
High-quality Sub-function Construction in Functional Decomposition
 Based on Information Relationship Measures

/HF
�
-y(ZLD� D��� $UWX� &KRMQDFNL

Eindhoven University of Technology
P.O. Box 513, EH 10.16, 5600 MB Eindhoven, The Netherlands

{ L.Jozwiak, A.Chojnacki} @tue.nl

Abstract

Functional decomposition seems to be the most effective
circuit synthesis approach for look-up table (LUT)
FPGAs, (C)PLDs and complex gates. In the functional
decomposition that targets LUT FPGAs, the circuit is
constructed by recursively decomposing a given function
and its sub-functions until each of the resulting sub-
functions can be directly implemented with a LUT. The
choice of sub-functions constructed in this process
decides the quality of the resulting multi-level circuit
expressed in terms of the logic block count and speed. In
this paper, we propose a new effective and efficient
method for the sub-function construction, and we consider
its application in our circuit synthesis tool that targets
LUT-based FPGAs. The method is based on the
information relationship measures. The experimental
results demonstrate that the proposed approach leads to
extremely fast and very small circuits.

1 Introduction

In the case of look-up table (LUT) FPGAs, (C)PLDs
and complex gates, constraints are not imposed on the
function type that a certain logic building block can
implement, but rather on various structural parameters of
logic blocks (e.g. the maximum number of inputs and
outputs in a programmable block, or serial and parallel
transistors in a gate) and on the interconnections between
logic blocks. A logic block is able to implement any
function with limited dimensions. However, the
traditional logic synthesis methods do not consider hard
structural constraints. Moreover, they only consider some
very special cases of possible implementation structures
involving some minimal functionally complete systems of
logic operators (e.g. AND+OR+NOT). If the actual

synthesis target strongly differs from the used minimal
system (e.g. if it involves LUT FPGAs), no form of
technology mapping can guarantee proper final results,
because the initial synthesis is performed without a close
relation to the actual target. Therefore, much research has
recently taken place in the field of functional
decomposition [2][3][6-8][10][12][15-17]. A sub-function
in functional decomposition can be any function that
satisfies certain specific structural constraints. This
enables adequate synthesis for the targets mentioned
above, and in particular, for LUT FPGAs.

2 Functional decomposition

The functional decomposition approach was
considered by Shannon [14], Povarov [9] and Ashenhurst
[1], and extended by Roth and Karp [11], Curtis [4] and ���
	��� ��������������� ���
� �
�!�#" $&%&�('*)+� ,� -. �(�/,�%10 $�'2$3,546�(7
discrete functions are some special cases of the general
decomposition scheme presented in [6]. The most
promising recent approaches to functional decomposition
are perhaps the BDD-based approach [2][12][17] and the
information-based approach [3][6][8][10] being the
subject of this paper.

The BDD-based approach can be sub-divided into the
substitution [2] and cutting approach [2][12][17]. The
substitution consists of replacing some BDD sub-graphs
by new variables representing them. It is limited to
completely specified functions and fully determined by
the BDD structure for a certain variable ordering. The
cutting approach is more general and it implements the
Roth-Karp decomposition [11]. It consists of selecting a
sub-function’s input support that defines a BDD cut,
properly encoding the sub-function, and expressing the
original function in the new sub-function’s output
variables. If a single BDD is used to represent a Boolean
function, the approach is limited to completely specified

functions [17], but it can account for the incompletely
specified functions by using two BDDs [12] (e.g. one for
ON-set and another one for (ON∪DC)-set) or using a
modified BDD (e.g. a three terminal diagram). The BDD-
based methods can account for specific non-disjoint
decompositions either explicitly (non-disjunctive cut sets
[12]) or implicitly (specific encoding [17]). The sub-
function input support selection is either exhaustive [12]
(not efficient for large functions) or improves an initial
support in a greedy trial and error procedure [17] (not
effective for large functions). The encoding either
minimizes the number of nodes in the resulting BDD [2]
or the input supports of the binary sub-functions [12][17],
or tries to produce sub-functions common to as many as
possible outputs of a multiple-output function [12][17].

Our information-based approach considers a discrete
multiple output function (relation) as a computation
process specification of an information processing
system, and a circuit that implements the function
(relation) as a structure of the system. This structure
supports the specified computation process, but at the
same time, satisfies specific constraints and optimises
certain objectives. Information, its processing, distribution
and transmission play a central role in our approach. The
circuit synthesis process proposed by us aims at
structuring the circuit in such a way that the hard
constraints imposed by the logic building blocks and their
interconnections are satisfied, and the circuit is quick and
compact. This is achieved by constructing explicitly the
sub-functions that fit directly in the logic building blocks
and structuring the resulting binary network in such a way
that its sub-networks for particular outputs converge
rapidly. Moreover, the information flows in the network
are ordered according to the information production and
consumption, appropriately combined, compressed, and
kept as local as possible. The network is composed of
relatively independent and coherent parts. In this way, the
interconnections are minimized and the sub-functions
have smaller number of inputs and outputs, because they
process the combined and compressed compatible
information. To facilit ate the information flow and
structure analysis that is necessary to enable the proposed
synthesis approach, an adequate analysis apparatus is
necessary, which ensures the analysis of where and how a
particular information is produced/consumed, analysis of
the relationships (similarity, difference etc.) between
various information flows, and quantitative
characterization of the information flows and their
relationships. All this is ensured by the apparatus of
information relationships and measures proposed by us in
[7]. The analysis results from this apparatus are used to
control the functional decomposition process that
implements the proposed circuit synthesis approach.

A Boolean function with at most k inputs is called k-
feasible. If all sub-functions in a certain logic network are

k-feasible, the network is k-feasible and it can be directly
mapped into LUT FPGAs, where each logic building
block is a k-input LUT (or CLB) that can implement any
function up to k inputs (typically k = 4, 5, or 6).

In a single step of functional decomposition, function f
being decomposed is divided into two sub-functions (see
Fig.1): predecessor sub-function g (bound-set function)
and successor sub-function h (image or composition
function). To construct the sub-functions g and h, the
input support X of f is divided into two (but not
necessarily disjoint) subsets: bound-set U, being the g‘s
input support, and free-set V, being a partial input support
of h (see Fig. 1). Outputs of g constitute the remaining
part of the h’s support. This single decomposition step is
recursively applied to both predecessor and successor
sub-functions until a k-feasible network is constructed.

The choice of the predecessor sub-function g has a
strong impact on the network structure that implements a
given function f. This choice directly determines
properties of the sub-network that implements g, and
indirectly, of the sub-network that implements h. The g’s
outputs constitute a part of the h’ s input support.
Moreover, the selection of variables to the g’s input
support ascertains the h’ s input support. In this way, the
choice of the sub-functions in the multi-step
decomposition process determines the quality of the
resulting from this process multi-level logic network. It
decides both the complexity of the resulting network (the
logic block count and interconnection structure) and its
speed (the number of the network’s logic levels and
interconnect length). In consequence, construction of the
adequate sub-functions is a crucial problem in functional
decomposition.

In this paper, we propose a new effective and efficient
approach to solve this problem that is based on
information relationship measures [7][8]. Experiments
performed with our FPGA-targeted circuit synthesis tool
that uses this approach clearly demonstrate that the
general functional decomposition with sub-function
construction based on information relationship measures
results in high quali ty FPGA circuits.

bound-set U

f ree-set V

f

h
f - original

g

repeated var iables R

Figure 1. Single step of the functional

decomposition

Table 1. 3-input, 2-output
Boolean function f

S x1x2x3 f1f2
0 000 00
1 111 00
2 -01 01
3 -10 01
4 011 11
5 100 11

3 Information and information
relationships

Let us consider a finite set of elements S called
symbols. Information about symbols pertains to the abili ty
to distinguish certain symbols from other symbols. Table
1 shows the truth table of a multi-output Boolean
function. Each row of the truth table (function’s product
term) is represented by a unique symbol from S. Through
its two values 0 and 1, variable x1 induces two
compatibility classes on the symbols (terms):
B0={ 0,2,3,4} and B1={ 1,2,3,5} . x1 has value 0 (1) for each
symbol in class B0 (B1) (don’ t care ‘ -‘ means: 0 and 1).
Variable x1 is not able to distinguish between symbols 0,
2, 3, and 4, because they belong to the same compatibili ty
class. x1 is able to
distinguish between 4
and 5, because they
are not placed
together in any
compatibility class. In
this way information
is modeled with set
systems [7][8].

A set system π on S is a collection of subsets B1, B2,…,
Bk of S (called blocks of π) such that:

jiBBSB jii i ≠⊄= for and � . The product of two set

systems π1 and π2 represents combined information from
both set systems and is defined as follows: |{21 B=•ππ

}'
2

'
1

'
2

'
121

2
'
21

'
12211

BBBBBBBBB
BBBB

∩=⇒∩⊆∀∀∧∩=∃∃
∈∈∈∈ ππππ

.

An elementary information describes the abili ty to
distinguish a certain single symbol si from another single
symbol sj (si,sj∈S and si≠sj). Any set of such atomic
portions of information can be represented by an
information set IS [7][8] defined on S × S as follows: IS =
{{ si, sj} | si is distinguished from sj by the modeled
information} . For instance, information given by set

system πx1= }5,3,2,1;4,3,2,0{ induced by x1, can be

represented by information set IS(πx1)={ 0|1 0|5 1|4 4|5} .
Information relationships between variables or set

systems representing various information streams can be
analyzed by considering relationships between their
corresponding information sets. In [7][8], an appropriate
analysis apparatus is proposed for this aim: the theory of
information relationships and measures. In particular, the
relationship and measure expressing information
similarity of two set systems π1 and π2 are defined in
[7][8] as follows:
• common information CI (i.e. information that is

present in both π1 and π2): CI(π1,π2) = IS(π1) ∩
IS(π2)

• information similarity (affinity) measure ISIM:
ISIM(π1, π2) = |CI(π1, π2)|.

In [2][5][6] some normalized and weighted measures
are also defined, by associating an appropriate importance
weight w(si|sj) with each elementary information. The
weighted information similarity measure is defined as
follows:

 () ∑
∩∈

=
)()(|

21

21

)|(,WISIM
ππ

ππ
ISISss

ji

ji

ssw ,

where w(si|sj) is a weighting function.
 The importance of information is related to its

availabili ty, i.e. the number of variables at which this
information is present. Let f be a certain discrete function,
X be a set of some input variables of f and ISS(X) be the
set of information sets induced on the function’s terms by
particular variables from X. Occurrence multiplicity m
of an elementary information si|sj from IS(f) in ISS(X) is
defined as follows:

)(IS

)(IS

)(IS

)ISS(
)|()|(

f

xji
Xx

f

Xji ssossm ∑
∈

=

where:

 ∩∈

=
 otherwise :0

))(IS)(IS()|(if:1
)|(

)(IS

)(IS

xfss
sso jif

xji

If 1)|(
)(IS

)ISS(
=

f

Xji ssm , si|sj required by f is provided by only a

single variable from X, then si|sj is called a unique
information with respect to X. Unique information is of
primary importance.

The formula:

≠

=
=

kssm

kssm
ksskm f

ji

f

jif

ji)(IS

ISS

)(IS

ISS
)(IS

ISS)|(if:0

)|(if:1
)),|((

divides the elementary information items into classes of
equal multiplicity (k-multiplicity).

To ensure that the sum of weights of the less important
information wil l not dominate the weight of the more
important information, we use the following
normalization function h:

0)0(
)(IS

ISS
=f

h , 0)1(
)(IS

ISS
=f

h ,

∑
∈

+−=
)(IS)|(

)(IS

ISS

)(IS

ISS

)(IS

ISS
)1()(

fss

f

ji

ff

ji

),k)|skm((skhkh .

The weighting function w is defined as follows:

=

=

=

otherwise:
))|((2

2

1)|(if:1

0)|(if:0

)|(

)(IS

ISS

IS

ISS

)|(

IS

ISS

IS

ISS
IS

ISS

IS

ISS

f(f)

ji

ssm

(f)

ji

(f)

ji

(f)

ji

ssmh

ssm

ssm

ssw

(f)
ji

Example 1. The corresponding set systems and
information sets for all i nputs and outputs of the Boolean
function shown in Table 1 are as follows:

πf1= }5,4;3,2,1,0{ , πf2= }5,4,3,2;1,0{ , πx1= }5,3,2,1;4,3,2,0{ ,

πx2= }4,3,1;5,2,0{ , πx3= }4,2,1;5,3,0{ ,

IS(πf1) = { 0|4 0|5 1|4 1|5 2|4 2|5 3|4 3|5} ,
IS(πf2) = { 0|2 0|3 0|4 0|5 1|2 1|3 1|4 1|5} ,
IS(πx1) = { 0|1 0|5 1|4 4|5} ,
IS(πx2) = { 0|1 0|3 0|4 1|2 1|5 2|3 2|4 3|5 4|5} ,
IS(πx3) = { 0|1 0|2 0|4 1|3 1|5 2|3 2|5 3|4 4|5} ,
CI(πf1,πx1) = { 0|5 1|4} , 1)5|0(

)(IS

)x,x,ISS(

1

321
=f

x
m

1)4|1(
)(IS

)x,x,ISS(

1

321
=f

x
m and WISIM(f1,x1) = 2.

4 Overview of the method

Let Y = { yi | i = 1…n} be the set of binary output
variables of an incompletely specified multiple-output
Boolean function f and πY=•πyi be the product set system
induced by these variables on the set of the function’s
terms (cubes). Let πU=•πxi, where xi ∈ U, be the product
set system induced by the variables from U. Let πV=•πxj,
xj ∈ V, be the product set system induced by the variables
from V. Let πg be the output set system of a sub-function
g. The theorem that describes sufficient conditions for a
single decomposition step [10] can be expressed using
information sets as follows:

Theorem 1. Existence of serial decomposition
If there is a set system πg on f, such that IS(πU)⊇IS(πg)
and IS(πg)∪IS(πV)⊇IS(πY), where: IS(πU) = Uxi∈UIS(πxi),
IS(πY) = Uyi∈YIS(πyi), and IS(πV) = Uxi∈VIS(πxi), then the
function f has a serial functional decomposition with
respect to (U, V) in the form f=h(g(U),V). �

Our circuit synthesis method constructs the circuit
level by level from its primary inputs to primary outputs
(bottom-up), by repeating the single decomposition step
[3][8]. In the support of a certain level, only the variables
from any lower level (primary inputs and/or logic blocks’
outputs) can be used. The output variables of the logic
blocks already built at the current level – that constitute
the cover-set C - cannot be used in any bound-set of this
level (see Fig. 2). At each level, the input support
(primary inputs and/or intermediate variables) of the not
yet synthesized part of a function being decomposed has
to provide all i nformation necessary to compute the
function’s output values (Theorem 1). Information
necessary for computing the function’s values is
distributed across the current support variables. These
variables also contain some redundant information. To
implement the function, the decomposition network has to
eliminate the redundant information, and preserve and
restructure the required information. Therefore, each sub-

function g should eliminate some redundant information,
combine the required information delivered by its inputs,
transfer the required information to its output and
represent it in an appropriate manner. The bound-set U
determines what information is delivered to a certain sub-
function g. The g’s output set system πg determines what
information is transferred to the g’ s outputs. U and πg
together define the multi-valued function of g. In order to
implement this function in binary hardware, it has to be
transformed into a set of binary functions, by assigning a
binary code to each block of πg. The g’s binary functions
determine how the transferred information is represented
at the g‘s binary outputs.

The sub-function construction procedure is composed
of the following steps:
1. Construct a limited set of the most promising bound-

sets U and corresponding output set systems πg,
2. Select the best πg and corresponding U from the set

constructed in step 2,
3. Construct an appropriate cluster of the binary

functions that implement the multi-valued function g
by encoding the selected πg.
Each time a successive sub-function g is constructed, a

new function h is computed by expressing f in new
variables.

5 Construction and selection of the most
promising bound-sets

Let X be the support of a function f at a certain
decomposition step, C the cover set at this step, and
Z={ xi|xi∈X\C} the set of variables that can be used at this
step to build an input support U for g with maximum size
k, U ⊆ Z, 1<|U|≤ k. NCIS(f, C) = IS(f)\ISS(C) represents
the information required by f that is not covered by C. The
g’s output set system πg is created by merging some
blocks of the g’ s input set system πU. The information that
should be preserved during the merging is given by the
preserved information set PIS(πu, f, C, Z, k) =

}.
)(

)(
)|(:|{),(NCIS)(IS k

ZISS

fIS
ssmssCf

jijiU
≤∩∩π

In [10], we showed a strong positive correlation
between the number of blocks in the set systems πg used
in the decomposition process and the number of LUTs

�

�

level 2

level 1

f

cover set C

bound set U

free set V

Figure 2. Bottom-up functional decomposition

and LUT-levels in the resulting multi-level network.
Therefore, using an appropriate information relationship
measure - the block merge-abili ty measure bmergability
defined in [3] - the input support construction procedure
tries to construct a limited set of the bound-sets U that
result in πg‘ s that preserve as much as possible
information from PIS, and have as few blocks as possible.
If bmergability is extremely high or extremely low, many
blocks of πU can be merged without or with small loss of
information that should be preserved [3]. The most
promising input supports are constructed by clustering the
variables from Z that are best correlated with each other
according to the lowest and highest values of
bmergability. For each obtained this way support U, an
appropriate output set system πg is constructed from πU,
using a heuristic minimal coloring of the block
incompatibil ity graph IG(πU). A node of IG(πU)
represents a block of πU. There is an edge between two
nodes of IG(πU) iff the two corresponding blocks of πU
are incompatible, i.e. their merging will remove some
information required by f, not covered by C and only
provided by variables from U.

The final support selection is based on the support
quali ty function for implementation with k-input LUTs,
Q(U,πg,πf,k), which is expressed by the following
formula:

),,(cos

)(),(),(ISIM
),,,(

kUtic_

ic_useUconv
kUQ

g

ggfg
fg π

ππππ
ππ = ,

where ISIM(πg,πf) is the information similarity measure
defined in Section 2, conv(U, πg)=|U|-l is the convergence
factor that denotes the difference between the numbers of
input and output variables of g (l=log2|πg|), ic_use(πg) =
|πg|/2

l is the usage of the “ information channel” induced
by the output variables of g, and

kU

kU

kU

Ul

Ul
Ul

kt(U, ic_
kU

U
g

>
≤≤≤
≤≤≤

=
−

−

||for :

6||5for :

4||2for :

2||

2||
||

),cos
||2

4||2

2

π

represents the cost of the “ information channel” (k-input
LUTs, k > 4, are composed of 2k-4 4-LUTs; coefficient
l2|U| is found experimentally).

The support U with the highest value of Q(U,πg,πf,k) is
selected to become the actual support for g. A more
precise description of the input support construction and
selection procedures can be found in [3].

6 Encoding of the multi-valued sub-
functions

The selected support U and its corresponding set
system πg together define the multi-valued function of g,
G:πu→πg, where each particular value Bg of this function
corresponds to a block of the set system πg. The number
of values of the function is equal to the number of blocks

of πg. In order to implement the multi-valued function in
binary hardware, it has to be transformed into a set of
binary functions by assigning a binary code to each block
of πg.

The binary code assignment implicitly defines a set of
two-block set systems { πg

i} (i =1…l) - one two-block set
system πg

i for each binary output variable of g (see Fig.
3). For a minimum-length encoding, this set involves l =
log2|πg| two-block set systems. Block B0 of a particular
πg

i is the union of the πg‘s blocks that have value 0 at the
i-th position of the assigned code. Block B1 is the union of
the πg‘s blocks that have value 1 at the i-th code position.
Usuall y the codes with minimum length are used, because
they maximally reduce the number of binary functions
that implement g and the h’s input support. The resulting
network is usually more compact and easier to
decompose, when the number of the g’ s outputs is
smaller. In the work reported in this paper, we also use
the minimum length encoding.

It is possible to build a set of l two-block set systems
{ πg

i} (a set of l binary functions) with less items of unique
or almost unique information than in the original πg
(multi-valued function). This is achieved by repeating the
unique or almost unique information items in many
different set systems πg

i and results in a higher occurrence
multiplicity m of the repeated items. The originally
unique information items become non-unique. With
growing repetition of the originally unique or almost
unique information items at different binary outputs of g,
function h tends to be easier to decompose. The
information originally most difficult to transfer - the
unique or almost unique information – is made easier to
transfer, because it is present at more outputs of g being
inputs to h. Moreover, information repetition causes
growth of common information computed by different
binary functions of g, and thus increases the chance for
good common sub-functions for various binary functions
of g. Therefore, our encoding procedure solves the
following encoding problem:

Find such minimum length assignment of binary codes
to blocks of πg that the number of unique or almost unique
elementary information items in {πg

i} is minimal.
The g’s output set system πg is created by merging

some blocks of the g’ s input set system πU that is induced
by the selected support U. Even if particular information
is originally not unique, i.e. it is provided by several input
variables from Z={ xi|xi∈X\C} , it may become unique, if it

};;;{
10

4

11

3

01

2

00

1 BBBBg =π

};{
1

43

0

21
1 BBBBg ∪∪=π };{

1

32

0

41
2 BBBBg ∪∪=π

Figure 3. Binary code assignment

is delivered only by the variables from U, 9and in
consequence, only by the multi-valued variable
corresponding to πg.

In general, merging some blocks of a set system
reduces the amount of information provided by this set
system. Let us define the block merging cost bmc for any
two blocks of πg as the sum of weights of the elementary
information items removed by the merging:

∑
∈∧∈∧∈

=
)(IS)|('

)|() ,(
Ujiljki ssBsBs

jilk sswBBbmc
π

.

bmc describes how many and how important (unique,
almost unique, etc.) elementary information items will be
lost if we merge blocks Bk and Bl together.

Hamming distance hd of two binary vectors is the
number of the corresponding positions at which these
vectors differ (e.g. for c1=00111 and c2=10110, hd(c1,
c2)=2.

If the values of two codes assigned to certain two
blocks of πg differ at a certain position i, then these two
blocks of πg are placed in two different blocks of πg

i and
the information induced by the two blocks of πg is also
available in πg

i. When the codes differ at several
positions, the information is available at each binary
variable corresponding to the code position at which they
differ. The more different positions in the codes assigned
to certain two blocks of πg (higher Hamming distance),
the more two-block set systems πg

i (binary output
variables) provide information induced by these two
blocks. In this way, we introduce multiplication of some
information present in πg in the set { πg

i} . To decrease the
number of unique and almost unique elementary

information items in the set of information sets IS(πg
i)

induced by the binary variables corresponding to πg
i, the

Hamming distance should be maximized for the pairs of
codes assigned to the pairs of the πg’ s blocks with the
high merging cost bmc.

We implemented this encoding strategy by developing
a fast greedy encoding algorithm executed inside a beam
search. beam parameter limits the search space to a
manageable size. The beam search selects beam most
promising encoding directions, and the encoding
algorithm constructs a set of encodings in these
directions. Finally, the set of two-block set systems { πg

i}
is selected that results in the lowest number of unique or
almost unique information items.

First, the initial beam pairs of the πg‘s blocks are
selected. These are the pairs with the highest merging
costs according to bmc. The encoding algorithm assigns
some codes with maximum Hamming distance in between
to each initial pair of blocks. The assigned codes are
removed from the pool of the available codes. Then, the
algorithm looks for the next pairs (Bk, Bl) of blocks with
the highest merging costs until all blocks are encoded. If
B1 (B2) from a certain selected pair is already encoded, the
available code with the maximum Hamming distance to
the code of B1 (B2) is selected and assigned to B2 (B1).

Example 2. Table 2 presents a 4-input symmetric Boolean
function. The bound-set U={ x1, x4} is selected and the g‘s
output set system }10,8,7,6,5,3,0;10,9,8,7,6,5;6,4,2,1{=gπ

is constructed from the input set system πU. The following
three different unique assignments are possible (other
assignments are some permutations of πg

i and/or
inversions one of πg

i).

 ππg
1ππg

2 ππg
1ππg

2 ππg
1ππg

2
B1 00 00 01
B2 11 01 00
B3 01 11 11

The block merging costs are as follows:
 B2 6.1
 B3 6.1 2

Bmc (Bi,Bj) B1 B2
The cost of each assignment in terms of the unique
elementary information items is shown in Table 3.

i0 i3 v10

0 1 1
1 0 1

i0

i3

i1

i2

i1 i2 v12

0 1 1
1 0 1

v9v12 v15

 - 0 1
 0 - 1

o 0

v15v17 o0

 0 1 1
 1 0 1

a)

i0 i3 v9

0 - 1
1 0 1

i1 i2 v13

0 - 1
1 0 1

v10v13 v17

 - 0 1
 0 - 1

i0 i1 v10

1 1 1

i0 i1 v 9

0 0 1
1 1 1

i0

i1

i2

i3

i2 i3 v12

 - 1 1
 1 - 1

i2 i3 v13

0 - 1
1 0 1

v10v12 v15

 - 0 1
 1 - 1

v9v13 v18

 - 0 1
 1 1 1

v20v13 o0

 0 1 1

o0

v15v18 v20

 0 0 1
 1 1 1

b)

i0 i1 v9

0 1 1
1 0 1

i0 i1 v10

 - 0 1
0 1 1

i0

i1

i2

i3

i2 i3 v13

0 - 1
1 0 1

i2 i3 v12

0 0 1

v 10v12 v15

 0 - 1
 - 1 1

v 9v 13 v18

 0 1 1

v 17v21 v 23

 - 0 1
 1 - 1

v 15v18 v20

 0 0 1
 1 1 1

v 9v 13 v17

 1 1 1

v 15v18 v21

 1 0 1

v23v20 o 0

 1 0 1

o0

c)

Figure 2 Different realizations of the symmetric

Boolean function 1 of 4

Table 2 Symmetric Boolean function 1 of 4
S x1x2x3x4 y
0 1000 1
1 0100 1
2 0010 1
3 0001 1
4 0000 0
5 --11 0
6 -11- 0
7 11-- 0
8 -1-1 0
9 1--1 0
10 1-1- 0

Table 3 Costs of the code assignments
 ππg

1ππg
2 ππg

1ππg
2 ππg

1ππg
2

B1 00 00 01
B2 11 01 00
B3 01 11 11

cost 8 8 4

The assignment from column 3 is selected, because its
cost is minimal. Figure 2 shows three different circuit
realizations of the considered function corresponding to
these three assignments. The selected assignment results
in the smallest circuit from Figure 2a.

7 Experimental results

The method of the sub-function construction discussed
in the previous sections was implemented in our CAD
tool for FPGA-targeted circuit synthesis called
IRMA2FPGAS (Information Relationship Measures
Applied to FPGA Synthesis). In order to evaluate the
quali ty of the proposed approach, we performed a number
of experiments.

Table 4 presents the comparison of the results obtained
from IRMA2FPGAS (column IRMA) to the results from
SIS 1.3 [13] and three state-of-the-art functional
decomposers (IMODEC (column IMO) [17], Sawada’s
[12] and Shen’s [15] decomposers), for the MCNC
benchmarks [18] (LUT count and number of LUT levels
in the 5-feasible networks). In the case of SIS, we used
the script dedicated to the LUT-based architectures
proposed in [13]. All results are for single output
functions. In almost all cases, our tool constructs better or
equally good circuits than SIS, IMODEC and Shen’s
decomposer in terms of LUT count. In most cases,
networks from our tool have far fewer logic levels than
networks constructed by SIS or Sawada’s decomposer,
and never have more levels. The number of levels is not
given in [15] and [17] for the other functional
decomposers. Our tool constructs always the fastest
circuits that have similar LUT counts as the slower
circuits from Sawada’s decomposer.

In the next experiment, we compared our
IRMA2FPGAS to SIS using a wide spectrum of
completely and incompletely specified Boolean functions,
ranging from symmetric to strongly asymmetric
functions. We generated a set of 10-input and 20-input
completely specified functions with various
characteristics, each having few hundreds terms. Then, we
mutated the basic functions, by replacing 20%, 50% and
70% of 1 or 0 entries with “don’ t cares” in each
completely specified function. More than 100 benchmarks
were generated this way. In Tables 4 and 5, rows
Symmetric represent results for symmetric functions or
obtained from symmetric functions by “don’ t care “
insertion, rows Asymmetric - results for asymmetric
functions or obtained from asymmetric by “don’ t care“

insertion, and rows All - total results for all functions.
Unfortunately, SIS was unable to synthesize circuits for
most of the 33 20-input benchmarks being symmetric
functions or obtained from the symmetric functions by
“don’ t care“ insertion (200 MB memory overflow in 24
cases). The global results of this experiment for all
benchmarks synthesized by SIS are presented in Table 5.
The networks from both tools were mapped onto CLBs of
the Xil inx XC4000 FPGA family. Results of this
experiment demonstrate that our IRMA2FPGAS
constructs much better circuits than SIS. The circuits
produced by IRMA2FPGAS are on average over 2 times
faster and have 3 times less CLBs than the circuits
synthesized by SIS. IRMA2FPGAS is especially
effective for symmetric functions or obtained from
symmetric functions by “don’ t care“ insertion. For these
functions, the circuits produced by IRMA2FPGAS are on
average 2.7 times faster and have almost 5 times less
CLBs than the circuits synthesized by SIS.

We also compared IRMA2FPGAS to the three state-of-
the-art FPGA-targeted commercial tools, using the same
wide spectrum set of more than 100 generated functions

Table 4. Comparison of IRMA2FPGAS to other
research tools on MCNC benchmarks

(5-LUT and LUT-level counts)
Sawada IMO Shen SIS 1.3 IRMA

Circuit #i #o
Σ lut D Σ lut Σ lut Σ lut D Σ lut D

5xp1 7 10 15 2 19 19 19 3 16 2
9sym 9 1 7 3 7 6 7 3 7 3
alu2 10 6 48 6 55 77 86 9 47 4
apex4 9 19 374 5 364 426 456 6 355 5
apex6 135 99 192 6 - - 223 8 216 4
apex7 49 37 120 5 - - 124 6 122 3
b9 41 21 53 4 57 92 47 4 46 3
clip 9 5 18 3 24 36 42 6 20 2
cordic 23 2 15 5 - - 16 6 17 3
count 35 16 52 4 40 52 52 4 51 2
duke2 22 29 175 7 256 722 164 7 213 5
e64 65 65 - - 389 544 544 4 305 3
f51m 8 8 12 3 16 16 20 4 15 2
misex1 8 7 12 2 17 16 14 3 13 2
misex2 25 18 40 3 40 43 40 4 39 2
misex3 14 14 195 9 - - 534 10 276 7
misex3c 14 14 107 9 - - 143 8 112 6
rd73 7 3 8 2 8 8 9 2 8 2
rd84 8 4 12 3 13 8 13 3 12 2
sao2 10 4 23 4 25 37 37 6 28 3
t481 16 1 5 3 - - 8 4 5 2
vg2 25 8 44 5 - - 51 6 44 3
z4ml 7 4 6 2 7 6 7 2 6 2

Table 5. Comparison of IRMA2FPGAS to SIS
(total number of CLBs and total delay)

SIS 1.3 IRMA2FPGAS
Circuits

 Σ CLBs (%) Σ delay* (%) Σ CLBs (%) Σ delay* (%)

Symmetric 1511 477% 1481 268% 317 100% 553 100%

Asymmetric 1382 212% 1098 157% 652 100% 698 100%

All 2893 299% 2578 206% 969 100% 1250 100%
* - [ns] Mapped onto device 4013xlbg256-09

as for the experiment with SIS. Results of this experiment
can be found in [3]. The results demonstrate that
IRMA2FPGAS constructs much better circuits than the
commercial tools. The circuits produced by
IRMA2FPGAS are on average over 1.5 times faster and
have over 2 times less CLBs than the circuits produced by
the best state-of-the-art commercial tool used for the
experiment.

The computation time of our tool shows a slow
quadratic growth with the number of the function’s inputs
and product terms, and a linear growth with the number of
outputs. For functions having hundreds terms and up to 20
inputs, the computation time is in the order of single
seconds, and up to 100 inputs, in the order of minutes
(Pentium 3, 733 MHz, 128 MB). For functions having
thousands terms and more than 20 inputs, the computation
time is in the order of tenths of minutes.

8 Conclusion

In this paper, we proposed and discussed a new
effective and efficient method for sub-function
construction in functional decomposition. The method
differs considerably from all other known methods. It
implements our information-based approach to circuit
synthesis, is based on the theory of information
relationship measures [7][8] and uses novel evaluation
functions to control the decomposition process. We
implemented the method in an FPGA-targeted multi-level
logic synthesis tool IRMA2FPGAS that is based on the
bottom-up general functional decomposition [6]. The
experimental results from our tool demonstrate the high
quali ty of the proposed method. In almost all cases, our
tool constructs better or equally good circuits than the
other tools in terms of LUT count. Our tool constructs the
fastest circuits. In most cases, networks from our tool
have far fewer logic levels than networks constructed by
SIS or Sawada’s decomposer, and never have more levels.
The circuits produced by IRMA2FPGAS are on average
over 2 times faster and have 3 times less CLBs than the
circuits synthesized by SIS, and they are on average over
1.5 times faster and consume over 2 times less CLBs than
the circuits produced by the best state-of-the-art
commercial tool.

9 References
[1] Ashenhurst, R.L.: The decomposition of switching

functions, Proceedings of International Symposium on the
Theory of Switching Functions, p. 74-116, April 1959.

[2] Chang S.-C. and Marek-Sadowska M.: Technology
Mapping via Transformations of Function Graphs, IEEE
ICCD’92, Cambridge, MA, October 92.

[3]
����������	�
��� ����� ����������� 	�������� �! "� #$�

-quality FPGA Designs
through Functional Decomposition with Sub-function Input
Support Selection Based on Information Relationship
Measures, IEEE International Symposium on Quality

Electronic Design, ISQED‘2001, San Jose, Cali fornia,
USA, March 26-28, 2001.

[4] Curtis, H.A.: A Generalized Tree Circuits, Journal of the
Association for Computing Machinery, 8:484-496, 1961.

[5] Hartmanis, J., Stearns, R.E.: Algebraic Structure Theory of
Sequential Machines, Englewood Cli ffs, N.J.: Prentice-
Hall , 1966.

[6]
��������� 	��

, L.: General Decomposition and Its Use in Digital
Circuit Synthesis, VLSI Design, vol.3, No 3, pp. 225 - 248,
1995.

[7]
��������� 	��

, L.: Information Relationships and Measures - An
Analysis Apparatus for Efficient Information System
Synthesis, Proceedings of the 23rd EUROMICRO
Conference, Budapest, Hungary, September 1-4, 1997, pp.
13-23, IEEE Computer Society Press.

[8]
��������� 	��

, L.: Information Relationship Measures in
Application to Logic Design, IEEE International
Symposium on Multiple-Valued Logic, Freiburg Im
Breisgan, Germany, May 20-22, 1998.

[9] Povarov G. N.: On Functional Separabilit y of Boolean
Functions, Lectures of the USSR Academy of Sciencies,
Vol. 44, No 5, 1954.

[10] % 	��&���� ��'(� �)��������� 	����)��� ��*,+.-�	���/�� ��/0��1324��576 +�1��
�18��5"9 ��1
Number of Values in Sub-functions on the Effectiveness
and Eff iciency of the Functional Decomposition, Proc. of
the 25th EUROMICRO Conference, Milan, Italy,
September 8-10, 1999.

[11] Roth, J.P. - Karp, R.M.: Minimization over Boolean
Graphs, IBM Journal of Research and Development, April
1962.

[12] Sawada, H., Suyama, T., Nagoya A.: Logic Synthesis for
Look-Up Table Based FPGAs using Functional
Decomposition and Support Minimization, ICCAD’95.

[13] Sentovich, E. M., Singth, K., J., Lavagno, L., Moon, C.,
Murgai, R., Saldanha, A., Savoj, H., Stephan, P. R.,
Brayton, R. K., Sangiovanni-Vincentelli , A.: SIS: A
System for Sequential Circuit Synthesis, Electronic
Research Laboratory, University of California, Berkeley,
Memorandum No. UCB/ERL M92/41, May 1992.

[14] Shannon, C. E.: The Synthesis of Two-Terminal Switching
Circuits, The Bell Syst. Techn. Journal, Vol. 28, No 1, p.
59, 1949.

[15] Shen, W.-Z., Huang, J.-D., Chao, S.-M.: Lambda Set
Selection in Roth-Karp Decomposition for LUT-based
FPGA Technology Mapping, 32nd ACM/IEEE Design
Automation Conference, 1995.

[16] Wan, W., Perkowski, M.: A New Approach to the
Decomposition of Incompletely Specified Multi -Output
Functions Based on Graph Coloring and Local
Transformations and Its Application to FPGA Mapping,
European Design Automation Conference, EURO-DAC
' 92. pp. 230-5.

[17] Wurth, B., Schlichtmann, U., Eckl, K., Antreich, K.J.:
Functional Multiple-Output Decomposition with
Application to Technology Mapping for Look-up Table
Based, FPGAs, ACM Transactions on Design Automation
of Electronic Systems, Vol. 4, No. 3, July, 1999.

[18] Collaborative Benchmarking Laboratory, Department of
Computer Science at North Carolina State University,
http://www.cbl.ncsu.edu/

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

