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Abstract

Functional testing of HDL specifications is one of the
most promising approaches for the verification of the func-
tionalities of a design before synthesis. The contribution of
this work is the development of a test generation algorithm
targeting a new coverage metric (called bit-coverage) that
provides full statement coverage, branch coverage, condi-
tion coverage and partial path coverage for behaviorally
sequential models.

The behavioral test sequences can be also the only way
to evaluate testability of VHDL model for which a gate-level
representation is not available (e.g third-party cores), since
the behavioral error model is characterized also by a high
correlation with the RT and gate-level stuck-at fault model.
Moreover, the preciseness of the proposed coverage metric
makes the identified test sequences more effective in iden-
tifying design errors, than other test patterns developed by
following standard coverage metrics.

1 Introduction
Functional verification of VHDL specifications is in-

creasingly the bottleneck toward the reduction of design
time. The aim is to verify that a description has the intended
behavior: this can be accomplished by identifying a series
of meaningful simulation vectors. However, such a strategy
represents the most resource-consuming part of the design
process, requiring large verification teams and time. This
increases both product development costs and time to mar-
ket, without any guarantee of avoiding to ship products with
bugs. Simulation and emulation are not keeping up with the
size of the designs to be verified. In fact, the verification of
all specified behaviors can only be guaranteed if an exhaus-
tive application of all possible input values is performed:
this task is infeasible for actual designs. Today, formal veri-
fication techniques are gaining a wider acceptance, however
they do not represent a general solution, but can be useful
for specific cases.

In the case formal verification techniques cannot be used,

the specification is verified by means of simulation, either
at the gate or RT-level. Test cases are manually defined
or randomly generated. In most cases, designers perform
functional vectors generation based on their knowledge of
the specification; this allows the definition of a meaning-
ful set of vectors but without any guarantee to thoroughly
exercise the specification. In that case, testbench authoring
tools provide a way to ”measure” the quality of the test pat-
terns through some coverage metrics, mostly taken from the
software testing area [1].

In the literature, semi-formal techniques [2, 3, 4] have
been advocated to make simulation smarter, being able to
perform a comprehensive validation without redundant ef-
fort. This analysis is targeted to RTL specifications and
aims at maximizing the probability of stimulating and de-
tecting bugs at minimum cost, in terms of time and com-
putation resources. The main effort is the definition of the
most suitable coverage metrics that will be able to guide the
test vectors generation and define how comprehensive has
been the verification so far, thus identifying a stopping cri-
terion. The ideal situation would be to find a metric that
has a direct correspondence to the design errors. However,
there are no good models for design errors, and therefore it
is difficult to prove that a metric is a good approximation
for design bugs.

Many different coverage metrics have been proposed,
serving different purposes, and working at different abstrac-
tion levels. Code-based coverage metrics, deriving from the
software testing field, seem the most suitable ones to be ap-
plied on HDL-based specifications and represent a useful
guide to identify the test cases to be applied. However, clas-
sical code-based coverage metrics such as line/code block
coverage, branch/conditional coverage, expression cover-
age, path coverage and the most recent tag coverage are not
sufficient to guarantee the detection of all design errors.

The aim of this paper is to evaluate different coverage
metrics, based on a high-level error model for VHDL be-
havioral (i.e., VHDL descriptions accepted by high-level
synthesis tools) and functional RT-level specifications. An-
alyzed behavioral descriptions are subdivided intobehav-



iorally combinationalandbehaviorally sequentialdescrip-
tions as described in Section 2.

The paper proposes a coverage metric based on an error
model that approximates the actual design errors. An er-
ror is defined as a modification of an element of the VHDL
code that may produce a different behavior. For each one
of these errors we generate a test that detects it. During
test, the erroneous and original designs behave differently.
Coverage is defined as the fraction of faults detected by the
entire test set and it is measured by simulation. To verify the
effectiveness of our error model, we consider it with respec-
t to statement coverage, adopted by many HDL coverage
tools, and with respect to the code-based metric proposed
in [6], which considers block coverage. To evaluate this
difference in terms of design errors identification between
these coverage metrics, we used the stuck-at fault cover-
ages at the RT-level as an independent comparison method.
This can be considered a method for estimating the ability
of the produced functional test patterns to identify design
errors. Finally, we compare the single stuck-at fault cover-
age provided by a commercial test generator, with the fault
coverage obtained by applying the test sequence identified
at the specification level, in order to verify how our cover-
age metric performs at gate-level.

Different papers in literature have analyzed with differ-
ent flavors the problem of producing test patterns to identify
design errors. In [7] test patterns developed for the gate-
level implementation using the single stuck-at fault mod-
el, are used to compare the gate-level combinational imple-
mentation with the functional-level specification. The au-
thors show that these tests allow detection of a large class
of common design mistakes. However, this approach can
be applied only after the implementation has been obtained,
thus identifying design errors only at a very late stage of
design. In [8] a coverage measure to compute the level of
design validation obtained is proposed. This paper does not
provide an approach to generate functional test pattern tar-
geting the design errors modeled. Furthermore, their design
error model works at the gate-level. In [9] the authors pro-
pose a tag coverage method to evaluate the quality of a set
of functional vectors based on HDL coverage and observ-
ability information. This information is used to determine
if the effects of errors that are activated by the test vectors
are observable at the outputs. Observability information is
computed by applying tags to variables during simulations,
and then using a specific simulation calculus to evaluate the
coverage provided by a set of functional vectors. No test
generation procedure is proposed. In the next paper, the ob-
servability metric is used to search for inputs that exercise
a selected number of paths of a RT-level Verilog descrip-
tion, by using a satisfiability checking algorithm [10, 11]. In
their last work they tackle the problem of sequential circuit-
s, by extending their technique to include time-frame anal-

ysis [5]. None of these papers consider redundancy identi-
fication as one of the goals of the coverage directed simula-
tion performed. Observability is the main focus of [12], in
which the authors analyze three different metrics for taking
observability into account during RT-level test generation.

The focus of this paper is on behavioral and RT-level
VHDL specifications, thus analyzing a higher level of ab-
straction of previous approaches. The aim is to propose a
new automatic generator of test vectors targeting full cover-
age of a behavioral error model, adopted as coverage metric.
This metric, based onbit coverageinstead of statement or
selective path coverage [13, 5] allows a more precise verifi-
cation of the specification, covering anyway all statements,
branches and conditions and some significant paths of the
VHDL model by incorporating both controllability and ob-
servability criteria. Full path coverage cannot be guaranteed
since the number of paths in a specification can grow expo-
nentially with the size of the description. Note that the error
model based on bit errors on variables is not related to spe-
cific design errors, but it is used primarily to extend standard
coverage metrics to include controllability and observability
requirements that provide the possibility of detecting design
errors.

Main advantages of the approach proposed in this paper
can be summarized as follows.

� It allows functional verification of behavioral and RT-
level descriptions, described as VHDL processes, with
sequential behavior, providing coverage of all state-
ments, branch coverage, condition coverage and selec-
tive path coverage.

� It provides the identification of untestable or difficult to
test parts of the specification, before synthesis is per-
formed, on the VHDL source code, thus avoiding re-
design time if the obtained testability is not considered
sufficient.

� It allows accurate evaluation of different architectural
alternatives also in terms of testability and not only
in terms of area and performance, as provided by the
high-level synthesis tools, in a fraction of the time re-
quired to generate specific test sequences for each im-
plementation.

� It provides a mean to generate test patterns for those
embedded cores for which a gate-level description is
not available, thus allowing to evaluate their testability.

2 Behavioral Descriptions Classification
The proposed testing approach analyzes single-process

VHDL behavioral specifications. Operations and state-
ments considered are those accepted also by high-level syn-
thesis tools such as the Synopsys Behavioral Compiler.



Each VHDL process can include a singlewait statemen-
t, or, in more complex and general cases, can be based on
multiplewait statements.

By assuming a singlewait , process outputs are a map-
ping of input values applied in the same time frame. This
kind of descriptions is classifiedbehaviorally combination-
al, since a given input vector produces a response in the
same time frame, thus behaving as a combinational circuit.
However, gate-level circuits obtained by such behavioral
descriptions, are always sequential, and the sequential be-
havior is introduced by the high-level synthesis tool during
the scheduling phase. A functional test generator produces
for such descriptions a test vector for each error.

On the contrary, if thebehaviorally combinationalas-
sumption is removed, a functional test generator must pro-
duce a sequence of test vectors to test a particular error. In
fact, an error generally requires more than one clock cy-
cle to be propagated to the primary outputs. We classi-
fy these types of descriptions asbehaviorally sequential,
and, obviously, the corresponding gate-level circuits are se-
quential. An examplebehaviorally sequentialdescription is
shown in Figure 1. It is important to nota that the class of
behaviorally sequentialdescriptions includes also RT-level
descriptions representing an FSM controlling a datapath.

Any behaviorally sequentialVHDL description is con-
verted into an internal representation, based on Binary De-
cision Diagrams (BDDs), which is used for functional test
generation. The procedure for the VHDL to BDD transla-
tion is based on the concepts introduced in [14], which are
here modified to take into account thebehaviorally sequen-
tial nature of the analyzed descriptions. VHDL is parsed
and a Control/Data Flow Graph (CDFG) is extracted. Each
node of the Control Flow Graph is associated with a Da-
ta Flow Graph (DFG) which represents all arithmetic or
boolean expressions. The CFG is composed of four type-
s of nodes: VHDL assignment, condition, loop andwait
statements. All other VHDL constructs are translated in-
to these four classes of statements, thus ensuring a general
applicability to the proposed approach. Figure 1 shows the
control flow graph of abehaviorally sequentialdescription
of the greatest common divider.

The CFG generated is analyzed and partitioned in a
graph, namedMacrostate graph, where each node, named
macrostate, clusters the set of statements of the CFG be-
tween a givenwait and allwait directly reachable from
it. Let us consider, for example, the GCD reported in Fig-
ure 1. The correspondingMacrostate graph(shown in Fig-
ure 2) presents twomacrostates: the first one considers the
subgraph of the CFG with the statements (1), 2, 3, 4, 9,
[1], [5], with the statements 1 as first statement and 1 and 5
as lastwait statements, while the second one groups state-
ments (5), 6, 7, 8, 4, 9, [1], [5]. The edges of theMacrostate
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Figure 1. GCD behavioral VHDL description
and its control flow graph.

graphconnect the lastwait statement of a node to the n-
ode having the correspondingwait as first statement. The
Macrostate graphhelps in modeling the sequential behav-
ior, in fact, a design evolves going from a macrostate to an-
other as clock increases, therefore amacrostatecan be used
to represent ahigh-level state. Moreover, in a behavioral
description, there are other elements that contribute to the
high-level state, for example variables read in amacrostate
before its writing or outputs not written on all paths asso-
ciated with amacrostate, such that their values should be
considered during transitions from amacrostateto another.
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Figure 2. Macrostate graphassociated with the
GCD of figure 1.

This Macrostate graphis then translated into the inter-
nal BDD-based representation adopted by the test gener-
ation algorithm. The translation proceeds in breadth-first
manner, by analyzing first the initialmacrostate(i.e. the
macrostate containing the first instruction of the process)
and then iteratively level by level, by computing all transi-
tions associated with the whole design. Obviously, at the
first level (i.e. when the initialmacrostateis considered),



all the transitions and output values starting from the ini-
tial high-level state are considered, then the next level start-
s from the reached states and builds all the corresponding
transitions and output values. The procedure ends when all
transitions are computed or when the size increases over a
given level. The transitions are built by adopting the pro-
cedure described in [14] considering the part of the CFG
associated with amacrostateand building the output and
the next state functionality considering the high-level state
as primary input.

The procedure resembles the traversal procedure adopted
in formal verification to compute the set of reached states,
but with a relevant difference: the procedure incrementally
builds the functionality of the description and therefore can
be interrupted when the size of the internal model increas-
es over the manageable size. Moreover, we can extend the
input domain decomposition adopted in [14] to control the
size of the internal model. In particular, in [14] we consider
a cube, namedinput decomposition cube, representing the
input set values. When a variable does not appear in thein-
put decomposition cubethis means that the corresponding
input can be set either to 0 or 1, while when a variable is
present in positive (negative) form the corresponding input
is fixed to the 1 (0) value. In this way, the internal model
describes the functionality only for a subset of the input do-
main. The same procedure can be extended to the sequen-
tial case by traversing theMacrostate graphby considering
for each time frame only those transitions compatible with
a giveninput decomposition cube. Therefore, the analysis
can incrementally analyze the description by existentially
abstracting variables from the initialinput decomposition
cube, then enlarging the input subset until the whole do-
main is considered.

3 Coverage Metrics Comparison
The aim of the proposed functional testing strategy is to

unify in the same approach the three problems of design
errors identification, testability estimation and faults detec-
tion. For this reason, we adopt a behavioral error model,
which is closely related to RT-level faults [20]. It is a s-
ingle error model and it is based on the following VHDL
modifications:

� Bit failures . Each variable, signal or port is considered
as a vector of bits. Each bit can be stuck-at zero or one.

� Condition failures. Each condition can be stuck-at
true or stuck-at false, thus removing some execution
paths in the erroneous VHDL representation.

The error model excludes explicitly the incorrect behavior
of the elementary operators (e.g.,+;�; �; : : :). Therefore,
only single bit input or output errors are considered, includ-
ing all operator’s equivalent errors. Each error in the error
list is characterized by the following properties: the name

of the signal, variable or port, the VHDL line affected, the
variable, signal or port instance in that VHDL line, the type
of stuck-at error (bit stuck-at zero or one; condition stuck-at
true or false). For bit failures the bit position is also identi-
fied. Since all bits of a VHDL description are used to model
errors, we call this error model:bit coverage.

Let us now relate the bit-coverage metric to the other
metrics, developed in the software engineering field [1], and
commonly used in functional testing.

� Statement coverage. Any VHDL statement manipu-
lates at least one variable or signal. Our bit failures are
injected into all variables and signals on the left-hand
and right-hand side of each assignment. Thus, at least
one test vector is generated for all VHDL statements.
To reduce the proposed error model to statement cov-
erage it is thus sufficient to inject only one bit failure
into one of the variables (signals) composing a VHDL
statement. If the injected error is notbehaviorally re-
dundant, a test vector is generated covering the state-
ment. In conclusion, the bit-coverage metric produces
a larger number of vectors with respect to statement
coverage and guarantees to cover all statements.

� Branch coverage. The branch coverage metric im-
plies the identification of patterns which verify the ex-
ecution of both the true and false (if present) paths of
each branch. Modeling of our condition failures im-
plies the identification of patterns which differentiate
the true behavior of a branch from the false behavior,
and vice versa. This differentiation is performed by
making stuck-at true (false) the branch condition and
by finding patterns executing the false (true) branch,
thus executing both paths. In conclusion, the proposed
bit-coverage metric includes the branch-coverage met-
ric.

� Condition coverage. The proposed error model in-
cludes condition failures which make stuck-at true or
stuck-at false any condition disregarding the stuck-
at values of its components. Thus, if a condition
is composed of multiple clauses, the proposed ap-
proach would actually model only one erroneous be-
havior while condition coverage requires to model-
s all erroneous behaviors of each clause. Howev-
er, a simple VHDL transformation allows the pro-
posed error model to cover all conditions. In fac-
t, a multiple-clause condition (e.g.,IF ( x > 0
AND y < 5) THEN) is converted into a Boolean
variable assignment and a condition on the vari-
able (e.g., test := (x > 0) AND (y < 5);
IF (test = TRUE) THEN ). This transformation
preserves the VHDL semantic. In this case, all inject-
ed bit failures produce test patterns for all clauses, thus



allowing the proposed bit-coverage metric to cover all
conditions.

� Path coverage. The verification of all paths of a
VHDL process can be a very complex task due to the
possible exponential grow of the number of paths. The
proposed error model selects a finite subset of all paths
to be covered. The subset of covered paths is com-
posed of all paths that are examined to activate and
propagate the injected errors from the inputs to the out-
puts of the VHDL design entity within a given time
limit. Note that, such paths are not explicitly enumer-
ated, but they are symbolically executed as described
in the next section.

In [6] statement coverage has been extended by partition-
ing the code in blocks and by activating these blocks a fixed
number of times. Thisblock coveragecriterion is included
in the proposed error model in the case the number of bit
errors included in a block is larger than the number of times
the block is activated. In fact, a test pattern is generated for
each bit error, thus the block including the error is activated
when the error is detected.

In conclusion, the bit-coverage metric, applied to VHDL
descriptions, unifies into a single metric the well known
metrics concerning statements, branches and condition cov-
erage. Moreover, an important part of all paths is also cov-
ered and all blocks of a description are activated several
times.

4 Test Generation Algorithm
The behavioral level test pattern generator is based on

the comparison between the error-free and erroneous BDD
representations of the VHDL specification. It is composed
of the following steps that are repeated for each class of
behavioral errors:

� Simulate test sequences already identified for other er-
ror classes, if any.

� Translate the VHDL specification into a BDD-based
representation, while injecting the current error class,
thus producing an error-free and an erroneous repre-
sentation.

� Build the automaton, whose recognized language de-
scribes all the test sequences for errors of the current
class. There is an acceptor state for each error of the
class. If for an error no acceptor state can be identified,
then the error is behaviorally redundant.

� Traverse breadth-first the automaton, until at least one
acceptor state is reached, then backward traverse it un-
til the reset state is found, thus extracting the test se-
quence that detects such an error.

� Update the current class error coverage.

The automaton is built by starting from the couple com-
posed of the reset state of the error-free and erroneous rep-
resentations. Each state of the automaton is labeled by a
couple of high-level states, one belonging to the error-free
representation and the other to the erroneous one. A high-
level state is composed of variables, output ports values, and
the currentmacrostateencoding. In order to build the au-
tomaton it is necessary to identify the next high-level state
for each error-free and erroneous high level state. The cou-
ple of high-level next states reached under a specified input
corresponds to the next automaton state. Two automaton
states are connected by an oriented edge labeled with the
input value. The computation of the next high-level states
terminates when no new automaton states can be identified,
thus reaching a convergence in the expansion.

When the output values generated by the error-free rep-
resentation differ from those generated by the erroneous
one, the next automaton state represents an acceptor state.
Therefore the language accepted by this automaton is the set
of test sequences for the current error class. The automaton
construction is similar to the one described in [16].

When the translation into the internal representation is
performed by adopting the input domain decomposition, as
described in section 2, the automaton construction is con-
strained with respect to aninput decomposition cubeby
considering only a subset of the input domain. In this way,
the automaton is computed to accept all test sequences com-
patible with theinput decomposition cube, thus being able
to control the test generation process, without going beyond
the memory limits and attempting to generate the test se-
quences on the reduced representation. In this case, if the
automaton does not present an acceptor state, the input do-
main must be enlarged and a new attempt performed. An
error can be classified as behaviorally redundant only when
the whole domain is considered.

5 Gate-level Test Sequences Derivation
The behavioral test sequence generated before the behav-

ioral synthesis step, does not take into account the effects of
the different synthesis steps, and in particular the different
possibilities in terms of scheduling and module allocation,
that affect the resulting RT-level architecture.

To effectively apply the behavioral test sequence to a RT-
level or gate-level description, the test sequence must be tai-
lored to the scheduling applied by the high-level synthesis.
This operation can be performed by identifying how many
clock cycles are necessary to execute all VHDL instruction-
s belonging to a specificmacrostate. This implies that the
instructions belonging to amacrostatemust be scheduled in
an integer number of control steps, that is no control step
can include instructions belonging to differentmacrostates.
Output operations are performed in the last clock cycle of



themacrostate, while read operations can be assigned to any
instruction belonging to themacrostate.

Therefore, given the numbern of clock cycles required
to execute amacrostateat the RT level, the behavioral test
vector applied to such amacrostateat the behavioral level
must be repeatedn times in order to synchronize its outputs
with the start of the execution of the instructions of the next
macrostate. The valuen represents the number of clock cy-
cles necessary to produce the same output value on the out-
puts of the RT-level representation obtained after one clock
cycle on the behavioral-level description. This value differs
for eachmacrostate, since the number of control steps re-
quired to schedule eachmacrostatecan differ significantly.

The procedure allowing the identification, for each be-
havioral test vector of eachmacrostate, of this replication
number, is based on a simultaneous VHDL simulation of
the RT-level description output by the synthesis tool and the
behavioral-level description, modified to make the internal
state of the computation observable.

In fact, the original VHDL is modified by adding a set of
outputs that allow to observe the value of the process inter-
nal variables and the code representing the nextmacrostate
to be executed. These outputs are added in correspondence
to eachwait instruction of the specification, and there-
fore will be available at the last clock cycle of the current
macrostateexecution.
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Figure 3. RT-level sequences derivation.
Figure 3 shows a schematic view of the VHDL design

entities simulated for the generation of the RT-level test se-
quence. The VHDL testbench simulated instantiates a clock
generator and two architectures for the same entity repre-
senting the circuit under test, the behavioral VHDL descrip-
tion and the RT-level one. The testbench reads the stimuli
file containing the behavioral test sequence, one vector at
a time. The two architectures both receive the same inputs,
corresponding to the test vector, but a different clock signal.
While the RT-level architecture receives the clock signal
produced by the clock generatorCK, the behavioral archi-
tecture receives a different clock signalOK, multiple ofCK,
that allows the activation of a new execution of the behav-
ioral architecture only when the RT-level architecture has

actually completed the execution of the current test vector.
This event occurs when the output value produced by the
RT-level circuit description is the same of the output value
generated by the behavioral description. In fact, the value
of the clock signalOKdepends on the result of the compar-
ison of the outputs produced by the behavioral architecture
in one cycle, and the outputs produced by the RT-level ar-
chitecture at each clock cycleCK. When the two values are
the same, the clock signalOKassumes value 1, triggering
the reading of a new behavioral test vector. For all the clock
cyclesCKin which the two output values differ, the current
input test vector is written in the file that will contain the
final RT-level test sequence. This allows the identification
of the number of times each test vector must be repeated.

6 Experimental Results
The proposed functional test pattern generator has been

implemented in theBEHATE program (BEHAvioral Test
Environment), which is composed of more than 120K C
code lines. Experiments have been run on a SunUltra
30/248 with 1Gbyte RAM.
6.1 Functional test generation

The analysis has been performed on some behavioral-
level VHDL benchmarks, whose description can be accept-
ed by the Behavioral Compiler of Synopsys. Benchmarks
have been selected from the following two sets:

� Single-process high-level FSMs of the benchmarks
set [19]. Such benchmarks are control dominated, s-
ince they mainly represent control operations.

� High-level synthesis benchmarks [18], which follow
the constraints on the VHDL language reported in Sec-
tion 2. Such benchmarks are data dominated, since
they describe some kind of filters and arithmetic oper-
ations.

High-level characteristics of all benchmarks are reported
in Table 1 in terms of number of bit of inputs, outputs, vari-
ables,wait statements, VHDL lines and VHDL modules.

Results of functional test generation are reported in Ta-
ble 2 in terms of memory usedMByte, number of errors
injected, error coverage, number of functional vectors gen-
erated and CPU time in seconds. The adopted functional
test generator is able to cover the majority of errors.
6.2 Criteria comparison on behavioral errors

Thebit-coveragecriterion has been shown in [20] to al-
low the efficient identification of design errors. For this
reason, the classicalstatement-coveragecriterion and the
block-coverage[6] strategy have been compared to the pro-
posedbit-coveragecriterion. Results are reported in Table 3
in terms of achievedbit-coverageand number of vectors.

Patterns generated for covering statements and blocks do
not achieve (except forb07 ) the same bit coverage achieved
by using the proposed functional test generator, which tar-
gets bit errors. To evaluate this difference in terms of design



Name #In. #Out. #Var. #Wait #VHDL lines

b01 4 2 3 1 110
b02 3 1 3 1 70
b03 6 4 26 1 141
b04 13 8 61 1 102
b06 4 6 3 1 128
b07 3 8 43 1 92
b08 11 4 57 1 89
b09 3 1 2 1 103
b10 13 6 14 1 167
b11 67 64 23 1 119
gcd 16 34 16 48 2 38
shewa8 95 16 40 7 102
maha8 95 8 56 3 92
kim 8 92 16 56 5 97

Table 1. Benchmarks characteristics.

Name MByte Err. %Err. Cov. Vec. CPU s.

b01 8.0 185 100.0 152 19.3
b02 5.8 67 97.0 42 1.8
b03 12.2 304 78.0 246 722.9
b04 17.9 439 86.8 52 5731.0
b06 8.9 165 99.0 74 13.2
b07 10.8 897 52.2 168 3271.4
b08 14.2 346 85.5 310 10306.4
b09 15.0 312 77.9 236 3521.3
b10 11.2 315 84.1 159 654.8
b11 15.2 886 63.9 542 20204.6
gcd 16.0 556 99.3 261 18798.0
shewa 554 988 97.9 79 7580.1
maha 28.5 1004 95.4 37 17917.0
kim 14.0 1442 87.5 58 9384.1

Table 2. Functional test pattern generation.

errors identification, we used stuck-at fault coverages at the
RT-level as an independent comparison method.

6.3 Criteria comparison on RT-level faults
The comparison between the error coverage reported in

Table 3 and the fault coverages reported in Table 4 shows
that an higherbit coverageimplies an higher coverage of
RTL stuck-at faults. Assuming that RT-level faults model
design errors, it is possible to conclude that the proposed
bit coveragemetric allows the identification of more design
errors than classical coverage metrics.

6.4 Testability evaluation at the gate level
Finally, each behavioral benchmark of the second set

([18]) has been synthesized in four different ways by us-
ing different module implementation and resource sharing
by constraining the behavioral compiler of Synopsys. This

Statement cov. Block cov. Bit cov.
Name %Bit C. Vec. %Bit C. Vec. %Bit C. Vec.

b01 94.6 55 99.0 247 100.0 152
b02 88.1 21 94.0 99 97.0 42
b03 75.6 76 74.0 252 78.0 246
b04 65.6 20 84.7 33 86.8 52
b06 95.2 28 97.0 122 99.0 74
b07 52.1 171 52.1 1227 52.1 168
b08 75.6 111 80.6 367 85.5 310
b09 63.1 96 69.0 720 77.9 236
b10 78.7 90 79.0 1372 84.1 159
b11 56.4 130 60.0 459 63.9 542

Table 3. Comparison on behavioral errors.

Statement cov. Block cov. Bit cov.
Name Det.F. %F.C. Det.F. %F.C. Det.F. %F.C.

b01 279 93.6 289 97.0 293 98.3
b02 163 89.6 167 91.8 175 96.2
b03 731 68.8 723 68.1 751 70.7
b04 2548 65.6 2484 64.0 2874 74.0
b06 347 91.8 361 95.5 361 95.5
b07 1471 52.6 1482 53.0 1475 52.8
b08 877 80.8 972 89.5 998 91.9
b09 777 69.1 824 73.3 909 80.9
b10 1011 85.0 1054 88.6 1061 89.2
b11 2471 79.3 2627 84.3 2797 89.8

Table 4. Comparison on RTL faults.

operation has been performed to simulate the exploration
of different high-level synthesis alternatives from the point
of view of testability. All implementations have been ana-
lyzed for testability at the gate level by using: one of the
most efficient commercial TPG, and the test sequences de-
rived from the functional test patterns ofBEHATE. Such
sequences have been derived by applying the methodolo-
gy reported in Section 5. The fault coverage achieved by
the commercial TPG and byBEHATEis reported for each
benchmark implementation in Figure 4. Moreover, the ac-
cumulated CPU time for the testability analysis of all bench-
marks implementations is reported in Figure 5. The CPU
time for BEHATEincludes functional test generation, gate-
level test sequences derivation and fault simulation. The
analysis of both graphs underlines that it is reasonable to
useBEHATEto generate functional test patterns to evaluate
testability at the gate level, since a very accurate estimation
of the achievable gate-level fault coverage can be obtained
by saving a relevant amount of time.

7 Concluding Remarks
The paper introduces a new functional test generator able

to analyze VHDL behavioral descriptions. Characteristics
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Figure 4. Gate-level stuck-at fault coverage.
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Figure 5. Accumulated CPU time necessary
to measure testability.

of the behavioral descriptions have been investigated, and
behaviorally sequentialrepresentations have been defined
with respect to simpler combinational representations. The
proposed functional TPG works on a BDD-based represen-
tation extracted from a VHDL model by injecting behav-
ioral errors. The adopted error model (bit-coverage) has
been shown to be more effective in identifying design er-
rors. This verification has been performed by comparing
stuck-at fault coverages obtained by using different func-
tional coverage criteria.

Functional test patterns are generated directly at the ear-
ly steps of the design flow and they are independent of any
high-level synthesis operation. Thus, they can be used to
evaluate the testability of the behavioral descriptions before
the actual synthesis. Moreover, they can be tailored to the
particular implementation selected during the synthesis and
can be used to test gate-level stuck-at faults. Finally, since
this derivation of the functional test sequences to the syn-
thesized circuits is very simple and fast, functional test se-
quences can be used to compare the testability of different
implementations by performing fault simulation at the gate
level, without being constrained to generate test sequences
for each implementation.

In this way, the three problems of design errors identifi-
cation, testability estimation and faults detection are faced
by using an integrated testing strategy.

Future work will consider the comparison of the pro-
posedbit-coveragemetric to coverage criteria based on ob-
servability measures (e.g. [9, 12]).
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