
Generalized Reasoning Scheme for Redundancy Addition and Removal Logic
Optimization

J. A. Espejo, L. Entrena, E. San Millán, E. Olías
Universidad Carlos III de Madrid

 e-mail: {ppespejo, entrena, quique, olias}@ing.uc3m.es

Abstract*
In this work a generalization of the structural

Redundancy Addition and Removal (RAR) logic
optimization method is presented. New concepts based on
the functional description of the nodes in the network are
introduced to support this generalization. Necessary and
sufficient conditions to identify all the possible structural
expansions are given for the general case of multiple
variable expansion. Basic nodes are no longer restricted
to simple gates and can be any function of any size. With
this generalization, an incremental mechanism to perform
structural transformations involving any number of
variables can be applied in a very efficient manner.
Experimental results are presented that illustrate the
efficiency of our scheme.

1. Introduction

Logic optimization methods based on the combined
addition and removal of redundancies to a logic network
have been proposed [1-5]. In all these methods, the basic
optimization mechanism consists in adding redundant
wires/gates so that other redundancies are created
somewhere else, producing a smaller of faster network.
These methods are usually applied on a structural
representation of the circuit consisting of simple gates.

We generalize the concepts of redundancy removal and
redundancy addition to structural reduction and expansion
operations. Reduction is a generalized removal operation
that consists in modifying an existing function in the way
to reduce its support. Similarly, expansion is a generalized
addition operation, that consists in modifying an existing
function in the way to extend its support. With this
generalization, expansion is a functional operation that is
not limited to the addition of a single wire/gate. However,
the efficient identification of multiple wires/gates for
expansion is still an open problem because of the large
number of possibilities that exist even in small circuits.

* This work has been supported by the Community of Madrid (Spain) under
Project #07T/0007/1998

In the original work where Redundancy Addition and
Removal (RAR) is proposed [1], the first step is the
selection of a target wire for removal. Then a single wire
expansion is computed to make this reduction feasible. An
ATPG-based implication mechanism is used in order to
check that expansions and reductions are valid. This
approach has been followed in several other works
[2][3][6]. In the Boolean Reasoning technique [4][5], a
valid addition (expansion) is first identified by using
recursive learning. Then, redundancy removal (reduction)
is performed for the entire network. In both cases, there is
not a strong link between the expansion and reduction
operations. Instead, a trial and error technique is used to
identify possible candidates. The consequence of this trial
and error technique is that a high percentage of the
computations are useless. Being m the number of possible
candidates, up to m+1 tests are required to be computed in
each iteration to explore the solution space. Many of the
candidates are usually not redundant, resulting in a waste
of time. Some techniques are used to reduce the number
of candidates [1], but still a large number of them have to
be tried. In this paper, enhanced operations will be
presented demonstrating that it is possible to obtain both
sufficient and necessary conditions to identify valid
transformations.

Using the trial and error technique, the complexity
grows exponentially when transformations involving the
addition of several wires/gates are considered. Techniques
for multiple wire expansion have only been proposed for
some particular cases involving just two wires [3][8]. No
general efficient solution has been proposed to identify
transformations using multiple variable expansion. In this
paper, we present a recursive method to compute all
possible multiple variable expansions.

The remaining of this paper is as follows. Section 2
describes preliminary concepts for the generalization of
the RAR technique to the enhanced operations. In section
3, enhanced expansion is presented based on functional
representation of the nodes to be expanded. In section 5 a
structural view for these transformations is given. Finally,
experimental results and conclusions are presented.

2. Redundancy generation

Our approach departs from the RAR technique
described in [1]. In this technique, a wire wr is selected for
reduction and a redundancy test for fault f s-a-‘v’ is
performed on this wire. Each path on which the fault
effect is being propagated to an primary output (PO) is
called a fault propagation path. A node is a fault
dominator if all fault propagation paths share this node.
Observability mandatory assignments (MAs) are binary
values at internal nodes in the network obtained by
assigning a sensitizing value (‘1’ for AND, ‘0’ for OR) to
side-inputs of dominators in the fault propagation path. A
redundancy test consists in the implication of the
observability MAs in order to obtain the complete set of
MAs for fault f (f-SMA). If f-SMA is inconsistent, then
the fault is redundant and some wires and gates can be
directly removed by setting the tested wire to a constant
binary value ‘v’. If f-SMA is consistent (f is testable), then
an expansion is tried in order to make f redundant by
blocking fault propagation.

The main objective of a expansion operation is to make
the target fault f unobservable. This is performed by
taking into account the observability conditions for the
fault f. Observability conditions do exist for each node
that generates and inconsistency if the node is assigned to
a particular value. Note that these include fault dominator
nodes as well as some other nodes in the transitive fanin
of a dominator. Observability conditions then generate
MAs. We present now how to compute the observability
conditions by using node’s truth tables and how
observability MAs can be also calculated with this
information.

Let’s consider the truth table of a fault dominator node
in the network. Consider also the truth table variables are
ordered in such a way that the fault propagating input (P)
is set in the Least Significant Bit (LSB) position. Each
row in the table will be refered as a term. Two P-adjacent
terms of the function will be referred as a pair. With this
representation, the node´s output values give the necessary
information to compute the fault observability conditions.
If the node’s output values for a pair are the same for both
terms in the pair (i.e. both ‘0’ or both ‘1’), then there is an
observability don’t-care (ODC) for any value of P input
for this pair, i.e, no observability conditions can be
computed for this pair. If the terms in a pair have different
output values, then the fault propagating at P input is
observable and then there exist observability conditions
for this pair. Mandatory assignments can be calculated as
the common values for the side inputs.

Example 1. For the circuit in Fig. 1, a fault f is
propagating through dominator nodes g2 and g3. Truth
tables for nodes g2 and g3 are also shown. For the simple
gate g2, the pair T0-T1 does not infer any fault

observability condition, as in both terms the output value
is the same (‘0’). For the pair T2- T3, the observability
assignment b=1 is inferred, as the output value is different
for this pair. To show how observability conditions are a
more general view than assignments, consider now node
g3. In this case there are two observability MAs: b=1, c=0
for pair T0-T1; and b=1,c=0 for pair T4-T5. The
assignments for these two pairs can be merged and the
only final mandatory assignment for this function is c=0.
Note that the observability condition concept is more
complete in terms of observability information of a fault,
as two fault observability conditions are identified for
node g3, although only one single assignment is inferred.

Fig. 1. Example of observability conditions

A expansion operation consists in a modification of the
function performed by the node in order to set the same
output value to both terms in the pair. This way a local
discrepancy between the original and the modified
dominator function is generated in one term in each pair
with observability conditions. These pairs are called
necessary discrepant pairs, as a discrepancy is necessary
on each of these pairs to block fault propagation. If this
function modification is unobservable at any PO, then the
reduction of the fault can be directly performed as the
overall functionality of the circuit is not changed. The
unobservability of the change is only obtained if the
discrepant term exactly fits within an existing or newly
created local don’t-care (LDC) of the circuit.

LDCs can be identified by implication techniques. If
the initial LDC set does not include ODCs at discrepant
pairs, new LDCs should be generated at the discrepant
pairs in the circuit by means of a expansion operation. If
such as a expansion operation can be performed, then the
target wire fault becomes redundant.

3. Enhanced expansion

A expansion operation must not alter the overall
functionality of the circuit. Therefore, the discrepancies
introduced by a expansion operation must be LDCs. To
know if the expanded discrepant terms are LDCs, an
implication scheme can be adopted starting from the

b
g2 g

c

a g1

g2 truth table
 b g1 g2

T0 0 0 0
T1 0 1 0
T2 1 0 0
T3 1 1 1

g3 truth table
 a c g2 g3

T0 0 0 0 0
T1 0 0 1 1
T2 0 1 0 0
T3 0 1 1 0
T4 1 0 0 1
T5 1 0 1 0
T6 1 1 0 0
T7 1 1 1 0

observability conditions of the discrepant terms. The
following lemma models this implication scheme.

Lemma 1.- The conditions for the discrepant terms at
the expanded node to be LDCs can be modeled as the
redundancy test of a new fault f2 s-a-‘u’ at input P of the
expanded node. The value of ‘u’ will depend on the MA
at P for the discrepant terms. For P=’0’ at the discrepant
term value for u is ‘1’. For P=’1’ at the discrepant term
value for ‘u’ is ‘0’.

The following theorems provide the means to identify
transformations involving single and multiple variable
expansion, respectively.

Theorem 1. Let f1 be a fault being tested at wire wr.
Let gd be a node at which there are observability
conditions for fault f1. Let f2 be the fault at input P of gd,
defined in Lemma 1. Let gn be a node that has MAs ‘v1’
and ‘v2’ for the faults f1 and f2, respectively. The
necessary and sufficient condition for node gn to be a
single wire alternative node is that ‘v1’ and ‘v2’ exist and
‘v1’= NOT ‘v2’.

Theorem 2. Let gn1 be a node that has a mandatory
assignment ‘v’ for fault f1 (f2) and no mandatory
assignment (‘U’) for the other fault f2 (f1). If there is a
node gn2 that meets the conditions of Theorem 1 when f2-
SMA (f1-SMA) is extended with the assignment gn1 =
‘v’, then a transformation involving a two variable
expansion with nodes gn1 and gn2 is possible.

The proof of these theorems is omitted because of lack
of space. Instead, we will illustrate the application of the
theorem with examples. A partial demonstration for the
case the expanded node is a dominator is given in [9].

Example 2.- In the circuit in Fig. 2, fault g2-g4 s-a-1
is requested for reduction. This fault is tested and
implication results are also shown in in Fig. 2 (U value
means “unknown”) . Node g1 at the transitive fanin of g4
dominator is selected for expansion. General expansion
scheme of g1 is shown in Fig. 3. After expansion, module
g1 has three inputs: a,b and the new input N.

a
b

c
d

e

g1

g2

g3
g4

b

c
d

e

g2

g3

s-a-1

 g1 g2 g3 g4 a b c d e
g2->g4 s-a-1 1 0 1 0/1 1 1 0 0 1

b->g1 s-a-0 1 1 0 U 1 1 1 0 U
Fig 2. Single variable transformation at dominator´s

transitive fanin

To generate an ODC for the faults an inconsistency in
the f-SMA is inserted. The forced value for g1 is 1 when
fault f is tested. Then, to generate f-SMA inconsistency,
g1 must generate the value ‘0’ after expansion. This is

must be performed for all PI combinations that test the
fault, with assignments a=1,b=1. Discrepancy between the
original function and the extended function will be located
at term T3 or term T7. To compute if T3 (T7) is a LDC,
an implication procedure is used. Initial values are
a=1,b=1 and the observability assignments of these
values, which is equivalent to the test of a new fault f2 b-
>g1 s-a-0. If after the f2 implication an assignment is
computed in some node, explicit information about LDC
can be inferred. In this example f2 test imply c=1.
Because of that we conclude that N(c)=0 a=1 b=1 is a
LDC under our test conditions. This is, it is impossible to
occur the observable combination a=1,b=1,c=0 and
because of that discrepant term is T3 and new node for
expansion is c. Note that extended function can be Shanon
decomposed by means of new variable N. The part with
the assignment N=0 will represent all the input
combinations able to test the fault. Associated cofactor
will be named sensitive Cofactor (Cs). Input combinations
unable to test the fault share the MA N=1. Associated
cofactor will be named non sensitive cofactor (Cns).

 N(c) a b g1*

Cs T0 0 0 0 0

 T1 0 0 1 0

 T2 0 1 0 0
 T3 0 1 1 0

Cns T4 1 0 0 0

 T5 1 0 1 0

 T6 1 1 0 0
 T7 1 1 1 1

Fig 3. Single variable transformation scheme and results

This extended formulation allows to formulate the

multiple addition expansion as the generalization of the
described technique. Main advantage of this
generalization is that an incremental implication scheme
can be used. The following two examples will illustrate
this idea.

Example 3.- In the circuit in Fig. 4, f1 d->g6 s-a-1
fault is selected as the target fault. For our transformation
purposes, dominator node g9 is selected for expansion.
After an implication of f1 we see that g9 value at non
faulty circuit is ‘0’. Because of that, selected value to
generate the LDC is ‘0’. T3 is the proposed discrepant
term in this case and we select f2 to be g8,g9 s-a-0.
Implications are shown in Fig. 4.

As no single alternative node can be found, we try to
include more observability conditions at the discrepant
pairs. Then, we focus on a node that has a mandatory
assignment for at least one of the faults, such as g1. We
are not able to determine if g1 value by itself will generate
an adequate LDC, as its implied value is ‘U’. We set
g1=’0’ (equal value than the f1-MA) and repeat f2 test
with this extended value. After implication, we find that

s a
b

g1

g3

g4

a
b
c
d
e

g3

the inexistent MA g2=’U’ is converted in g2=’1’ for the
extended set. In this case, under the initial observability
conditions it is impossible to obtain combination g1=’0’
and g2=’0’. Because of that, new LDC have been
successfully generated at the cofactor with g1=’0’ and
g2=’0’ when this double variable expansion is performed..
In this case reduction operation yields to the elimination
of nodes g6 and g7. Expansion for g9 is g8 f (g1+g2).

 g1 g2 g3 g4 g6 g7 g8 g9 a b c d e f

f1 0 0 1 0 0/1 0/1 0/1 0/1 1 1 U 0 U 1
f2 U U U U U U 1 1/0 U U U U U 1

b
d

g1

e
c

g2

a
b

g3

f

c

d

z

g4

g9

g7
g6

g8

b
d

g1b
d

g1b
d

g1b
d

g1

e
c

g2

a
b

g3a
b

g3a
b

g3a
b

g3

f

c

d

z

g4

g9

g7
g6

g8

Fig 4. Multiple variable transformation at the dominator

Example 4.- In the circuit in Fig. 5, fault g5-g9 s-a-1 is

requested for reduction. Implications for this fault are
also shown in Fig. 5. Node g8 is considered for
expansion. As g8 is located in the transitive fanin of g9
dominator, the objective is to generate an inconsistency in
the forced f-SMA The forced value for g8 is 1 when fault
f is tested. To generate f-SMA inconsistency, g8 must
generate the value ‘0’ after expansion when the fault is
being tested, this is, when g4=0, g3=1 . Initial values for
implication are g4=0, g3=1 and the observability
assignments of these values. In this case this is modeled as
the f2 fault test g3-g8 s-a-0. After this second implication,
it can be seen that no candidate is found for single wire
addition. Then, we focus on a node that has a mandatory
assignment for at least one of the faults, such as g2. We
set g2=’0’ and repeat f2 test with this new value
(implication3). After implication3, we find that the MA
d=’1’. Under the initial observability conditions it is
impossible to obtain combination g2=’0’ and d=’0’.
Because of that, new LDC have been successfully
generated at the cofactor with g2=’0’ and d=’0’ when this
double variable expansion is performed. Final circuit is
shown in Fig. 5.

b
d

g1

a
b

g3

c

z

g4

g9
g8

b
d

g1 b
d

g1 b
d

g1 b
d

g1

a
b

g3 g3 g3 g3

c

z

g4

e
c

g2 e
c

g2

g5 s-a-1

b
d

g1

e
c

g2

a
b

g3

c g4
b
d

g1b
d

g1b
d

g1b
d

g1

e
c

g2

a
b

g3g3g3g3

c

z

g4

g8

 g1 g2 g3 g4 g5 g6 g7 a b c d e

g5-g9 s-a-1 0 0 1 0 0 0/1 0/1 1 1 U 0 U
g3-g8 s-a-0 U U 1 0 1 0 0 1 1 U U U
implication 3 1 0 1 0 1 0 0 1 1 0 1 1

Fig 5. Multiple variable transformation example

4. Expansion module

The previous generalized scheme has been expressed
in terms of functional description of a node. In this section
we will see that the expanded node can be calculated in all
cases from the original one by adding an expansion
module input at which fault is blocked. With this
approach, the functional representation of the node is no
longer needed and the whole process can be performed
with structural techniques.

Lemma 2.- Let ‘u’ be the binary value calculated
according to Lemma 1 when an expansion is computed.
Output value of both terms in each pair on Cs can be
always calculated as the value of each term in the
particularization of the original node function for P=’u’.

Example 5 - In Example 2, if g1 is particularized for
a=0 or b=0, we obtain a function with a pair PT0 with
value ‘0’ and pair PT1 with value ‘0’. We compute Cs
terms T0 and T1 output value as PT0 output value (non
discrepant pair), and terms T2 and T3 at the discrepant
pair as PT1 output value.

Fig 6. Expanded dominator
Expanded function can be always computed for both

Cs and Cns by setting input P to a constant value for Cs
and setting input P to its original value for Cns. The
general form of the expansion module is a multiplexer, as
described in Fig. 6. By particularizing the module for the
different binary values of Ni and P, all families of
transformations can be obtained. For a single variable
expansion, a four member family of transformations is
obtained by particularizing expansion for values ‘u’ and
‘Cs’. For two-variable expansion, an eight-member family
of transformations is found, and so on. Note that with our
method we know a priori which of these transformations
must be applied in each case without the need to try
everyone of them.

5. Experimental results

In this section, we provide experimental results for
benchmark combinational circuits. Our goal is to show the
improvements in the context of previously proposed
optimization algorithms. To this purpose, we modified
RAMBO tool [1] to work with the enhanced algorithm.
The experiments were performed in a Sun Ultra 1 WS.

Original benchmarks were first optimized with
script.rugged included in SIS[7] After this optimization,
both the enhanced and the original algorithm were run in
parallel over the same initial optimized circuits. Both
algorithms gave the same optimization results, but the
enhanced algorithm found these transformations in a 38%
less of time in average. Table 1 summarizes the results of
the comparison between the old and enhanced algorithms
regarding efficiency issues. In this table, columns 2 and 3
show the CPU time used to perform optimization with the
old (OLD) and the enhanced algorithm (ENH). Columns 4
and 5 show the number of total test performed in both
cases. Columns 6 and 7 show the number of considered
alternative nodes also in both cases. In all circuits, a
significant reduction of CPU time is obtained. The
number of total tests performed in the optimization has
been drastically reduced due to the elimination of the old
trial and error search for alternative nodes. This reduction
exceeds 90% in average. The decrease in the number of
alternative nodes considered to perform reduction is also
shown. Results show that for these pre-optimized circuits,
only 0.2 % of the candidates were really alternative nodes
useful to perform area optimization in the old algorithm.

In Table 2, the results using addition of two variables
are compared against the algorithm used in [8] for timing
optimization. In this case, the reduction in CPU time
(83%) and number of tests (92%) was much higher,
showing clearly the advantage of the techniques proposed
in this work.

6 . Conclusions and future work

We have presented a generalization of the structural
logic optimization methods (RAR). This generalization is
based on functional considerations, but can be applied in a
purely structural manner. Transformations involving
multiple variable expansion can be identified very
efficiently by performing additional implications over two
initial tests, overcoming the previous approaches that were
limited to single or two variable expansion.

7. References
[1] K.-T. Cheng, L. Entrena. “Sequential Logic Optimization by

Redundancy Addition and Removal”. Proc. ICCAD’93
[2] S.-C. Chang, K.-T. Cheng, N.-S. Woo, M. Marek-

Sadowska. “Post-layout logic restructuring using alternative
wires”. IEEE Transactions on CAD, vol.16, n. 6,

[3] S. C. Chang, M. Marek-Sadowska, K.-T. Cheng. “Perturb
and Simplify: Multilevel Boolean Network Optimizer”.
IEEE Transactions on CAD, vol. 15, nº 12

 [4] W. Kunz, P. Menon. “Multi-Level Logic Optimization by
Implication Analysis”. Proc. ICCAD-94, p.6-13. Nov.1994

[5] W. Kunz, D. Stoffel. “Reasoning in Boolean Networks:
logic synthesis and verification using testing techniques”.
Ed. Kluwer Academic Publishers, 1997

[6] S. C. Chang, L. P. van Ginnekan, M. Marek-Sadowska.
“Fast Boolean Optimization by Rewiring”.Proc. ICCAD’96.

[7] “SIS: A System for Sequential Circuit Synthesis” Report
M92/41, University of California, Berkeley, May. 1992.

[8] L. Entrena, J. A. Espejo, E. Olías, J. Uceda. “Timing
optimization by and Improved Redundancy Addition and
Removal Technique”. Proc. EURO-DAC’96,

[9] J. A. Espejo, L. Entrena, E. San Millán, E. Olías.
“Functional extension for structural logic optimization
techniques”. Proc. ASP-DAC’01. January, 2001.

 CPU (s) #TESTS ALT. NODES
 OLD ENH OLD ENH OLD ENH
alu2 14 5 13953 1305 47482 177
alu4 110 46 54635 2385 173261 382
apex6 27 24 38224 2855 82606 175
C1908 9 8 10423 1813 24072 31
C3540 369 202 147181 18070 534355 907
C5315 58 51 44848 6251 93891 434
C7552 310 236 128289 17212 294463 1358
frg2 113 56 92928 3257 216757 648
i6 58 52 55645 1610 139551 3
i7 118 88 89914 2037 249753 72
i8 334 177 189187 4143 636336 1001
k2 321 182 151545 2821 525216 628
pair 58 46 52889 5844 114494 486
vda 41 26 32858 1287 104936 271
x3 31 25 39251 3643 84612 199
TOTAL 1971 1224 1141770 74533 3321785 6772

Table 1 Experimental Results for single wire expansion

 CPU (s) TOTAL TESTS ALTERNAT.

 OLD ENH OLD ENH OLD ENH

alu2 65 8 11902 670 682750 347
alu4 198 52 36313 1407 5589977 817

apex6 15 4 3520 418 98653 1319

C1908 377 82 13322 1245 28908 71

C3540 299 30 14830 891 1861563 372

C5315 69 29 20732 1367 655746 1146

C7552 1218 226 113122 9398 1732412 1352

frg2 19 6 5463 334 478876 989

i6 2 0 201 38 181 4

i7 2 0 319 49 269 4

i8 9 8 3089 352 224905 183

k2 988 68 33725 1036 6176786 23062

pair 105 37 22369 2763 500583 642

vda 120 19 14800 644 1861213 3371

x3 17 1 3356 333 87030 70

TOTAL 3503 570 297063 20945 19979852 33749

Table 2 Experimental Results for multiple wire expansion

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

