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Abstract

In order to improve the efficiency of behavioral model
verification, it is important to determine the points of dem-
inishing return for a given verification strategy. This pa-
per compares the existing stopping rules and presents a new
stopping rule based on static Bayesian technique. The new
stopping rule was applied to verifying 14 complex VHDL
models. We used the figure of merit to compare the efficiency
of the stopping rules. The results in terms of coverage and
verification time were shown to consistantly outperform ex-
isting stopping rules.

Keywords: Behavioral Model Verification, VHDL, Statis-
tical Stopping Rules.

1. Introduction

It is widely believed that the quality of a behavioral
model is correlated to the obtained coverage measure during
its verification process [1]. However, measuring coverage is
just a small part of ensuring the behavioral model meet the
desired quality goal. A more important question is how to
increase the coverage during verification to a certain level
with a given time-to-market constraint. Current methods to
achieve the desired quality goal use brute force approaches
where billions of test cases (patterns) were applied without
knowing the effectiveness of the techniques used to generate
these test cases (patterns) [4, 6, 9, 11, 12, 13].

For a given product, the correct set of testing techniques
is often known. Time spent on verifying a behavioral model
using a given testing technique should be fruitful, i.e. time
spent with diminishing return should be avoided. There-
fore, the question is how to determine the optimal stopping
points for switching from one testing technique to another.
There are existing statistical models used in software engi-
neering to determine the proper stopping points for software
testing [7, 8, 9, 10, 11, 12, 13]. These models assume cer-
tain statistical behavior with regard to coverage. The statis-

tical behaviors assumed by the statistical stopping rules used
for software testing include Binomial, Poisson, and Loga-
rithmic Series distributions. However, it has been shown,
theoretically and experimentally [25], that the underlining
assumptions about the statistical behavior of coverage are
invalid for behavioral models. We have presented a more
accurate statistical behavior based on verification results of
14 VHDL models applying one million test patterns to each
model. The resulting statistical behavior is different from
the assumptions made in the existing statistical models. It
takes into account many unique issues in VHDL model ver-
ification, such as clumping, i.e. dependency of covering one
branch on covering other branches.

This paper proposes a statistical stopping rule for behav-
ioral model verification based on the new statistical behav-
ior presented in [25]. Section 2 gives a brief review on the
existing stopping rules used in behavioral models and a dis-
cussion about the assumptions presumed in each stopping
rule. Section 3 presents the mathematical derivation of the
proposed stopping rule. Section 4 illustrates a comparison
study of all existing stopping rules and the proposed one
conducted on 14 behavioral models. Conclusions are given
in Section 5. Throughout our discussion in this paper, we
use the notation that the branch coverage is a good measure
of quality for behavioral model verification [14], and the
goal of behavioral model verification is to achieve the high-
est possible branch coverage within a given time constraint.
Testing criteria other than branch coverage can be used with-
out loosing the applicability of the results presented in this
paper.

2. Existing Statistical Models

Almost all of the existing statistical models used to de-
termine stopping points stem from research results in soft-
ware engineering. During the past 30 years, many mod-
els have been proposed assessing the reliability measure-
ments of software systems [7, 8]. These models help design-
ers evaluate, predict, and improve the quality of their soft-



ware systems. Goel [8] classified some of the existing soft-
ware reliability models according to their failure processes
[16, 15]. However, software reliability models aim at es-
timating the remaining faults in a given software program.
Hence, the direct use of such models in estimating the num-
ber of remaining uncovered branches in a behavioral model
is not beneficial since we know exactly how many branches
are left. Instead, one could slightly modify the estimation
process to focus on the expected number of faults, or cover-
age items in the case of behavioral model verification, within
the next unit of testing time. Unfortunately, all the existing
software reliability models assume that failures occur one at
a time. Based on this assumption, expectations of the times
between failures are carried on. In observing new coverage
items in a behavioral model, branches are typically covered
in clumps. Besides, the assumption made in the software re-
liability model that failures are independent of each other in
the program makes the use of such models ineffective and
inaccurate.

2.1. Confidence Based Models (Howdens’ Models)

This approach takes advantage of hypothesis testing in
determining the saturation of the software failures [10]. A
null hypothesis H0 is performed and later examined exper-
imentally based on an assumed probability distribution for
the failures. We assume thatH0 is false and observe the out-
come as a failure. Suppose that the outcome has a probabil-
ity less than or equal to B, then we are at least 1 � B con-
fident that H0 is true. Similarly, if the failures for the next
period of testing time have the same equal probability of at
least B to occur, then for the next N testing cycles, we have
a confidence of at leastC that no failures will happen, where

C = 1� (1�B)N (1)

If we experience a failure during the next N tests, then we
continue testing and examine the hypothesis again. Other-
wise, we stop testing at the end of the N tests.

To apply Howden’s model to the process of HDL verifi-
cation, we first need to treat failures as interruptions, where
an interruption is an incident where one or more new part of
the model are exercised. Using branch coverage as a test cri-
terion, an interruption, therefore, indicates one or more new
branches are covered. We set a probability for the interrup-
tion rate B and choose an upper-bound level of confidence
C. Experimentally, we do not examine the hypothesis unless
the interruption rate becomes smaller than the preset value
B. If the interruption rate becomes smaller than B, we cal-
culate the number of test patterns needed to have at least C
confidence of not having any new branch in the next N test
patterns and run them. If an interruption occurs, we continue
examining the hypothesis until we prove it and then stop.

In this approach, we assume that coverage items, or in-
deed interruptions, are independent and have equal proba-
bilities of being covered. One could use the fact that the rate
of interruption is decreasing and that we assume no interrup-
tions will occur in the next N test cases; then the expected
probability of interruptions will be:

Bt =

�
B

t+ T

�
(2)

where, T is the last checked point in testing. This will then
change the confidence equation as follows:

C = 1�
NY
t=1

�
1�

B

t+ T

�
(3)

Howden’s formulae can be implemented by first estimat-
ing B0 by taking the cumulative sum of successes up to test
case t and dividing by the number of test cases executed.
The calculation ofB0 is repeated on the next test case until it
becomes less than the predetermined level B. The number
of test cases N needed to gain confidence C is calculated
from either the above formulae, and N test cases are exe-
cuted. If no new coverage is gained during the execution
of the test strategy, it indicates that the current verification
strategy is no longer effective. The stopping point is t+N .
If new coverage is gained at test case k, go back to step 1 and
repeat the steps for t = t+ k times.

In Howden’s model, the assumption that failures or in-
terruptions have a given probability B independently is er-
roneous. Branches in an HDL model, as we know, are
strongly dependent of each other. In fact, we can classify
some branches to be dominant to other branches where it is
impossible to cover the lower level ones without covering
their dominators. Moreover, the sizes of the interruptions
are not modeled in this study making the decision of contin-
uing or stopping the testing process inaccurate. Lastly, this
work doesn’t incorporate the cost of testing or releasing the
product, and the goal of testing in the first place is not only
having a high quality product but also minimizing the test-
ing costs.

2.2. Binary Markov Model

Sanping Chen and Shirley Mills developed a statistical
Markov process model [11]. The probabilistic distribution
assumptions of the model are the same as Howden’s except
that failures are statistically dependent with a certain un-
known correlation constant �. Again, if interruptions are
correlated, then the probability of having no interruptions in
the next N test cases is then given by:

p(0jN;B; �) = (1�B)(1�B + �B)N�1 (4)



which makes the confidence C = 1 � p(0jN;B; �). If we
set � to be zero, interruptions are independent; then we get
the same model as Howden’s. The implementation of this
stopping rule is similar to that of Howden’s except in the cal-
culation N for the confidence.

The basic assumption that interruptions have this sim-
ple probability distribution is not well understood or clearly
proven. Furthermore, the value of � in this model is un-
known, and authors experimentally assumed different val-
ues ranging from 0 to 0.9 and obtained different results.
Thus, this correlation needs to be determined.

2.3. Testing Cost Based Models (Dalal-Mallows)

Dalal and Mallows [12] assumed a loss function associ-
ated with the testing and releasing of software programs. If,
up to time t, there are K(t) number of bugs in the model,
then aK(t) is the cost of fixing these bugs while testing, and
b(N �K(t)) is the cost of fixing the remaining bugs in the
field after releasing the product for some constant a and b.
N is the expected number of total bugs in the program. Fi-
nally, there is also a fixed increasing cost of the testing setup
and running of f(t). Thus, the loss function is defined as:

L(t;N) = f(t) + aK(t)� b(N �K(t)) (5)

Under these cost assumptions, the decision is to stop when
the loss function is not decreasing. That reduces the loss
function to a reward function defined as cK(t)�f(t), c=b-a,
sinceN is a fixed number, yet unknown. Testing stops when
the expected reward function is no longer increasing. Now,
K(t) is a random process distributed as a non-homogeneous
Poisson process with increments �g(t). That simplifies the
stopping rule to the following:

f 0(t) G(t)

c g(t)
� K(t) (6)

If we assume g(t) to be exponential, and the cost function
f(t) is linear with time, then the decision to stop is when:

f

�c
(e�t � 1) � K(t) (7)

where � is maximum likelihood estimate of the history that
K(t) is Poisson with mean �(1 � e�t). � is the solution of
the following equation:

� (e�t � 1)

e�t � 1� �t
=

K(t)

S(t)
(8)

S(t) is the sum of all failures’ life times up to test case t.
This model incorporated the cost of testing and gave reason-
able assumption to failures occurring in a certain program.
However, applying this model to coverage items as failures

suffers the independency problem of the Poisson process,
where the times between failures are independent, although
the parameters of the distributions are modified by the time
and the cost constants. The model also implies the assump-
tion of not having clumped failures, which reduces the ef-
ficiency of the model when applying it to branch coverage
estimation. Finally, this stopping rule diverged in some test-
ing phases of some VHDL models. The reason is that the
mathematical constructions used by this rule theoretically
allow major changes in the internal constants values during
the testing process, which ultimately make the rule diverge.

2.4. Compound Poisson Stopping Rule

This model was the first attempt in modeling the branch
coverage process of VHDL circuits utilizing the benefits of
the cost modeling of Dalal and Mallows [12] and solving
the clumps phenomenon of branches, explained in the previ-
ous section, being covered in the testing process [17]. This
model uses the empirical Bayesian principles for the com-
pounded counting process. It was previously introduced as
a software reliability model for failure estimation in 1992
[13] and later modified to incorporate the cost modeling pro-
posed by Dalal and Mallows in 1995 [18, 19]. The model
was recently formulated to model the branch coverage pro-
cess in VHDL models [24, 23].

The idea is to compound potentially two probability dis-
tributions, for both the number of interruptions and the size
of interruptions. The resulting compound distribution is as-
sumed to be the probability distribution function of the to-
tal number of failures, or coverage items, at a certain testing
time point. The parameters of the distributions are also as-
sumed to be random variables calculated empirically based
on the well-known Bayesian estimation.

For modeling the branch coverage process for HDL mod-
els, it is assumed that the number of interruptions over the
time,N(t), is a Poisson process with mean�, and the size of
each given interruption,Wi, is distributed as a Logarithmic
Series Distribution (LSD). The resulting compound distri-
bution for the total number of failures, the sum of the sizes,
is also known as a Negative Binomial distribution (NBD), if
the Poisson parameter � is set to �k ln(1� �).

The expected value of coverage in the next unit of testing
time when testing is observed up to time t is estimated as:

E(X) = k
�+ x

� + k
(9)

where x is the number of branches covered up to time t, �
and � are the constants of the priori distribution of the pa-
rameter of the LSD, and k is set such that the compound dis-
tribution becomes a Negative Binomial. So:

e
�
k = 1 +

�+ x

� + k
(10)



is a nonlinear equation for k that can be solved using the
Newton method. � is the interruption rate up to time t.

This expected coverage in the next unit of time is then
used in the cost model proposed in [12] to decide whether
to continue or to stop testing with the current testing strat-
egy. If the expected cost of testing for the next unit time is
more than the expected cost of stopping, then the decision is
to stop, and vise versa. This decision can be formulated as:

aE(X) < bE(X) + c (11)

where a is the cost of one coverage item as yet uncovered,
c is a fixed cost of one unit of testing time, and b is the vari-
able cost of testing one uncovered branch. In other words,
the decision to stop is when E(X) < d, for d = c

a�b
, and

checking this decision is to be made sequentially after ap-
plying each test pattern or case.

This stopping rule models the clumps of the coverage
items in a statistical manner updating the assumed proba-
bility distribution parameters in every test case based on the
testing history. However, since the interruption sizes are dis-
tributed as LSD, there should be at least one new coverage
item per interruption covered. The problem involved was
that after a short period of time, the coverage activity died
for most of the test patterns applied sequentially, and for few
patterns after that, one or more branches were covered. To
overcome this problem, the outcomes of the simulation were
packed into groups as if the time scale of the testing process
were compact, and the packed branch coverage was applied
to the stopping rule for the stopping decision.

2.5. The Sequential Sampling Models

All the previously discussed stopping rules assume that
the failures or interruptions are random processes accord-
ing to a given probability distribution. Another software re-
liability technique that doesn’t involve any assumptions on
the probability distributions for the failure process was pre-
sented in [22]. Recently, the technique is applied to VHDL
models in determining the stopping points for a given test-
ing history of branch coverage [21]. The model evaluates
the stopping decision based on three key factors: the dis-
crimination ratio (
), the supplier risk (�), and the consumer
risk (�). 
 represents the maximum number of input test pat-
terns accepted that don’t yield any more coverage. The sup-
plier risk is the probability of falsely believing that the test-
ing process should be stopped; the consumer risk is the prob-
ability of falsely believing that the testing process should
continue. If the number of cumulative coverage at time t is
X(t), then the testing process should be stopped when:

X(t) �
ln
�
1��
�

�
� t ln(
)

1� 

(12)

Figure 1 shows the decision boundary of the sequential sam-
pling model when applied to one of the behavioral models
at some testing phases. The stopping decision is made when
the boundary line intersects with the increasing coverage at a
certain point of time as illustrated in Figure 1. The stopping
decision strongly depends on the value of 
 much more than
� and �, and we can see clearly that this decision doesn’t
incorporate any cost model of the testing process. In [21],
we modified 
 with respect to testing strategies such that if
higher coverage were achieved in the previous test strategy,

 is increased in the current test strategy in order to decrease
the expectation of achieving more coverage in the current
strategy. The new value of 
, therefore, becomes:


+ = 
 ln(�) (13)

where � is the coverage increase achieved in the previous
test strategy. The value of 
 remains the same if � � e.

This type of statistical modeling doesn’t use any priori
probability distribution for the data provided. This is one
reason the sequential sampling models are widely used in
many testing areas. However, the cost of testing is not mod-
eled in making the stopping decision, and the stopping point
determined by the sequential sampling model is very sensi-
tive to the 
 value chosen during the testing process.
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Figure 1. Sequential Sampling Decision Line

3. The Bayesian Based Model

The branch coverage process,Xt, can be decomposed
into two random variables: interruptionsNt, where one or
more new branches are covered at timet, and sizes of the
interruptions,Wt, given that there is an interruption at the
same time. Interruptions,Nts, are strongly dependent of
each other, governed by a correlation function. The sizes of
interruptions, however, are not that strongly dependent es-
pecially after a long period of testing where achieving new
coverage will be more and more difficult. Thus, the random
variables,Wts, are assumed statistically independent.



PMF extraction experiment (also known asdistribution
harvesting) was conducted to estimate the bestfitted distri-
bution function to the histograms of the actual interruption
sizes,Wt, at every discrete timet based on verification re-
sults of 14 VHDL models applying one million test patterns
for each model. The bestfitted distribution toWt is found
to be a non-homogeneous Poisson process:

Wt � e�t
�w�1
t

(w � 1)!
(14)

For the number of interruptions,Nt, the probability of hav-
ing an interruption during the testing process is estimated as
p(t) for every discrete timet. Thisp(t) function is further
decomposed into a shape function and an amplitude value,
p(t) = � f(t), where� is a constant value. The shape func-
tion, however, is statically chosen such that it best describes
the power of increments of the interruptionsNt. This choice
is made based on ashape fitting experiment, and found to be
a logarithmic polynomial shape [25]:

p(t) = � ln
t

t� 1
(15)

Using the distribution and the correlation for the branch
coverage process,Xt, presented in [25], we derive the sta-
tistical model for the branch coverage for a given history of
testing simulation. Letxt, t = 1; 2; 3; : : : ; T , be the cumula-
tive number of actual branches covered from the beginning
of the testing simulation up to timet. LetnT be the number
of interruptions up to timeT . LetWt be the random vari-
ables of the sizes of the interruptionst = 1; 2; : : : ; nT . We
have:

XT =

nTX
t=1

Wt (16)

The conditional distributions for the sizes of interruptions,
Wts, given that there will be interruptions at timest, and the
occurrences of interruptions,Dt, have the following distri-
butions:

WtjfDt; �tg �
e��t �wt�1

t

(wt � 1)!
dt (17)

Dt � p(t) d(t) + q(t) (1� d(t)) (18)

In order to start the Bayesian analysis, the Likelihood func-
tion of�t shouldfirst be estimated from the data of the veri-
fication history,~w and~d. Given the distribution functions of
Equation 18, the Likelihood function of�t can be estimated
to be:

L(�tj~w; ~d) / e�� G(t) � �xt�nt (19)

where�t = � g(t) for some constant� and a decreasing
functiong(t), G(t) =

P
j:dj=1

g(j), xt is the coverage up
to timet, andnt is the number of interruptions up to timet.

From the Likelihood of equation (19), we then estimate
the constant�, that is assumed to be distributed as�(r; 
),
using the Bayesian method as:

�̂ =
r + xt � nt


 +G(t)
(20)

for some constants
 andr describing the prior distribution
of �. Both constants,
 andr, can be set to 1 since they are
initial values that will immediately be modified through the
sequential updates of the Bayesian process.

SinceWt is a shifted Poisson random process, the ex-
pected value ofWt given�t is:

EfWtj�tg = �t + 1 (21)

Now, we expect this conditional expectation ofWt over the
values of�t to get the absolute expected value ofWt at any
time t, and we get:

EfWtj~xg = 1 + �̂ g(t) (22)

And by utilizing equation (20), the expected size of interrup-
tion at certain timet is given by:

EfWtj~xg = 1 +
r + xt � nt


 +G(t)
g(t) (23)

From this expectation, we can expect the total number of
branchesXt to be covered at timet = T +1 for a given his-
tory of testing up to timeT . At the exact timeT , we know
that we have coveredxT branches. The expectation of the
size of the interruption at timeT + 1 isEfWT+1j~xg given
that there will be an interruption at timeT+1. Now, our ex-
pectation that there will be an interruption at timeT + 1 is
the correlation functionp(T +1). Thus, the expected value
of Xt at timeT +1 given the history of testing up to timeT
is:

EfXtj~xg = xT + EfWT+1j~xg � p(T + 1) (24)

= xT +

�
1 +

r+ xT � nT


 +G(T )
g(T + 1)

�
(25)

� � f(T + 1)

where� can be set such thatp(t) = 1 at timet = 1:

� =
1

ln(2)
= 1:44 (26)

We use the stopping criterion similar to that in [23, 12]
and not only for the next unit of testing timet but also for
the remaining expected coverage ( i.e.EfXtg) utilizing the
proposed expectation in (23). More details on the derivation
of the statistical models in this section can be found in [26].



4. Experimental Results and Comparisons

The experiment setup included a functional test phases
followed by 4 different random test phases. Each stopping
rule was applied to all the phases to decide when to stop and
switch to the next test strategy. The abbreviation of each
stopping rule used is shown in Table 1. 14 different VHDL
models were used in our experiments. The characteristics
of these 14 VHDL models are shown in Table 2. Table 3
shows the results of applying all the existing stopping rules
as well as the proposed static Bayesian stopping rule to ver-
ifying 14 VHDL models listed in Table 2. For each entry
in Table 3, the number on the top is the number of branches
covered during the verification process, and the number be-
low is the total number of test patterns applied during the
verification.

Orig: Original Run without stopping
SS1: Sequential Sampling Fixed

SS2: Sequential Sampling Variable


HW1: Howden First Formula
HW2: Howden Second Formula

BM: Binary Markov Model
DL: Dalal-Mallows Cost Rule
CP: Compound Poisson Rule
SB: Proposed Static Bayesian Rule

Table 1. Stopping Rules

Model LOC P C B DCFG

Sys7 3785 62 7 591 7
8251 3113 3 12 207 9
B01 1880 7 9 373 8
B04 4657 42 15 251 3
B05 5015 46 19 302 6
B06 4667 39 16 225 6
B07 4710 39 16 225 6
B08 4949 52 15 296 3
B09 4963 46 19 302 6
B10 4777 39 16 225 6
B11 4752 42 15 251 3
B12 4973 46 19 302 6
B14 5498 53 21 399 6
B15 5770 66 21 470 6

LOC: Lines of VHDL Code
P: Number of Process Blocks
C: Input Control Bits
B: Number of Branches

DCFG: Depth of Control Flow Graph

Table 2. VHDL Models Characteristics

To compare the proposed static Bayesian stopping rule
with the existing stopping rules, we use theFigure of Merit

function,fm, defined as:

fm = cov � � tt (27)

wherecov is the branch coverage percentage reached after
applying the stopping rule, andtt is the number of testing
units (clock cycles) used. Thefm function gives the indica-
tion of the efficiency of a given stopping rule when applied
to a behavioral model. However,� in equation (27) should
be set such that it reflects the cost/benefit ratio of verification
versus quality. In our comparison analysis, we select three
different values for� to show the effectiveness of the pro-
posed stopping rule. Thefm results for the different stop-
ping rules and for the three selected� values are shown in
Table 4 in a normalized form.
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Figure 2. fm at � = 50�

Table 4 shows that the figure of merite values of the pro-
posed SB stopping rule are of the highest values for most the
examined behavioral models when � is set to 10�, which
indicates the cost of continuing testing is low. We notice
that for � = 10� there are 30 cases out of 126 in the Ta-
ble that yielded better fm values than that of SB. When � is
set to 50�, which indicates the cost of continuing testing is
medium, only 9 cases yielded better fm values than that of
SB. Figure 2 shows the figure of merit lines when � is set to
50�. When the � value is chosen higher, 12 cases yielded
better fm values than that of SB. On the average across
the behavioral models, however, the highest normalized fm
values were yielded by the SB stopping rule when � is set
to 50� and 100�. The next best normalized fm is 0.99 for
� = 50�, and 0.97 for � = 100� both yielded by the HW1
stopping rule. When � = 10�, we found slightly better fm
values with BM, HW1, and HW2 methods. We notice that
these three stopping rules use the confidence-based criterion
in the stopping decision, and they yielded higher fm values
when the cost of testing is almost negligible. That shows the



Model Orig SS1 SS2 HW1 HW2 BM DL CP SB

Sys7
568

54283

536

1039

538

1858

536

927

536

969

536

1025

536

1235

547

6287

535

661

8251
161

81500

73

3259

73

3812

79

2769

79

2906

81

3033

75

5712

112

9600

74

2275

B01
200

80000

177

8169

142

3352

128

1010

155

11084

128

1211

128

1211

135

4200

128

1854

B04
223

80000

220

10282

218

5047

206

1894

214

2468

214

2557

219

11755

217

17100

199

631

B05
259

80000

234

10795

251

7122

251

2092

251

2343

251

2431

252

5318

253

10800

232

808

B06
210

80000

192

8725

192

4618

192

1240

192

1407

192

1439

204

7110

204

4500

192

673

B07
210

80000

196

8963

198

4660

196

1322

204

3904

196

1621

196

1132

204

4500

195

789

B08
274

80000

268

12447

268

6122

263

1392

263

1405

273

2283

273

8427

273

9600

273

2249

B09
260

80000

234

10795

251

7122

234

1512

251

2053

251

2470

252

5324

253

7800

232

809

B10
210

80000

197

9068

198

4660

204

1488

204

1711

204

1781

196

915

208

4200

208

2181

B11
223

80000

220

10282

218

5047

206

1894

214

2468

214

2557

219

11755

217

17100

199

631

B12
259

80000

234

10795

251

7122

234

1545

251

2085

251

2462

252

5318

253

6900

232

808

B14
257

80000

248

11367

248

5712

244

1892

244

1900

244

1991

248

1618

253

21000

245

1982

B15
415

80000

351

16190

351

7906

350

1892

350

1900

350

1991

418

80002

383

9000

364

2080

Table 3. Stopping Rules’ Coverage Results

effectiveness of the confidence-based criterion in the stop-
ping decision when the testing cost is very low. However,
the proposed SB stopping rule shows robustness for a much
wider range of testing costs. Table 5 lists the normalized av-
eraged fm values for the three selected �’s.

5. Conclusion

We have presented a more efficient stopping rule to im-
prove the efficiency of behavioral model verification. The
stopping rule used a static Bayesian methodology utiliz-
ing experimental statistical behavior to estimate the “good”
point to switch or stop the testing process. The proposed
stopping rule incorporates the cost model criterion in the
stopping decision. Results show that the proposed stopping
rule outperforms the existing stopping rules in terms of effi-
ciency measured by a figure of merit function. More inves-
tigation and better choices of stopping criteria could be used
for better performance.
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