
In-Place Delay Constrained Power Optimization Using Functional Symmetries

Chih-Wei (Jim) Chang, Bo Hu, and Malgorzata Marek-Sadowska
Department of Electrical and Computer Engineering,

University of California, Santa Barbara, CA 93106, USA

Abstract

In-Place Optimization (IPO) has become the backend
methodology of choice to resolve the gap between logic
synthesis and physical design as the optimization can be
guided by accurate physical information. To perform opti-
mization without perturbing too much the placed netlist,
only buffer insertion and gate sizing are commonly used in
current design tools. In this paper, we address the problem
of delay-constrained power optimization by introducing
another degree of freedom: functional symmetry based
rewiring. Theoretical results on the effect of using func-
tional symmetry on transition density for power estimation
is also derived. Experimental results show that, under the
same delay constraint, our technique achieves much better
power reduction as compared to the discrete gate sizing
only technique.

1. Introduction
Power consumption and speed are two primary cost

functions in today’s integrated circuit design. As mobile
computation devices prevail in the market, the ability to
design faster, low-power devices is of paramount impor-
tance. However, these two objectives are often conflicting:
faster circuit consumes more power while low-power cir-
cuit runs slower. Hence, designers often need to trade-off
power for speed and vice versa to meet the desired specifi-
cation. To get the best performance, power and speed are
considered at various stages of the design cycle, including
architecture, RTL, gate, and layout levels. Due to the
migration of IC processes into finer feature sizes, intercon-
nect induced delay could easily dominate the critical paths
and hence delay estimation made during logic synthesis
could be very inaccurate. In this paper, we target the power-
delay trade-off specifically at the post-placement level
when the gate level netlist is already placed on a 2-dimen-
sional plane. The rationale behind this methodology is that
delay information can be estimated accurately based on the
placement solution such that power-delay trade-off can be
done more effectively.

Since the placement is already done, optimization tech-
niques used at this level should not perturb the existing
placement solution too much in order to guarantee timing
closure. Buffer insertion and gate sizing are traditionally
the only two techniques that are suitable for this purpose.
However, these two techniques are limited to the existing
netlist without being able to explore a larger solution space
by restructuring the logic. In recent years, rewiring tech-
niques, such as redundancy-addition-and-removal[6] and
functional symmetry based technique[2], have been suc-
cessfully applied at post-layout to restructure the logic.
These techniques have the property that only wires are
reconnected such that the existing placement solution can

be left intact. This property is very important as it allows
logic changes to be guided by accurate delay information.

To have a quick feedback about the quality of the syn-
thesis results, probability-based power estimation tech-
niques are commonly used for their computational
efficiency. [7] gives an excellent review of various such
estimation techniques. Many techniques have been pro-
posed in the past to minimize power consumption at logic
synthesis level. In [5], a unified framework for low-power
design is proposed. Rewiring techniques are used for power
optimization in [3][9][12]. Basically, rewiring is used to
change the toggle rate of internal signals such that gates
with large load capacitance are assigned lower toggle rate
by rewiring. Since application of rewiring can potentially
change the toggle rate of gates in the whole circuit, each
rewiring decision is made based on its effect on power
reduction and greedy algorithms are used. Delay constraint
are either neglected[3] or roughly estimated[9][12].

In this paper, we present a delay-constrained power opti-
mization algorithm based on the notion of generalized
implication supergate rewiring[2]. This type of rewiring
has the property that the transition densities [8] at the roots
of the supergates remain unchanged when wires are recon-
nected. This enables us to design a global optimization
algorithm tightly coupled with traditional discrete gate siz-
ing for a careful and accurate power-delay trade-off explo-
ration.

2. Preliminaries
The average power dissipation in a CMOS gate consists

of three major factors:

The first term, , is the power consumed when
charging and discharging the output load of the gate. It
depends on the output loading capacitance and the toggle
rate (number of transitions per time unit). The second term,

, is due to the short circuit current during the CMOS
gate’s switching. It depends on the input transition time,
internal load, and the toggle rate. The last term is the
power consumed due to the device leakage current. Since

 and are more device related, we only consider
the optimization of , which is the dominating factor of

[7].
The toggle rate depends on the relative delays of signals

propagating through the circuit. A gate can undergo a series
of transitions before settling to a steady state. However, it is
computationally very expensive to determine this effect as
it involves an event-driven simulator with all timing infor-
mation considered[7]. In order to use the estimation as a

Pav Pload Pshort Pleak+ +=

Pload

Pshort

Pleak

Pshort Pleak
Pload

P

sub-routine inside our algorithm, we choose to neglect the
effect of glitching and use a zero-delay model instead.

Najm has introduced the notion of equilibrium probabil-
ity and transition density for power estimation[8]. The
equilibrium probability of a signal x, denoted P(x), is the
fraction of time x is evaluated to logic 1. The transition
density of x, denoted D(x), is the average number of transi-
tions per unit time. Under spatial and temporal indepen-
dence assumption, an efficient algorithm was introduced to
propagate the density values from the primary inputs
throughout the circuit. To see how the propagation algo-
rithm works, recall the concept of Boolean difference: if f
is a Boolean function that depends on x, then the Boolean
difference of f with respect to x is defined as:

Here, ⊕ represents the Boolean exclusive-or function.
The Boolean difference is the XOR of the positive and neg-
ative cofactors with respect to x. Essentially, is the con-
dition that if there is a transition on x, there is a
corresponding transition on f. For example, let f be a two-
input AND gate. i.e. . The Boolean difference of

f with respect to x1 is . So, when ,

any transition at x1 will cause a corresponding transition at
f.

It is shown[8] that under the spatial independence
assumption, the transition density at the output of a n-input
function f can be calculated by the following equation:

Intuitively, is the summation of each of the inputs’
transition densities multiplied by the probability of setting
other side inputs for the propagation of the transition. The
overall power consumption estimation under this measure
is then:

where Vdd is the supply voltage and C(xi) is the load capac-
itance seen from node xi. k is the total number of nodes in
the circuit.

Let f: { 0, 1} n → {0, 1} be a single-output completely
specified Boolean function defined on the input set X =
{ x0, x1,..., xn-1} . Four cofactors can be defined with

respect to two variables xi, xj ∈ X. i.e. f xi xj, f xi xj, f xi xj,
and f xi xj. Symmetry is defined as the equivalence between
any of the two cofactors. Among them, two types of sym-
metries are of special interest and are stated below:
Definition 1: xi and xj are non-equivalence symmetric
(NES) in f(X) if and only if f xi xj = f xi xj. That is, the
exchange of xi and xj does not change f. i.e. f(..., xi,..., xj,...)
= f(..., xj,..., xi,...).

Definition 2: xi and xj are equivalence symmetric (ES) in
f(X) if and only if f xi xj = f xi xj. That is, the exchange of xi
and xj does not change f. i.e. f(..., xi,..., xj,...) = f(..., xj,...,
xi,...).

We now discuss the concept of implication supergate
and its relationship to functional symmetry. Implication
supergate was introduced in [11] for Automatic Test Pat-
tern Generation (ATPG). It was later generalized[2] and
used to identify easily detectable functional symmetries in
a Boolean network[1]. The ability for delay optimization
was demonstrated in [2]. Generalized implication super-
gate is a set of connected gates that functionally behave
like a big AND, OR, or XOR gate. For example, the circuit
in Fig. 1(a) consists of five gates but they behave function-
ally the same as a big OR gate rooted at f with some input
phase inversions. To extract all generalized implication
supergates from a given netlist, we start from the primary
outputs and process each gate in a reverse topological
order. At each primary output, depending on its gate type,
either direct backward implication or xor propagation is
attempted. Multiple-fanout nodes, or nodes where back-
ward propagation stops, are treated as new implication
supergate roots and the propagation process continues.
This procedure stops when all primary inputs are reached.
After the extraction, the network is uniquely partitioned
into AND, OR, and XOR supergates with inverters and
buffers at their pins.

The most important result developed in [2] is that wires
that are covered by the same generalized implication super-
gate are functionally symmetric and can be swapped with-
out changing the overall functionality of the circuit. This is
illustrated in Fig. 1. Since pin h and k are covered by the
same implication supergate rooted at f, they are function-
ally symmetric and can be swapped. The swap results in
netlist shown in Fig. 1(b) which is functionally equivalent
to the one in Fig. 1(a). Wire swapping has two major
effects on timing optimization. First, it may reduce the
number of levels the critical path has to travel. For exam-
ple, if the critical path extends from k to f in Fig. 1(b), then
it is beneficial to swap the wires to achieve the result in
Fig. 1(a). Second, the interconnect loading can dramati-
cally be reduced on the critical path. The reader is referred
to [2] for more details.

3. In-Place Delay Constrained Power
Optimization
Power and delay are two conflicting factors in design

trade-off. Usually, the designer is willing to trade a pre-
specified delay penalty for as much power reduction as
possible. In this section, we discuss our approach to this

1

f

0

0

0

(a)

h k
1

f

0

0

0

(b)

h

k

Fig. 1: h and k are swappable

f∂
x∂

----- f x 0= f x 1=⊕=

fx fx⊕=

f∂
x∂

f x1 x2⋅=
f∂

x1∂
-------- 0 x2⊕ x2= = x2 1=

D f() P f∂
xi∂

------- 
  D xi()

i 1=

n

∑=

D f()

Pav
1
2
---Vdd

2 C xi()D xi()
i 1=

k

∑=

problem. We start by analyzing the effect of wire swapping
on transition density.

3.1 Effect of Swapping on Transition Density
Theorem 1: Let f be a function defined over support set X =
{ x1, x2,..., xn} and f is of NES (ES) with respect to vari-

ables xi, xj ∈ X. Let be the transition density at f
after swapping xi and xj. Then, the transition density after
the swap is equal to the transition density before the swap.
That is, .
proof:

Without loss of generality, we assume f is of NES with
respect to variables xi, xj. That is:

The case for ES can be proved similarly. The swap is
illustrated in Fig. 2.

By definition, the transition density of f before swap is

For simplicity, we denote Dt(f) as the last two terms of

D(f). That is, .

The new transition density of f after the swap is:

We denote the last two terms of Dnew(f) as
. It is to be noted that

 is now associated with . It is clear that

 if and only if . Now we

proceed by expanding and

By assumption, xi and xj are of NES and equation (1)
holds. Plugging in (1) into Equation (2) and (3), we obtain

. This result in turn proves the equivalence

between and . Finally, we conclude that the
new transition density after the swap is the same as the one
before the swap. QED.

The importance of Theorem 1 is two fold. First, it pro-
vides the theoretical fundation for the effect of symmetric
swapping on transition density. Changes in transition den-
sity are guaranteed to be bounded inside the associated
implication supergate. Second, transition densities at each
implication supergate roots serve as a set of fixed points
throughout the optimization. As a result, our algorithm can
have a global view of the whole optimization problem.
Detail algorithm will be discussed in the next section.

3.2 Coupling Gate Sizing with Functional
Symmetry

Coudert has proposed a discrete gate sizing algorithm in
[4]. The idea is to interleave the conventional greedy
approach with a relaxation phase in order to jump out of
local optima. Given a gate g ∈ N in the netlist, each imple-
mentation from the library that has the same functionality
of g is viewed as a possible move to be executed. Since
power consumed by a gate is the product of its toggle rate
and load capacitance. Gate resizing can effectively reduce
the loading at high switching gate. Moves are graded based
on their fitness, the effect of executing the move on local
neighborhood. The slack at each gate g is defined as the
difference between its required time and arrival time.

Our approach is an extension to the aforementioned
algorithm by considering not only gate resizing, but also
wire swapping. Wire swapping contributions to delay con-
strained power optimization are: 1) The transition density
of gates covered by the same supergate can potentially be
changed. Thus, it is beneficial to lower the transition den-
sity at gates with high loading by wire swapping. 2) Gate
resizing lowers the power consumption at the cost of delay
penalty. When the allowable delay penalty is reached, no
further power reduction is possible. The room for trade-off
can be enlarged by covering the delay loss with wire swap-
ping, which has been shown to be good for delay optimiza-
tion[2]. To tightly couple these two choices, we observed
that a given netlist can be viewed as a netlist of intercon-
nected supergates after supergate extraction. Each possible
swap of a supergate can be viewed as electrically different
while functionally equivalent implementation from a vir-
tual library of this supergate. For supergates that are non-
trivial (a supergate is trivial if it covers only one gate), we
consider each swap as a possible move. For trivial super-

Dnew f()

Dnew f() D f()=

fxixj
fxixj

= 1()

D f() P f∂
xk∂

------- 
  D xk()

k 1…n=
∑=

P f∂
xk∂

------- 
  D xk()

k 1…n=
k i j,≠

∑ P f∂
xi∂

------- 
  D xi() P f∂

xj∂
------- 

  D xj()+ +=

Dt f() P f∂
xi∂

------- 
  D xi() P f∂

xj∂
------- 

  D xj()+=

Dnew f() P f∂
xk∂

------- 
  D xk()

k 1…n=
∑=

P f∂
xk∂

------- 
  D xk()

k 1…n=
k i j,≠

∑ P f∂
xi∂

------- 
  D xj() P f∂

xj∂
------- 

  D xi()+ +=

Dt
new f() P f∂

xi∂
------- 

  D xj() P f∂
xj∂

------- 
  D xi()+=

P f∂
xi∂

------- 
  D xj()

D f() Dnew f()= Dt f() Dt
new f()=

f∂
xi∂

------- f∂
xj∂

f∂
xi∂

------- fxi
fxi

⊕=

fxi
fxi

⊕()
xj

fxi
fxi

⊕()
xj

+= (Shannon Expansion)

fxixj
fxixj

⊕() fxixj
fxixj

⊕()+= 2()

f∂
xj∂

------- fxj
fxj

⊕=

fxj
fxj

⊕()
xi

fxj
fxj

⊕()
xi

+= (Shannon Expansion)

fxixj
fxixj

⊕() fxixj
fxixj

⊕()+= 3()

f∂
xi∂

------- f∂
xj∂

-------=

Dt f() Dt
new f()

f
D(xi)

D(xj)

f
D(xi)

D(xj)

(a) (b)

Fig. 2: Swap effect on transition density (a)before
swap, (b) after swap

gate, each implementation of this gate from the technology
library forms the set of possible moves. Hence, a move in
our algorithm can be either resizing a gate or swapping of
wires.

Now we analyze the effect of each type of moves. Basi-
cally, the resizing will affect the slack(∆S) and power(∆P)
of the circuit under optimization. In [4], Coudert has
observed that the effect on slack tends to be confined
within the local neighborhood of the move as the effect of
resizing a gate was analyzed. Here we concentrate on the
effect of a swap. The change in slack can be calculated by
updating the arrival/required time in the local neighbor-
hood. The change in power consumption comes from two
sources: 1). The loading capacitance of the swapped pins
are changed. 2). The transition density of the fanouts of the
swapped pins are changed up to the root of the supergate.
This effect can be efficiently calculated by an event-driven
procedure.

We adopted a benefit/penalty function based approach
for the delay constrained power optimization problem by
defining the fitness function of each move as follows:

where ∆S is the change in minimum slack in the local
neighborhood and ∆P is the change of the power consump-
tion of the whole circuit. α and β are pre-defined constants.
A move is assigned zero fitness value(gain) if the move
causes both the slack and power to be worse. Otherwise,
the gain is defined as a function depending on both ∆S and
∆P. In general, we want to choose a move that trades as lit-
tle ∆S to achieve as much ∆P as possible. A move can be
either a gate resizing or a wire swapping and are distin-
guished only by their fitness values.

The overall algorithm is shown in Fig. 3. For each
implication supergate gsg in the netlist, we find the best
move based on the fitness value calculated over the local
neighborhood. For gsg that is trivial, we consider resizing
as the set of the candidate moves. After finding best moves
for each gsg, the algorithm sorts all the gsg into sequence
with respect to their fitness values. A series of best moves
is determined by traversing the sequence of moves. It is to
be noted that we do not stop at the first maximum found
when traversing the sequence. Instead, we traverse the
whole sequence and determine the best sequence in order
to escape from local optima. This is implemented in the
BestMultipleMoves(N) function. After applying the
moves, the set of gates that are in the neighborhood of the
perturbed gates are put into the update list as the candidates
for next iteration. The algorithm stops when convergence
condition is met, either the iteration limit exceeds or the
improvement is lower than a given threshold.

3.3 Interconnect Modeling
Since the final routing is not available after placement, a

net model is necessary to estimate the delay along the inter-
connect. Assume all pins have known coordinates after
placement. Each net is modeled as a star: the center of the
star is the center of gravity of all its terminals. A net is
divided into several segments: from source to the star cen-
ter and from the star center to each sinks. Each segment is
modeled by lumped RC. We use Elmore delay model for
delay calculation. Since the distance from the star center to
each sinks may vary, each sink may have different delay
from the source.

On the gate delay side, we use a load-dependent model.
The delay from an input pin i to an output pin g is

Here, cg is the load capacitance at the output of gate g.
αi,g is the intrinsic delay from in-pin i to the out-pin of g.
βi,g is the load dependent coefficient. Each α and β have
two values corresponding to the rise and fall transitions
respectively.

4. Experimental Results
Our prototype tool, RAPIDS-P (Rewiring After Place-

ment usIng easily Detectable Symmetries for Power opti-
mization), has been implemented on top of SIS 1.3[10] and
tested on both MCNC 91 and ISCAS 89 benchmark suites.
Sequential circuits are treated as combinational ones with
all sequential elements removed. All benchmarks are opti-
mized by SIS script.rugged and mapped by command
“map -n 1 -AFG”. We use a commercial 0.35µm standard
cell library consisting of INV, BUF, NAND, NOR, XOR,
and XNOR with number of inputs ranging from 2 to 4.
Each type has 4 different implementations. The mapped
netlist is fed to a commercial timing-driven placer. Cell
locations are extracted after placement. To model intercon-
nect, we use 2 pf/cm for unit capacitance and 2.4KΩ/cm
for unit resistance. Transition density and equilibrium
probability are assigned 100 and 0.5 at all primary inputs
for all benchmarks. Benchmarks runs are performed on a
Pentium III 500MHz PC.

function gsg_sizing(N: input netlist, L: technology library)
update ← all gsg in the circuit;
moves ← ∅ ;
loop

old_cost ← Cost(N);
foreach gsg ∈ update

gsg.move ← ∅;
gsg.fit ← Fitness(N);
if gsg is trivial

foreach gates g ∈ L implementing gsg
fit ← Fitness(N[gsg ← g]);
if (fit > gsg.fit)

gsg.fit ← fit;
gsg.move ← g;

else {//non-trivial gsg
foreach swap s of gsg

 fit ← Fitness(N[gsg ← gsg(s)];
if (fit > gsg.fit)

gsg.fit ← fit;
gsg.move ← s;

//end of “foreach gsg ∈ update”
moved ← BestMultipleMoves(N);
update ← GetPerturbedNodes(N, moved);

until Converge(old_cost, Cost(N), moved)
Fig. 3: Algorithm

Fitness
0 ∆S 0< ∆P 0>,

eα∆S β∆P+ otherwise



=

δ i g,() α i g, βi g, c+ g=

Table 1 shows the results. The first column lists the
name of each benchmark. Column 2 shows the number of
gates in the mapped netlist. To have a fair comparison with
the gate sizing only technique, we preprocess the circuit by
minimizing the critical path delay using only gate sizing.
Column 3, 4, and 5 are the corresponding delay, power, and
area after timing optimization. Column 6 and 7 are the cor-
responding power reduction for the gate sizing only
approach and our hybrid approach when the delay con-
straint is set at 5% of the preprocessed circuit. To demon-
strate the result from another angle, we set the power
constraint to be 10% less than the preprocessed circuit and
show the delay trade-off. The result for both approaches is
at column 8 and 9, respectively. We also show the percent-
age of area perturbation and CPU time (in second) when
deriving the power-delay trade-off curve from column 10
to 13.

The results clearly show the benefit of using functional
symmetry together with gate sizing for post-placement
power-delay trade-off. In all benchmark runs, the hybrid
approach always reaches better power reduction at less cost
of delay penalty. For example, in benchmark C6288, the
gate sizing only approach reduces power by 7.1% at 5% of
delay penalty. At the same delay penalty, the hybrid
approach reaches as much as 25.5% reduction in power
consumption. On the other hand, delay penalty of 7.0% and
1.2% for the gate sizing only and hybrid approach when the
same benchmark is reduced to 90% of its original power
consumption. This shows the great potential of our
approach to trade less delay penalty for better power reduc-
tion. On average, at 5% delay penalty, our hybrid approach
achieves 12.6% power reduction as compared to 8.3% of
the gate sizing only approach. At 10% power reduction, we
trade in only 1.4% of delay while using gate sizing only
need 5.7% delay penalty. It is to be noted that in our exper-
iment, only trivial supergates are considered to be resized.

Further improvement is still possible by relaxing this con-
straint.

Our approach can potentially explore a much larger
solution space than can be obtained by the gate sizing only
approach. This can be seen in the power-delay trade-off
curves in Fig. 4. It is easily seen from the curves that our
hybrid approach can quickly reach a significant power
reduction while trading in very small delay penalty. In Fig.
4(d), the processed benchmark alu2 has power level at
2104 and delay at 9.07. Our hybrid approach immediately
finds a solution with delay 8.95 with the same power con-
sumption. This shows that because we have a much larger
solution space, we can have much more freedom in trading
less delay for more power reduction.

5. Conclusion and Future Work
We have presented a combined rewiring and gate sizing

technique for post-placement delay-constrained power
optimization. Theoretical results on the use of functional
symmetry and its effect on transition density are formally
stated. With the set of implication supergate roots serving
as fixed transition density points during the logic restruc-
turing, we have developed a restructuring approach having
a much more global view than existing greedy restructur-
ing approach. Our technique can be distinguished from the
existing techniques in several aspects: 1) Instead of trying
to globally change the transition density of the circuit, it
keeps a set of fixed transition density points in the circuit.
This enables wire swapping to cover the delay loss when
optimizing for power in a global fashion. 2) Performing
optimization at post-placement stage allows us to accu-
rately model the interconnect induced delay and carefully
trade it for power. It is also to be noted that even though we
use transition density based on [8] as our primary means
for power estimation, our approach is not limited to it.

initial circuit

fixed delay
constraint

fixed power
constraint area change CPU

gs gsg+gs gs gsg+gs gs gsg+gs gs gsg+gs

g D P A %P %P %D %D %A %A
alu2 516 9.1 2104 56526 8.1 12.1 7.7 -1.3 1.1 0.6 14 26
alu4 1004 12.6 3844 5111253 10.7 12.5 2.3 0.2 0.6 1.1 27 55
C432 291 9.8 1194 31573 7.5 9.3 2.9 -0.9 -0.7 -0.8 4 7
C499 625 5.8 4740 69992 10.3 15.6 3.8 2.4 -3.6 -4.0 12 28

C1355 625 5.7 4855 70495 4.6 5.0 10.5 7.5 -4.2 -1.7 14 19
C1908 730 9.4 3536 79411 8.2 11.3 8.1 5.5 0.5 1.0 18 21
C2670 911 6.9 5257 101777 11.1 13.8 4.5 1.9 -1.2 0.4 23 35
C3540 1809 12.7 11559 204197 6.3 13.5 13.2 3.1 0.1 0.5 53 93
C5315 2379 9.5 16158 267644 7.2 15.9 6.7 2.1 -4.1 -3.6 45 79
C6288 5000 39.1 167898 584906 7.1 25.5 7.0 1.2 -10.9 -10.1 158 143
C7552 2565 9.8 15577 286032 6.8 12.5 7.5 3.3 -2.3 -1.9 48 71

k2 1484 6.7 3087 164329 6.6 11.9 12.5 0.3 -0.2 0.5 30 74
i8 1229 6.4 6802 139671 6.6 10.0 NA† 5.9 0.8 0.0 101 163

i10 3397 17.4 23341 384827 13.1 14.5 0.7 -7.9 -2.7 -2.6 70 125
s13207 2900 10.7 13291 329798 11.4 12.7 2.1 0.1 -4.3 -3.7 44 106
s15850 4640 12.8 28248 536498 10.3 11.9 1.8 0.9 -4.7 -4.4 124 288
s38417 10090 15.1 82094 1139460 5.3 6.0 0.1 0.0 -2.0 -1.6 732 1420
average 8.3 12.6 5.7 1.4 -2.2 -1.8

† gs-only is unable to reach 10% power reduction.

TABLE 1. Experimental results

Other estimation techniques, such as simulation or sym-
bolic techniques can be used for better accuracy. The inter-
connect model we adopted can be viewed as “perfect”
because no non-overlapping or congestion constraints are
considered. The performance improvement achieved under
this model serves as a lower bound for more accurate inter-
connect models.

Experimental results show that our technique achieves
much better power-delay trade-off compared to the gate
sizing only approach. At post-layout stage, trading as little
delay penalty as possible for large power reduction is very
important as any delay penalty might lead to failed perfor-
mance target. Our logic restructuring technique serves as a
very good candidate to link the gap between logic synthesis
and physical design.
Acknowledgments

This research was sponsored in part by Semiconductor
Research Corporation grant 98-DJ-619 and in part by the
National Science Fundation grant CCR 9811528.
References
[1] R. Brayton, G. Hachtel, and A. Sangiovanni-Vincentelli,

“Multilevel Logic Synthesis”, Proc. IEEE, vol. 78, pp.264-
300, Feb. 1990.

[2] C. -W. Chang, C. -K. Cheng, P. Suaris, and M. Marek-Sad-
owska, “Fast Post-placement Rewiring Using Easily Detect-
able Functional Symmetries”, pp. 286-289, Design
Automation Conference, 2000

[3] K. -S. Chung and C. L. Liu, “Local Transformation Tech-
niques for Multi-Level Logic Circuits Utilizing Circuit Sym-
metries for Power Reduction”, ISLPED 98, pp. 215-220

[4] O. Coudert, “Gate Sizing for Constrained Delay/Power/Area
Optimization”, in IEEE Trans. on VLSI, pp. 465-472, Dec.
1997

[5] S. Iman and M. Pedram, “POSE: Power Optimization and
Synthesis Environment”, pp. 21-26, Design Automation Con-
ference, 1996

[6] Y. -M. Jiang, A. Krstic, K. -T. Cheng, and M. Marek-Sad-
owska, “Post-Layout Logic Restructuring for Performance
Optimization”, in Proc. of DAC, pp. 662-665, 1997

[7] F.N. Najm, “A survey of power estimation techniques in VLSI
circuits”. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol.2, (no.4), Dec. 1994. p.446-55

[8] F. N. Najm, “Transition Density: A New Measure of Activity
in Digital Circuits”, IEEE Transactions on Computer-Aided
Design, vol. 12, no. 2, Feb, 1993, pp. 310-323

[9] B. Rohfleisch, A. Kolbl, and B. Wurth, “Reducing Power Dis-
sipation after Technology Mapping by Structural Transforma-
tions”, pp. 789-794, Design Automation Conference, 1996

[10]“SIS: A System for Sequential Circuit Synthesis”, Report
M92/41, University of California, Berkeley, May, 1992

[11]K.-H. Tsai, R. Tompson, J. Rajski, and M. Marek-Sadowska,
“STAR-ATPG: a high speed test pattern generator for large
scan designs”, Proceedings of International Test Conference
1999, pp. 1021-1030

[12]Q. Wang, S.B.K. Vrudhula, G. Yeap, and S. Ganguly, “Power
Reduction and Power-Delay Trade-Offs Using Logic Trans-
formations”, ACM Trans. on Design Automation of Elec-
tronic Systems, Vol. 4, No. 1, January, 1999, pp. 97-121

(a)C3540 (b)C5315

9400

9600

9800

10000

10200

10400

10600

10800

11000

11200

11400

11600

12.6 12.8 13 13.2 13.4 13.6 13.8 14 14.2

P
ow

er

Delay (ns)

"c3540-gs-only"
"c3540-gs+gsg"

13000

13500

14000

14500

15000

15500

16000

16500

9.5 9.6 9.7 9.8 9.9 10 10.1 10.2 10.3 10.4 10.5

P
ow

er

Delay (ns)

"c5315-gs-only"
"c5315-gs+gsg"

115000

120000

125000

130000

135000

140000

145000

150000

155000

160000

165000

170000

39 40 41 42 43 44 45

P
ow

er

Delay (ns)

"c6288-gs-only"
"c6288-gs+gsg"

1850

1900

1950

2000

2050

2100

2150

8.9 9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8

P
ow

er

Delay (ns)

"alu2-gs-only"
"alu2-gs+gsg"

Fig. 4: Power-delay trade-off curves for four benchmark circuits
(d) alu2(c) C6288

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

