather than one large problem. When assem-
bling all partial results into a sparse global susceptance
matrix, we have shown that the stability of the symmetric
result is ensured by choosing the off–diagonal with the
smaller magnitude.

The window size can be chosen to include only long–
range susceptive couplings above a given magnitude thresh-
old relative to the self terms. One percent cutoff means, for
instance, that the window size was chosen such that increas-
ing the window only added new susceptive couplings less
than 1% of the self term for a given active conductor. The
window sizes necessary are much smaller for susceptance
than for the initial inductive model, due to the shielding
effect forS.

The global, sparse susceptance matrix is then positive
definite, as shown in Section III, so inverting this sparseS
matrix back into an inductance representation, using sparse
matrix solving techniques [10], yields again a positive defi-
nite matrix.

The resulting double–inverted partial inductance matr
generally contains far fewer significant elements than t
original inductance matrix, making further sparsification o
L much easier (see Fig. 2). To preserve positive definiten
of the doubly inverted inductance matrix, we add the magn
tude of off–diagonals which we cancel during sparsificatio
to the corresponding diagonal elements. That this proced
preserves positive definiteness is easy to show. We defin
symmetric matrixMij(p,q) which is +1 for i=j=p , and
i=j=q , either +1 or –1 for both (i=p,j=q ) and (i=q,j=p ), and
0 everywhere else.

xTM(p,q)x is always greater or equal to zero, which ca
be shown by explicitly calculating the expression. If a sym
metric matrix A is positive definite, then the matrix
B=A+|Apq|*M(p,q) must be positive definite as well. If we
choose the sign of the off–diagonals inM(p,q) opposite to
the sign ofApq, thenBpq=Bqp=0.

Since most of the off–diagonal terms of the double
inverse inductance matrix are very small (see Fig. 2), th
procedure ensures the positive definiteness of the resul
sparse double–inverse inductance matrix while not sign
cantly changing the diagonal elements. We use the sa
cutoff percentage threshold for the double–inverse indu
tance matrix as for the susceptance matrix.

This sparse inductance model can now efficiently a
accurately represent magnetic interactions within interco
nect without compromising stability. Examples will be pre
sented in the following to demonstrate the efficacy of th
approach.

V. EXAMPLES

A. Single Layer 2 x 128 Bit Bus

We demonstrate our inductance modeling method on
bus consisting of two blocks of 128 lines (W 1µm, H 2µm,
Sp 1µm, L 1000µm) with 16µm additional gap between
the two blocks (see Fig. 3). The driver resistance RDr is
70 Ω and the load capacitance CLd is 2 fF. Every sixteenth
line is a return line (no driver resistance).

In Fig. 4 the far end node voltage responses for two lin
of the structure are shown for 1V step and 10 ps ram
inputs. As expected, the far end response reduces in ma
tude with increasing distance from the active line. The refe

Fig. 2: Comparison of original inductive couplings with
double–inverse L. Shown are couplings of all bus lines of
example in Fig. 3 to line 64 (middle of first block). Solid
line for original partial inductance, dotted line for dou-
ble–inverseL (all elements of susceptance matrix smaller
than 1 % of maximum were discarded).
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Fig. 3: 2x128 bit bus. Leftmost line is active. Line num-
bering from left to right.
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ence results (white circles) are obtained by including all
individual couplings, leading to high runtimes and memory
consumption (see Table 1). Double–inverse inductance
models are sparsified as described in Section IV dependent
on cutoff percentage (the smaller, the more accurate). For

simple truncation we merely set to zero all off–diagona
which are zero for the double–inverse with the given cuto
threshold to ensure fair comparison of the efficiency a
accuracy of the different methods.

The waveforms for our double–inverse inductance local-
ization method are very close to the corresponding reference
results, and especially the time interval containing the first
few minima and maxima is captured very well by the dou-
ble–inverse approximation leading to very high accuracy for
interconnect timing analysis. The runtime and memory
requirements, however, are significantly smaller than for the
reference case. Speedup factors are shown in Table 1.

It should be noted that the double–inverse inductance
model is effective at higher frequencies, which is where

inductive effects have the most impact and predominan
determine the ringing and overshoot for timing analysis. F
lower frequencies the damping of double inverse is les
therefore a low–amplitude, low–frequency oscillatio
around steady state remains while ringing is damped mu
quicker for the reference result. Overall, our double–inver
inductance model shows excellent agreement with the ex
result.

For comparison we also tried to generate a correspond
waveform using simple truncation on the original partia

Fig. 4: Voltage responses at far ends of lines 1 and 4 of 2x128 bit bus. Curves with are reference results for full L
matrices. Approximations: Double–inverse inductance with cutoff 1% ( ); double–inverse L with cutoff 0.5% ( ); si
truncation cutoff 1% ( ); stabilized simple truncation cutoff 1% ( ).
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inductance. However, this creates an ill–conditioned induc-
tance model which leads to diverging waveforms. A more
extensive study of this is available in [4]. This is observed in
the results in Fig. 4 (squares) which coincide with the refer-
ence solution for about the first picosecond of simulation
time, then diverge towards positive or negative infinity.

It is possible to avoid this stability problem by simply
adding the truncated mutual partial inductances to the self
term, much as described for our double–inverse inductance
model in Section IV. However, since the off–diagonal terms
aresignificant in magnitudefor the partialL matrix during
simple truncation, this will grossly overestimate the mag-
netic self coupling leading to much lower response wave-
form frequencies and very low accuracy (triangles in
Fig. 4).

B. Three Layer Bus Structure

Our second example consists of three parallel bus struc-
tures with the leftmost wire of the middle layer being active.
All wires are 1000µm long (cross–section in Fig. 5). Layer
1: W 1 µm, H 2µm, Sp 1µm, RDr 70 Ω, CLd 2 fF. Layer 2:
W 3 µm, H 2µm, Sp 1µm, RDr 50 Ω, CLd 2 fF. Layer 3: W
6 µm, H 3µm, Sp 2µm, RDr 25 Ω, CLd 2 fF. Every eighth
line is a return line.

The clear advantage of our double–inverse model over
the simple truncation approach is also evident in the results
for this example, shown here in Fig. 6. Our observations
from the previous example apply in this case as well.

The presence of interconnect above and below the layer
in which the active line is placed increases the number of
wires to which coupling is significant for accurate simula-
tion. Therefore, for the same cutoff threshold values, the
sparsity of the approximate models is lower as for the single
layer example. However, since the total number of conduc-
tors is smaller than for the 2x128 bit bus example, the runt-
imes and memory consumption are smaller as well.

Due to the higher density of surrounding conductors f
each wire and the resulting lower sparsity of the inductan
approximations, the speedup across the board is lower t
for the previous example, but still quite significant.

VI. CONCLUSIONS ANDFUTURE DIRECTIONS

We have presented a novel and accurate windowing te
nique for inductance extraction. This approach provides f
sparsification of the inductance matrix in a manner that
more robust and accurate as compared with other simplifi
tion schemes. It is also shown to preserve model stabil
while avoiding high memory consumption and runtime
This localization process requires efficient inversion of th
small L and S submatrices that correspond to the applie
windows.

Although this inductance localization approach provide
for a substantial improvement over existing method
neglecting long distance couplings or merging them in
short distance couplings will always limit the modeling
accuracy. To efficiently create accuracy beyond the lev
which can be provided by localized extraction requireshier-
archical models. Efficient extraction of a hierarchical sus
ceptance and double–inverse inductance model appear
be viable using existing hierarchical extraction approach
[5]. To integrate these hierarchical models into circu
netlists will be the focus of future research.
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