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Abstract

In this paper we concern ourselves with the problem of
minimizing leakage power in CMOS circulits consisting of
AOI (and-or-invert) gates as they operate in stand-by mode
or an idle mode waiting for other circuits to complete their
operation. It is known that leakage power due to sub-
threshold leakage current in transistors in the OFF state is
dependent on the input vector applied. Therefore, we try to
compute an input vector that can be applied to the circuit in
stand-by mode so that the power loss due to sub-threshold
leakage current is the minimum possible. We employ a
integer linear programming (ILP) approach to solve the
problem of minimizing leakage by first obtaining a good
lower bound (estimate) on the minimum leakage power and
then rounding the solution to actually obtain an input
vector that causes low leakage. The chief advantage of this
technique as opposed to others in the literature is that it
invariably provides us with a good idea about the quality of
the input vector found.

1. Introduction

In future technologies, the problem of sub-threshold
leckage power in CMOS circuits will grow in significance
When transistors are switched off, a cetain amount of
ledkage current flows and this results in leskage power of
magnitude (I )(Vdd). The leskage airrent is
exponentially dependent on the value of the threshold
voltage such that if the threshold voltage is reduced (as it
will be in future technologies), the leakage current registers
an exponential increase. We can control the leakage aurrent
by technologicd measures where dual-threshold transistors
are used [9], or by supplying a particular input vedor that
minimizes |eakage power since the leakage power of a gate
is dependent upon the state in which the inputs of the gate
are maintained. [5], [6], and [10] have previoudy studied
the problem of finding a minimum leakage vedor that can
be gplied to a drcuit in stand-by mode. The gproachesin
these papers focus on finding the input vedor that
minimizes leakage power heuristically. It is known [5] that
the ratio between the maximum and minimum leakage
power could be quite large and for some drcuits could be &

large & 5. We present here an integer linea programming
model to compute an input vedor that can be gplied to the
primary inputs of the drcuit in stand-by mode in order to
minimize le&kage power. Since the integer linea program
consists of a large number of variables, we do not solve it
exadly. Instead we solve an appropriate linea relaxation to
provide alower bound on the integer optimum and then
employ a technique cdled randomized rounding to round
the solution to the linea relaxation, which is typicaly
fradional, to an integer solution. Experimental results are
presented to show the pradicdity of the method for
moderate-sized circuits.

2. Problem Formulation

Case (a): Library consisting of only two-input NAND gates
and INVERTERS.

This basic cae has certain fedures that allow it to be
modeled in a way that is different from the general case.
Spedficdly we show that the objedive vedor of the ILP
can belineaized in a very natural way using only variables
inherent to the problem.
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Fig 1: Schematic of a 2-input NAND gate.

Consider the NAND gate in Fig. 1. We aalyze the
leakage power of the gate for all four input vedors, ab =11,
10, 01, 00. Let Py be the ledkage power when the input
vedor ab = 00, P, the power for ab = 10, P, the power for



ab = 01 and P; the power for ab = 11. To get the values of
Py, P1, P, and P; we neead to examine the on-off states of the
transistors in the NAND gate of Fig 1. When ab = 11, the
two NMOS transistors in series are on, while the two
PMOS transistors in parallel are off. Thus in this case we
need to consider the sum of sub-threshold legage airrents
in the two off PMOS transistors. When ab = 10, the
legkage current pertains to one of the NMOS transistors
beingin the off state and similarly for ab=01. When ab =00,
the le&kage current pertaining to two NMOS transistors in
series. Py, P, P, and P; may be regarded as constants
dependent on the CMOS processtechnol ogy.

For an integer linea programming model (ILP) we neal a
linea objedive function over a set of constraints. The
objedive function for the NAND gate is MIN: P, (1-8)(1-b)
+ Py &(1-b) + P, (1-@)b + P; ab. Thisis not linea but we an
rewriteit as (Pp— Py — P, + P3) ab + (P, — Pg)a+ (P, — Py)b
+ Po. Now for aNAND gate we know that the output ¢ = 1
— ab. So we can substitute (1-c) for ab. The objedive
function for the NAND gate is linea in the Bodean
variables representing the inputs and output of the NAND
gate. Next we build the mnstraint set pertaining to the
NAND gate. To dothis we use a ¢ausal description of the
function of the NAND gate, i.e. we come up with a set of
clauses (linea constraints) as in [7]. The four input-output
combinations can be described by the following three
conditi ons:

~all cora+c=1,

~b0O corb+c=>1,

abd ~cor-a-b-c=-2

ab,cO[0,1] D

For aone-input NOT gate with a & input and b as output,
we have a+ b = 1. We construct a set of clauses for eat
gate in the drcuit and also an objedive function for eadh
gate in the drcuit. Theinteger program for the whole drcuit
ismerely:

Minimize sum of objedive functions, subjed to
(Union of the Constraint sets for al the gates).

For an ninput, m gate drcuit, it appeas that the integer
program has m+n 0-1 variables. However, in pradice we
can relax the integrality constraints on the internal variables
of the drcuit, as these ae forced to become integral when
the n primary inputs are integral.
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Fig 2: A circuit with NAND gates.

Let us consider the drcuit in Fig 2 and the @rresponding
integer program. The objedive function for this circuit
reads as.

MIN : (Py—P;— P, + P3)(1 —d) + (P, —Pg)a+ (P, —Pg)b +
Pot+ (Po—Pi—P,+P3)(1-€) + (PL—Po)d+ (P,—Pojc +
Po

The mnstraint set is smply the union of the @nstraint
sets for the two NAND-gates in the drcuit:

a+d=1

b+d=>1

-a—b-d=-2

d+ex>1

ct+tex1

-d-c —e=-2

ab,cdel[0,1] 2

For aNOT-gate with a asinput and b as output, we have:
MIN: Qoa+ Q. b subjedto

a+b =1
ab0[0,1] ©)

The predse values we use for Py, P;, P, and P; are
inspired by the observations of [3] as also our own Spice
simulations. We note that, in their paper, P; is about 3.5
times the value of Py, P, is about 2 times the value of P,
and P, isabout 1.5 times the value of Py .In our experiment,
we use values of Py, P4, P, and P; in consonance with these
fads. To cdculate Qy we note that the leakage power Q,
represents corresponds to the leskage power of a PMOS
transistor in the off state, while P; corresponds to the
leakage power of two PMOS transistorsin parallel that are
in the off state. Therefore we take Qy = 0.5 Ps. In [3], the
leckage powers for 10 and 01 are different although baoth
correspond to one NMOS transistor in the off state. Thisis
because for P; the legkage power corresponds to a source:
drain voltage drop d Vdd —V at the NMOS transistor in
the off state, but for P, the leakage power corresponds to a
source-drain voltage drop d Vdd at the NMOS transistor in
the off state. We choaose to take Q, = P;.

Case (b): Library consisting of arbitrary AOI gates.

The model described above can be extended to trea more
complex AOI gates as well. An example of an AQOI gate is
the following f : ~(ab + c). Clealy the basic two-input
NAND gate is also an AOI gate with f : ~(ab). We work
with standard series-parallel implementations of AOI gates.
This means that the function f : ~(x.y + z) is implemented
as dwown in Fig 2. The problem in case of AOI gates
arises from the fad that the objedive function could include



many non-linea terms. To lineaize the objedive function
we replace # the nonlinea terms with new variables and
then add additional constraints to establish the logicd
equivalence between the new variables and the terms they
represent. This procedure will in genera result in the
addition of a large number of constraints but the number
would remain manageable a long as ead complex gate has
only a few inputs. There ae two ways of lineaizing the
objedive function. We will show that while the linea
relaxation of the first ILP always computes a trivial lower
bound, that of the second ILP generally computes a better
lower bound. We demonstrate the procedures for the
function f : ~(x.y + 2).

Formulation 1:

First we introduce anew 0-1 variable abe 1 representing
the first cube xy. We introducelinea constraints expressng
thelogicd equivalence cube_1 = xy. Thus,

cube 10 x
cube 10y
() O(y) O cube_1 4

In terms of linea constraints we have,

—cube 1+x =0
—cube_1+y =0
X —y+cube 1= -1 5)

where x, y are required to be 0-1 variables. Having
established the relationship between cube 1 and xy, we
have f : ~(cube_1 + z). We must now introduce mnstraints
to establish the relationship between f and the variables
cube_1 and z. Clealy the foll owing constraints perform this
role:

cube 10 ~f
z0O ~f
(~cube_ NO(~2) O f (6)

In terms of linea constraints we have

—cube 1-f = -1
-z-f=z2-1
cube 1+z+f =1 (7)

We have now introduced all the mnstraints needed to
explain the logical behavior of the gate. We now turn our
attention to the objedive function. For ead input vedor,
we have a spedfic leakage power. Let us denote dl the
eight leskage wefficients for the gate in question by Py, ...
P;. Next we introduce 0-1 variables for ead input
configuration such that when the input vedor occurs then
the variable is true. The first of these variables, aoi 0

represents the input vedor xyz = 000. We expressthis in
the form of the congtraint aci_0 < (~X)(~y)(~2). In terms
of linea constraints this can be expressed as.

—z—aoi__Oz-l
X+y+z+aoi_ 021 (8

We introduce similar constraints for aoi_1 which
represents xyz = 001, aoi_2 and so on upto aoi_7. We ad a
constraint for ead gete to indicate that the leakage power
for the gate must exceed the minimum leakage power for
that gate.

Po a0i_0+Piaoi_ 1+ ...+P;a0i 72Py (9)

The objedive function can then be written as:

min: Py aoi 0+ Pyaoi 1+ ...+P;a0i 7.

Clealy for every assignment to the input variables x,y,z,
one and only one variable in the objedive function aboveis
set to one picking the leakage power for that input
assgnment.

The aove formulation works for al AOI gates. However,
in case of two-input gates it is not as compact as the spedal
formulation for two-input NAND gates. For an arbitrary
AOI gate mnsisting of k inputs and r cubes, the formulation
described in this sction introduces 2 + r new variables,
O(2* + r) congtraints and 2% additional terms to the
objedive function.

For every input combination, exadly one ai variable is
set to 1 and the objedive function evaluates to the ledkage
power assciated with that variable. This ILP certainly
computes the vedor causing minimum leakage when it is
solved exadly. But the linea relaxation of this formulation
always computes a trivia lower bound on the leakage
power disdpated by the drcuit — namely, the sum of the
minimum leakage powers of the gates in the drcuit
provided all gatesin the drcuit have two or more inputs.

Theorem 1: The optimum solution of the linea relaxation
of the a&ove ILP is aways equa to the sum of the
minimum leakage powers of the gates in the drcuit.

Proof: Consider any constraint in the ILP formulation
containing only non-aoi variables. It is of the form:

35C —-2D; =21-N (10
which represents the logicd constraint C, 0 C, O...Cy O

~D, 0 ~D, O ...~Dy . Here M is the number of positive
variables in the logical constraint and N is the number of



negated variables. Clealy setting al the variables C; as well
as al the variables D; to 0.5 satisfies the @ove inequality.
Also consider any inequality containing an aoi variable, say
aoi_p g (corresponding to the qth input combination of the
pth gate). If the gate in question has n inputs then any
inequality containing aoi_p_q either has two variables or
ntl variables. A two-variable inequality containing
aoi_p qisof theform—v —aoi_p_qg= -1 or of the form v —
aoi_p q=0, wherev isan input of the pth gate. Sincev is
set to 05, we have in either case, aoi_p_gq < 0.5. The
inequality of n+1 variables in which aoi_p_gappeas reads
as 2C, -2 D;+ai_p q =1 —N which represents the
logicd constraint C,0C,0...Cy O~D, 0 ~D,0...~Dy O
ao0i_p . Setting al the C; and D; to 05 this inequality
becomes

aoi_ pg=1-05M+N) (11

where M + N = n, the number of inputs to the gate. This
means that as long as we have only gates with two inputs or
more in the drcuit, thisinequality is the same & aoi_p_g=
0.

Thus stting al circuit variables to 0.5 satisfies al the
Boolean constraints and imposes constraints of the form 0 <
aoi_p < 0.5 onthe ai variables. Asauming that Py is the
minimum leakage power for the gate, we can set aoi_p_0=
05, aoi_ p 1 = (0.5*Py)/ (Py) and the other variables
ai_p2 .. aoi_pn to 0. Then the objedive vedor
evaluates to Py, for the gate p. The same agument can be
extended to every gate in the drcuit. Thus the optimum of
the LP is the sum of the minimum legage powers of al the
gatesin the drcuit. END

Formulation 2:

We neal to come up with an alternative formulation,
which does not always compute & its minimum the trivial
lower bound as in Formulation 1 It turns out that the
formulation below works well in pradice

As in formulation 1 we aede avariable for ead cube
and introduce nstraints relating the variable to the
elements of the cube. Thus for the gate f : ~(x.y + 2) we
have the foll owing constraints:

cube 10 x
cube 10y
(x) dy) O cube_1 (12

Interms of linea constraints we have,
—cube 1+x =0

—cube _1+y =0
X —y+cube 1= -1 (13

where x, y are required to be 0-1 variables. Having
established the relationship between cube 1 and xy, we
have f : ~(cube_1 + z). We must now introduce @nstraints
to establish the relationship between f and the variables
cube_1and z. Clealy the foll owing constraints perform this
role:

cube 10 ~f
z0O ~f
(~cube_HO(~2) O f 14

In terms of linea constraints we have

—-cube 1-f > -1
-z-f=2-1
cube 1+z+f =1 (15

The difference between formulations 1 and 2 arise in the
way we aede ai-variables and the objedive vedor. For a
3-input gate the objedive vedor reads as:

min: Py X'y'zZ + PLXY z+P,X'yZ + P3X'yz+ Py xy'Z
+ PsXy'z + Ps Xyz' + P; Xyz

Sincex’ =(1-x),y =(1-y)andzZ =(1 -z ) we @n
expand the éove to get:

min: (-Po+ Py) X + (-Po+ Py) y + (-Po+ P)) z+ (P — P, — Py
+ Ps) Xy + (Po— Py + P3—Py) yz + (Py—Py —Py + Ps) xz + (-
Po+ P+ P,—Ps+ Py—Ps—Ps+ P7) xyz + Py

We introduce variables for eat of the terms in the dove
expansion, athough we @uld skip the first three linea
terms, namely X, y and z. Thus we have

aoi_1=x

aoi 2=y

ao0i_3=xy

a0 4=z

aoi 5=xz

aoi_6=yz

aoi_7=xyz (16)

We dso introduce @nstraints to describe the relationship
between the abi variables and the input variables x, y and z
in the same manner as in formulation 1. Unlike in
formulation 1, in this case the minimum computed by the
linea relaxation is not necessarily trivial. Computational
experience shows that it always performs better than
formulation 1. In fad we can show an interesting property
of this relaxation for circuits consisting only of 2-input
NAND gates and INVERTERS.

Theorem 2: If for any circuit consisting of 2-input NAND
gates and INVERTERS, the LP relaxation returns a



fradional solution then the legkage power corresponding to
that solution is definitely greder than the sum of the
minimum leakage powers of all the gates.

Proof: The objedive vedor for a 2-input NAND gate reads
as Py + (-Py + Pa+ (-Py + P)b + (Py + Py — P, — Pyab. In
formulation 2 we replace & by the variable ai_3 which is
related to the variablesa and bas

a—aoi_3=0
b-aoi_ 320
-a—b+aoi_3=-1 17

The first two inequalities above merely state that aoi_ 3 <
min(a,b). Without loss of generality assume that a > b.
Then aoi_3 < b. For a 2-input NAND gate P, is the
minimum leakage value and P; is the maximum leakage
value. Depending on the technology the efficient of ab in
the objedive vedor could be positive or negative. In case it
is positive it is easy to seethat the objedive vedor for any
fradional solution is greder than P,. In case it is negative
then we have E = PO + ('Po + Pl)a+ ('Po + Pz)b + (Po + P3 -
P —P;) a0i_3> Py + (-Po+ P)b + (-Py + Po)b + (Py + P3 —
P, —P,)b.

E>Py+ (P;—Py)b (18

If b > 0 then the objedive vedor is greaer than P,. For an
inverter the objedive vedor E > Py + (P, — Po)a, where ais
the input of the inverter. Thus if the optimum solution of
the linea relaxation is fradional then we have anon-trivial
lower bound. END

The significance of the &ove theorem lies in the
observation that solving the linea relaxation always
benefits us. If the solution to the LP is fradiona then we
have anorntrivial lower bound that tells us omething about
the minimum legkage power dissipated by the drcuit, and if
the solution is nonfradional (or integral) then we have
adually obtained a valid leakage vedor of optimal cost.

3. AOI gatesvs 2-input gates

It is not difficult to argue that the relative eae of the ILP
formulation for 2-input gates (in terms of number of
variables needed) comes at a cetain price In general, if
minimizing leakage power is the aiterion then 2-input
gates are apoa choice for synthesis. This is becaise for a
2-input NAND gate (or an inverter) the ratio of maximum
lekage power to minimum leakage power is usualy no
greder than 3. The maximum leakage power case occurs
when bath inputs to a NAND gate ae high corresponding
to bah PMOS transistors in the pull-up network being in
the OFF state. The minimum leakage power occurs when
both inputs to the NAND gate ae low corresponding to the
two NMOS transistors in series in the pull-down network

being in the OFF state. In case of an arbitrary AOI gate
consisting of more than 3 NMOS transistors in series and
more than 3 PMOS transistors in pardlel, the ratio of
maximum to minimum led&kage grows larger. Thus the
eaier formulation of the ILP for 2-input gates trandates
into a less interesting seach space while the harder ILP
formulation for arbitrary AOI gates trandates into a more
interesting seach space @ the gains of leakage power
minimizaion are greaer in this case.

4. Computational Details

We use Formulation 2 for our experiments with circuits
consisting of AOI-gates. Idedly one would solve the ILP
formulation using a branch and baund procedure. Whil e the
spedal formulation for 2-input gates can be solved exadly
using a branch and bowd procedure for most of the
standard benchmark circuits, branch and bowund quickly
becomes infeasible for the ILPs modeling arbitrary AQI
gates. Hence we resort to an aternate goproach that shows
considerable promise.

It is known that for any 0-1 integer linea program,
relaxing the restriction on the binary variables and letting
them take any value between 0 and 1 produces a linea
program, which is much easier to solve. Significantly for
us, the optimum to the linea program is a lower bound on
the sought after optimum to the ILP. However it could be a
lower bound of poar quality in some cases and of very good
quality in other cases. Generally speaking, to get goodtight
lower bounds, we must closely approximate the cmnvex hull
of feasible solutions. This is done by adding as many
constraints as possible to the original ILP so that the
resulting LP continues to contain all feasible solutions of
the ILP and thus provides a lower bound to the ILP. In
pradice however, one would not need to add too many
constraints.

We now focus on a technique to oltain an adual
assgnment to the primary input variables  as to cause a
lekage power disgpation that compares well with the
optimum to the linea relaxation. Thisisdone by rounding
the value of each primary input variable computed by the
LPto O a 1. If the value of a given primary input variable
isp, 0 < p< 1, weround the variable to 1 with probability
p, and round it to O with probability (1 — p). Randomized
rounding [8], as this technique is cdled, works reasonably
well in other settings such as computing the maximum
number of satisfiable dauses in a Booean formula,
computing the vertex cover of a graph of least weight and
so on. In our case it works ressonably well. On most
benchmark circuits, it provides us a vector that is within 5%
of the true optimum. It neals to be emphasized here that
the optimum computed by the linea relaxation is a legkage
power value. It provides us with a good idea of the
minimum leakage power disspated by the drcuit in
guestion. Typicdly solving the linea relaxation is much



easier than solving the rresponding ILP. Therefore, for
many circuits, we do not need to expend a lot of
computational effort to ascertain the minimum leakage
power disdpation.

5. Experimental Results

In Table 1 we give experimental results for benchmark
circuits consisting of AOI gates. We use Ip_solve, a mixed
integer linea programming solver written by Michel
Berkelaa [2] on the linea relaxations of the integer
programming formulations for ead circuit (using
formulation 2). The optimum solution to the linea
relaxation provides a lower bound on the optimum of the
ILP. Column 3 in Table 1 gives us the time taken to
generate the best leakage vedor (i.e. of minimum leakage)
in 100iterations. As explained above eab leakage vedor is
obtained by performing a randomized rounding operation
on the solution vedor for the linea relaxation. In column 5
we ompute the aror between the leakage power of the best
vedor that is computed after randomized rounding and the
lower bound provided by the linea relaxation using the
formula:

Error % = ((estimated minimum lesage &ter randomized
rounding) — (LP_optimum))/(LP_optimum) * 100

It should be dea that the aror figuresin column 5 are an
upper bound on the true aror, since

LP_optimum < true minimum le&kage power.

This makes the small size of the aror figuresin column 5
of the table dl the more remarkable. In most cases we ae
able to approximate the true minimum le&kage power
within the order of afew percent. For some drcuits like i4,
i6, i7 and C499 we ae adualy able to get an integer
solution to the linea relaxation. So for these drcuits, no
time is expended in computing the best vedor. Also the fad
that integer solutions are obtained by solving the linea
relaxation is a good statement on the tightness of the
relaxation. For examples larger than those reported in Table
1, Ip_solve reports numericd problems in some @ses and
gives exorbitant run-times in others. This might also be an
indication of numericd difficulties in solving the linea
program, which can just be due to Ip_solve. Therefore a
commercial solver might be &le to ded with larger
examples than Ip_solve. This is a subjed for further
investigation.

6. Conclusions
We adressed the problem of finding an input vedor to

apply to a drcuit consisting of and-or-invert (AQI) gates
operating in stand-by mode so that the lesage power of the

circuit is minimized. We formulated the problem as an
integer linea program (ILP) in two dfferent ways. Our
solution scheme @nsists of relaxing the ILP formulation to
obtain alower bound on the minimum le&kage power that is
disdpated by the drcuit. The linea relaxation of the first
ILP formulation is shown theoreticdly to be of poa
quality, while the relaxation to the second ILP formulation
is shown to work much better in pradice To oltain a good
input vedor to apply to the drcuit, we use atechnique
known as randomized rounding to round the solution of the
linea relaxation [8]. This technique is sen to work quite
well in providing an input vedor of good quality. Further
the solution technique developed here might also be of use
in other ILP formulations of problems relating to dgital
circuits, for example the Boolean Constrained Optimization
Problem (BCOP) of Chen and Keutzer [4].

Table 1: Estimates of leakage power values for
benchmark circuits and their quality.

# of Run Run %
Circuit | inputs | Time Time error
For For
Best LP
Vedor | (9
i2 201 77 12 0.23
i4 192 0 13 0
i5 133 55 29 331
i6 138 0 600 0
i7 199 0 357 0
i10 257 32400 | 25200 7.12
C499 41 0 25 0
C880 60 4536 | 1852 4,22
C1355 41 105 65 4.16
C1908 33 410 869 7.61
C2670 | 233 802 480 6.88
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