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Abstract* 
In this work a generalization of the structural 

Redundancy Addition and Removal (RAR) logic 
optimization method is presented. New concepts based on 
the functional description of the nodes in the network are 
introduced to support this generalization. Necessary and 
sufficient conditions to identify all the possible structural 
expansions are given for the general case of multiple 
variable expansion. Basic nodes are no longer restricted 
to simple gates and can be any function of any size. With 
this generalization, an incremental mechanism to perform 
structural transformations involving any number of 
variables can be applied in a very efficient manner. 
Experimental results are presented that illustrate the 
efficiency of our scheme. 

 

1. Introduction 

Logic optimization methods based on the combined 
addition and removal of redundancies to a logic network 
have been proposed [1-5]. In all these methods, the basic 
optimization mechanism consists in adding redundant 
wires/gates so that other redundancies are created 
somewhere else, producing a smaller of faster network. 
These methods are usually applied on a structural 
representation of the circuit consisting of simple gates. 

We generalize the concepts of redundancy removal and 
redundancy addition to structural reduction and expansion 
operations. Reduction is a generalized removal operation 
that consists in modifying an existing function in the way 
to reduce its support. Similarly, expansion is a generalized 
addition operation, that consists in modifying an existing 
function in the way to extend its support. With this 
generalization, expansion is  a functional operation that is 
not limited to the addition of a single wire/gate. However, 
the efficient identification of multiple wires/gates for 
expansion is still an open problem because of the large 
number of possibilities that exist even in small circuits. 

 
* This work has been supported by the Community of Madrid (Spain)  under 
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In the original work where Redundancy Addition and 
Removal (RAR) is proposed [1], the first step is the 
selection of a target wire for removal. Then a single wire 
expansion is computed to make this reduction feasible. An 
ATPG-based implication mechanism is used in order to 
check that expansions and reductions are valid. This 
approach has been followed in several other works 
[2][3][6]. In the Boolean Reasoning technique [4][5], a 
valid addition (expansion) is first identified by using 
recursive learning. Then, redundancy removal (reduction) 
is performed for the entire network. In both cases, there is 
not a strong link between the expansion and reduction 
operations. Instead, a trial and error technique is used to 
identify possible candidates. The consequence of this trial 
and error technique is that a high percentage of the 
computations are useless. Being m the number of possible 
candidates, up to m+1 tests are required to be computed in 
each iteration to explore the solution space. Many of the 
candidates are usually not redundant, resulting in a waste 
of time. Some techniques are used to reduce the number 
of candidates [1], but still a large number of them have to 
be tried. In this paper, enhanced operations will be 
presented demonstrating  that it is possible to obtain both 
sufficient and necessary conditions to identify valid 
transformations.  

Using the trial and error technique, the complexity 
grows exponentially when transformations involving the 
addition of several wires/gates are considered. Techniques 
for multiple wire expansion have only been proposed for 
some particular cases involving just two wires [3][8]. No 
general efficient solution has been proposed to identify 
transformations using multiple variable expansion. In this 
paper, we present a recursive method to compute all 
possible multiple variable expansions.  

The remaining of this paper is as follows.  Section 2 
describes preliminary concepts for the generalization of 
the RAR technique to the enhanced operations. In section 
3, enhanced expansion is presented based on functional 
representation of the nodes to be expanded.  In section 5 a 
structural view for these transformations is given.  Finally, 
experimental results and conclusions are presented. 



2. Redundancy generation 

Our approach departs from the RAR technique 
described in [1]. In this technique, a wire wr is selected for 
reduction and a redundancy test for fault f s-a-‘v’ is 
performed on this wire. Each path on which the fault 
effect is being propagated to an primary output (PO) is 
called a fault propagation path. A node is a fault 
dominator if all fault propagation paths share this node. 
Observability mandatory assignments (MAs) are binary 
values at internal nodes in the network obtained by 
assigning a sensitizing value (‘1’ for AND, ‘0’ for OR) to 
side-inputs of dominators in the fault propagation path. A 
redundancy test consists in the implication of the 
observability MAs in order to obtain the complete set of  
MAs for fault f (f-SMA). If f-SMA is inconsistent, then 
the fault is redundant and some wires and gates can be 
directly removed by setting the tested wire to a constant 
binary value ‘v’. If f-SMA is consistent (f is testable), then 
an expansion is tried in order to make f redundant by 
blocking fault propagation. 

The main objective of a expansion operation is to make 
the target fault f unobservable. This is performed by 
taking into account the observability conditions for the 
fault f. Observability conditions do exist for each node 
that generates and inconsistency if the node is assigned to 
a particular value. Note that these include fault dominator 
nodes as well as some other nodes in the transitive fanin 
of a dominator. Observability conditions then generate 
MAs. We present now how to compute the observability 
conditions by using node’s truth tables and how 
observability MAs can be also calculated with this 
information.  

Let’s consider the truth table of a fault dominator node 
in the network. Consider also the truth table variables are 
ordered in such a way that the fault propagating input (P) 
is set in the Least Significant Bit (LSB) position. Each 
row in the table will be refered as a term. Two P-adjacent 
terms of the function will be referred as a pair. With this 
representation, the node´s output values give the necessary 
information to compute the fault observability conditions. 
If the node’s output values for a pair are the same for both 
terms in the pair (i.e. both ‘0’ or both ‘1’), then there is an 
observability don’t-care (ODC) for any value of P input 
for this pair, i.e, no observability conditions can be 
computed for this pair. If the terms in a pair have different 
output values, then the fault propagating at P input is 
observable and then there exist observability conditions 
for this pair. Mandatory assignments can be calculated as 
the common values for the side inputs. 

Example 1. For the circuit in Fig. 1, a fault f is 
propagating through dominator nodes g2 and g3. Truth 
tables for nodes g2 and g3 are also shown. For the simple 
gate g2, the pair T0-T1 does not infer any fault 

observability condition, as in both terms the output value 
is the same (‘0’). For the pair T2- T3, the observability 
assignment b=1 is inferred, as the output value is different 
for this pair. To show how observability conditions are a 
more general view than assignments, consider now node 
g3. In this case there are two observability MAs: b=1, c=0 
for pair T0-T1; and b=1,c=0 for pair T4-T5. The 
assignments for these two pairs can be merged and the 
only final mandatory assignment for this function is c=0. 
Note that the observability condition concept is more 
complete in terms of observability information of a fault, 
as two fault observability conditions are identified for 
node g3, although only one single assignment is inferred. 

 

Fig. 1. Example of observability conditions 

A expansion operation consists in a modification of the 
function performed by the node in order to set the same 
output value to both terms in the pair. This way a local 
discrepancy between the original and the modified 
dominator function is generated in one term in each pair 
with observability conditions. These pairs are called 
necessary discrepant pairs, as a discrepancy is necessary 
on each of these pairs to block fault propagation. If this 
function modification is unobservable at any PO, then the 
reduction of the fault can be directly performed as the 
overall functionality of the circuit is not changed. The 
unobservability of the change is only obtained if the 
discrepant term exactly fits within an existing or newly 
created local don’t-care (LDC) of the circuit.   

LDCs can be identified by implication techniques. If 
the initial LDC set does not include ODCs at discrepant 
pairs, new LDCs should be generated at the discrepant 
pairs in the circuit by means of a expansion operation. If 
such as a expansion operation can be performed, then the 
target wire fault becomes redundant.  

3. Enhanced expansion  

A expansion operation must not alter the overall 
functionality of the circuit. Therefore, the discrepancies 
introduced by a expansion operation must be LDCs. To 
know if the expanded discrepant terms are LDCs, an 
implication scheme can be adopted starting from the 
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g2 truth table 
 b g1 g2 

T0 0 0 0 
T1 0 1 0 
T2 1 0 0 
T3 1 1 1 

g3 truth table 
 a c g2 g3 

T0 0 0 0 0 
T1 0 0 1 1 
T2 0 1 0 0 
T3 0 1 1 0 
T4 1 0 0 1 
T5 1 0 1 0 
T6 1 1 0 0 
T7 1 1 1 0 



observability conditions of the discrepant terms. The 
following lemma models this implication scheme. 

Lemma 1.- The conditions for the discrepant terms at 
the expanded node to be LDCs can be modeled as the 
redundancy test of a new fault f2 s-a-‘u’ at input P of the 
expanded node. The value of ‘u’ will depend on the MA 
at P for the discrepant terms. For P=’0’ at the discrepant 
term value for u is ‘1’. For P=’1’ at the discrepant term 
value for ‘u’ is ‘0’.  

The following theorems provide the means to identify 
transformations involving single and multiple variable 
expansion, respectively. 

Theorem 1. Let f1 be a fault being tested at wire wr. 
Let gd be a node at which there are observability 
conditions for fault f1. Let f2 be the fault at input P of gd, 
defined in Lemma 1. Let gn be a node that has MAs ‘v1’ 
and ‘v2’ for the faults f1 and f2, respectively. The 
necessary and sufficient condition for node gn to be a 
single wire alternative node is that ‘v1’ and ‘v2’ exist and 
‘v1’= NOT ‘v2’. 

Theorem 2. Let gn1 be a node that has a mandatory 
assignment ‘v’ for fault f1 (f2) and no mandatory 
assignment (‘U’) for the other fault f2 (f1). If there is a 
node gn2 that meets the conditions of Theorem 1 when f2-
SMA (f1-SMA) is extended with the assignment gn1 = 
‘v’, then a transformation involving a two variable 
expansion with nodes gn1 and gn2 is possible. 

The proof of these theorems is omitted because of lack 
of space. Instead, we will illustrate the application of the 
theorem with examples. A partial demonstration for the 
case the expanded node is a dominator is given in [9].  

Example 2.- In the circuit in Fig. 2,  fault g2-g4 s-a-1 
is requested for reduction. This fault is tested and 
implication results are also shown in in Fig. 2 (U value 
means “unknown”) . Node g1 at the transitive fanin of g4 
dominator is selected for expansion. General expansion 
scheme of g1 is shown in Fig. 3. After expansion, module 
g1 has three inputs: a,b and the new input N. 
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 g1 g2 g3 g4 a b c d e 
g2->g4 s-a-1 1 0 1 0/1 1 1 0 0 1 

b->g1 s-a-0 1 1 0 U 1 1 1 0 U 
Fig 2. Single variable transformation at dominator´s 

transitive fanin 
 

To generate an ODC for the faults an inconsistency in 
the f-SMA is inserted. The forced value for g1 is 1 when 
fault f is tested. Then, to generate f-SMA inconsistency, 
g1 must generate the value ‘0’ after expansion. This is 

must be performed for all PI combinations that test the 
fault, with assignments a=1,b=1. Discrepancy between the 
original function and the extended function will be located 
at term T3 or term T7. To compute if T3 (T7) is a LDC, 
an implication procedure is used. Initial values are 
a=1,b=1 and the observability assignments of these 
values, which is equivalent to the test of a new fault f2 b-
>g1 s-a-0. If after the f2 implication an assignment is 
computed in some node, explicit information about LDC 
can be inferred. In this example f2 test imply  c=1. 
Because of that we conclude that N(c)=0 a=1 b=1 is a 
LDC under our test conditions. This is, it is impossible to 
occur the observable combination a=1,b=1,c=0 and 
because of that discrepant term is T3 and new node for 
expansion is c. Note that extended function can be Shanon 
decomposed by means of new variable N. The part with 
the assignment N=0 will represent all the input 
combinations able to test the fault. Associated cofactor 
will be named sensitive Cofactor (Cs). Input combinations 
unable to test the fault share the MA N=1. Associated 
cofactor will be named non sensitive cofactor (Cns). 

  N(c) a b g1* 

Cs T0 0 0 0 0 

 T1 0 0 1 0 

 T2 0 1 0 0 
 T3 0 1 1 0 

Cns T4 1 0 0 0 

 T5 1 0 1 0 

 T6 1 1 0 0 
 T7 1 1 1 1 

Fig 3. Single variable transformation scheme and results 
 
This extended formulation allows to formulate the 

multiple addition expansion as the generalization of the 
described technique. Main advantage of this 
generalization is that an incremental implication scheme 
can be used. The  following two examples will illustrate 
this idea. 

Example 3.- In the circuit in Fig. 4, f1 d->g6 s-a-1 
fault is selected as the target fault. For our transformation 
purposes, dominator node g9 is selected for expansion. 
After an implication of f1 we see that g9 value at non 
faulty circuit is ‘0’. Because of that, selected value to 
generate the LDC is ‘0’. T3 is the proposed discrepant 
term in this case and we select f2 to be g8,g9 s-a-0. 
Implications are shown in Fig. 4. 

As no single alternative node can be found, we try to 
include more observability conditions at the discrepant 
pairs. Then, we focus on a node that has a mandatory 
assignment for at least one of the faults, such as g1. We 
are not able to determine if g1 value by itself will generate 
an adequate LDC, as its implied value is ‘U’. We set 
g1=’0’ (equal value than the f1-MA) and repeat f2 test 
with this extended value. After implication, we find that 
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the inexistent MA g2=’U’ is converted in g2=’1’ for the 
extended set. In this case, under the initial observability 
conditions it is impossible to obtain combination g1=’0’ 
and g2=’0’. Because of that, new LDC have been 
successfully generated at the cofactor with g1=’0’ and 
g2=’0’ when this double variable expansion is performed.. 
In this case reduction operation yields to the elimination 
of nodes g6 and g7. Expansion for g9 is g8 f (g1+g2).  

 
 g1 g2 g3 g4 g6 g7 g8 g9 a b c d e f 

f1 0 0 1 0 0/1 0/1 0/1 0/1 1 1 U 0 U 1 
f2 U U U U U U 1 1/0 U U U U U 1 
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Fig 4. Multiple variable transformation at the dominator 

 
Example 4.- In the circuit in Fig. 5, fault g5-g9 s-a-1 is 

requested for reduction.  Implications for this fault are 
also shown in Fig. 5. Node g8 is considered for 
expansion. As g8 is located in the transitive fanin of  g9 
dominator, the objective is to generate an inconsistency in 
the forced f-SMA The forced value for g8 is 1 when fault 
f is tested. To generate f-SMA inconsistency, g8 must 
generate the value ‘0’ after expansion when the fault is 
being tested, this is, when g4=0, g3=1 . Initial values for 
implication are g4=0, g3=1 and the observability 
assignments of these values. In this case this is modeled as 
the f2 fault test g3-g8 s-a-0. After this second implication, 
it can be seen that no candidate is found for single wire 
addition. Then, we focus on a node that has a mandatory 
assignment for at least one of the faults, such as g2. We 
set g2=’0’ and repeat f2 test with this new value 
(implication3). After implication3, we find that the MA 
d=’1’. Under the initial observability conditions it is 
impossible to obtain combination g2=’0’ and d=’0’. 
Because of that, new LDC have been successfully 
generated at the cofactor with g2=’0’ and d=’0’ when this 
double variable expansion is performed. Final circuit is 
shown in Fig. 5. 
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 g1 g2 g3 g4 g5 g6 g7 a b c d e 

g5-g9 s-a-1 0 0 1 0 0 0/1 0/1 1 1 U 0 U 
g3-g8 s-a-0 U U 1 0 1 0 0 1 1 U U U 
implication 3 1 0 1 0 1 0 0 1 1 0 1 1 

Fig 5. Multiple variable transformation example 

4. Expansion module 

The previous generalized scheme has been expressed 
in terms of functional description of a node. In this section 
we will see that the expanded node can be calculated in all 
cases from the original one by adding an expansion 
module input at which fault is blocked. With this 
approach, the functional representation of the node is no 
longer needed and the whole process can be performed 
with structural techniques. 

Lemma 2.- Let ‘u’ be the binary value calculated 
according to Lemma 1 when an expansion is computed. 
Output value of both terms in each pair on Cs can be 
always calculated as the value of each term in the 
particularization of the original node function for P=’u’. 

Example 5 - In Example 2, if g1 is particularized for 
a=0 or b=0, we obtain a function with a pair PT0 with 
value ‘0’ and pair PT1 with value ‘0’. We compute Cs 
terms T0 and T1 output value as PT0 output value (non 
discrepant pair), and terms T2 and T3 at the discrepant 
pair as PT1 output value. 

Fig 6. Expanded dominator 
Expanded function can be always computed for both 

Cs and Cns by setting input P to a constant value for Cs 
and setting input P to its original value for Cns. The 
general form of the expansion module is a multiplexer, as 
described in Fig. 6. By particularizing the module for the 
different binary values of  Ni  and P, all families of 
transformations can be obtained. For a single variable 
expansion, a four member family of transformations is 
obtained by particularizing expansion for values ‘u’ and 
‘Cs’. For two-variable expansion, an eight-member family 
of transformations is found, and so on. Note that with our 
method we know a priori which of these transformations 
must be applied in each case without the need to try 
everyone of them. 



5. Experimental results 

In this section, we provide experimental results for 
benchmark combinational circuits. Our goal is to show the 
improvements in the context of previously proposed 
optimization algorithms. To this purpose, we modified 
RAMBO tool [1] to work with the enhanced algorithm. 
The experiments were performed in a Sun Ultra 1 WS.  

Original benchmarks were first optimized with 
script.rugged included in SIS[7] After this optimization, 
both the enhanced and the original algorithm were run in 
parallel over the same initial optimized circuits. Both 
algorithms gave the same optimization results, but the 
enhanced algorithm found these transformations in a 38% 
less of time in average. Table 1 summarizes the results of 
the comparison between the old and enhanced algorithms 
regarding efficiency issues. In this table, columns 2 and 3 
show the CPU time used to perform optimization with the 
old (OLD) and the enhanced algorithm (ENH). Columns 4 
and 5 show the number of total test performed in both 
cases. Columns 6 and 7 show the number of considered 
alternative nodes also in both cases. In all circuits, a 
significant reduction of CPU time is obtained. The 
number of total tests performed in the optimization has 
been drastically reduced due to the elimination of the old 
trial and error search for alternative nodes. This reduction 
exceeds 90% in average. The decrease in the number of 
alternative nodes considered to perform reduction is also 
shown. Results show that for these pre-optimized circuits, 
only 0.2 % of the candidates were really alternative nodes 
useful to perform area optimization in the old algorithm.  

In Table 2, the results using addition of two variables 
are compared against the algorithm used in [8] for timing 
optimization. In this case, the reduction in CPU time 
(83%) and number of tests (92%) was much higher, 
showing clearly the advantage of the techniques proposed 
in this work.  

6 .  Conclusions and future work 

We have presented a generalization of the structural 
logic optimization methods (RAR). This generalization is 
based on functional considerations, but can be applied in a 
purely structural manner. Transformations involving 
multiple variable expansion can be identified very 
efficiently by performing additional implications over two 
initial tests, overcoming the previous approaches that were 
limited to single or two variable expansion.  
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 CPU (s) #TESTS ALT. NODES 
 OLD ENH OLD ENH OLD ENH 
alu2 14 5 13953 1305 47482 177 
alu4 110 46 54635 2385 173261 382 
apex6 27 24 38224 2855 82606 175 
C1908 9 8 10423 1813 24072 31 
C3540 369 202 147181 18070 534355 907 
C5315 58 51 44848 6251 93891 434 
C7552 310 236 128289 17212 294463 1358 
frg2 113 56 92928 3257 216757 648 
i6 58 52 55645 1610 139551 3 
i7 118 88 89914 2037 249753 72 
i8 334 177 189187 4143 636336 1001 
k2 321 182 151545 2821 525216 628 
pair 58 46 52889 5844 114494 486 
vda 41 26 32858 1287 104936 271 
x3 31 25 39251 3643 84612 199 
TOTAL 1971 1224 1141770 74533 3321785 6772 

Table 1 Experimental Results for single wire expansion 
 

 CPU (s) TOTAL TESTS ALTERNAT. 

 OLD ENH OLD ENH OLD ENH 

alu2 65 8 11902 670 682750 347 
alu4 198 52 36313 1407 5589977 817 

apex6 15 4 3520 418 98653 1319 

C1908 377 82 13322 1245 28908 71 

C3540 299 30 14830 891 1861563 372 

C5315 69 29 20732 1367 655746 1146 

C7552 1218 226 113122 9398 1732412 1352 

frg2 19 6 5463 334 478876 989 

i6 2 0 201 38 181 4 

i7 2 0 319 49 269 4 

i8 9 8 3089 352 224905 183 

k2 988 68 33725 1036 6176786 23062 

pair 105 37 22369 2763 500583 642 

vda 120 19 14800 644 1861213 3371 

x3 17 1 3356 333 87030 70 

TOTAL 3503 570 297063 20945 19979852 33749 

Table 2 Experimental Results for multiple wire expansion 
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