
Minimizing stand-by leakage power in static CMOS circuits

Srinath R.Naidu    E.T.A.F.Jacobs
Design Automation Section, Eindhoven University of Technology

P.O.Box 513, 5600 MB Eindhoven, The Netherlands

Abstract
In this paper we concern ourselves with the problem of
minimizing leakage power in CMOS circuits consisting of
AOI (and-or-invert) gates as they operate in stand-by mode
or an idle mode waiting for other circuits to complete their
operation. It is known that leakage power due to sub-
threshold leakage current in transistors in the OFF state is
dependent on the input vector applied. Therefore, we try to
compute an input vector that can be applied to the circuit in
stand-by mode so that the power loss due to sub-threshold
leakage current is the minimum possible. We employ a
integer linear programming (ILP) approach to solve the
problem of minimizing leakage by first obtaining a good
lower bound (estimate) on the minimum leakage power and
then rounding the solution to actually obtain an input
vector that causes low leakage. The chief advantage of this
technique as opposed to others in the literature is that it
invariably provides us with a good idea about the quality of
the input vector found.

1. Introduction

   In future technologies, the problem of sub-threshold
leakage power in CMOS circuits will grow in significance.
When transistors are switched off, a certain amount of
leakage current flows and this results in leakage power of
magnitude (I leak )(Vdd). The leakage current is
exponentially dependent on the value of the threshold
voltage such that if the threshold voltage is reduced (as it
will be in future technologies), the leakage current registers
an exponential increase. We can control the leakage current
by technological measures where dual-threshold transistors
are used [9], or by supplying a particular input vector that
minimizes leakage power since the leakage power of a gate
is dependent upon the state in which the inputs of the gate
are maintained. [5], [6], and [10] have previously studied
the problem of finding a minimum leakage vector that can
be applied to a circuit in stand-by mode.  The approaches in
these papers focus on finding the input vector that
minimizes leakage power heuristically. It is known [5] that
the ratio between the maximum and minimum leakage
power could be quite large and for some circuits could be as

large as 5. We present here an integer linear programming
model to compute an input vector that can be applied to the
primary inputs of the circuit in stand-by mode in order to
minimize leakage power. Since the integer linear program
consists of a large number of variables, we do not solve it
exactly. Instead we solve an appropriate linear relaxation to
provide a lower bound on the integer optimum and then
employ a technique called randomized rounding to round
the solution to the linear relaxation, which is typicall y
fractional, to an integer solution. Experimental results are
presented to show the practicali ty of the method for
moderate-sized circuits.

2. Problem Formulation

Case (a): Library consisting of only two-input NAND gates
and INVERTERS.

   This basic case has certain features that allow it to be
modeled in a way that is different from the general case.
Specifically we show that the objective vector of the ILP
can be linearized in a very natural way using only variables
inherent to the problem.

Fig 1: Schematic of a 2-input NAND gate.
     
   Consider the NAND gate in Fig. 1. We analyze the
leakage power of the gate for all four input vectors, ab = 11,
10, 01, 00. Let P0 be the leakage power when the input
vector ab = 00, P1 the power for ab = 10, P2 the power for

a b

VDD

b

a



ab = 01 and P3 the power for ab = 11. To get the values of
P0, P1, P2 and P3 we need to examine the on-off states of the
transistors in the NAND gate of Fig 1. When ab = 11, the
two NMOS transistors in series are on, while the two
PMOS transistors in parallel are off . Thus in this case we
need to consider the sum of sub-threshold leakage currents
in the two off PMOS transistors. When ab = 10,  the
leakage current pertains to one of the NMOS transistors
being in the off state and similarly for ab=01. When ab =00,
the leakage current pertaining to two NMOS transistors in
series. P0, P1, P2 and P3 may be regarded as constants
dependent on the CMOS process technology.
   For an integer linear programming model (ILP) we need a
linear objective function over a set of constraints. The
objective function for the NAND gate is MIN: P0 (1-a)(1-b)
+ P1 a(1-b) + P2 (1-a)b + P3 ab. This is not linear but we can
rewrite it as (P0 – P1 – P2 + P3) ab + (P1 – P0)a + (P2 – P0)b
+ P0.  Now for a NAND gate we know that the output c = 1
– ab. So we can substitute (1-c) for ab. The objective
function for the NAND gate is linear in the Boolean
variables representing the inputs and output of the NAND
gate. Next we build the constraint set pertaining to the
NAND gate. To do this we use a clausal description of the
function of the NAND gate, i.e. we come up with a set of
clauses (linear constraints) as in [7]. The four input-output
combinations can be described by the following three
conditions:

 ~a ⇒ c or a + c ≥ 1,
 ~b ⇒ c or b + c ≥ 1,
  ab ⇒ ~c or −a − b − c ≥ -2
  a,b,c ∈ [0,1]  (1)

   For a one-input NOT gate with a as input and b as output,
we have a + b = 1.  We construct a set of clauses for each
gate in the circuit and also an objective function for each
gate in the circuit. The integer program for the whole circuit
is merely:
       Minimize: sum of objective functions, subject to
      (Union of the Constraint sets for all the gates).
   For an n-input, m gate circuit, it appears that the integer
program has m+n 0-1 variables. However, in practice we
can relax the integrali ty constraints on the internal variables
of the circuit, as these are forced to become integral when
the n primary inputs are integral.

 Fig 2: A circuit with NAND gates.

Let us consider the circuit in Fig 2 and the corresponding
integer program. The objective function for this circuit
reads as:

MIN : (P0 – P1 – P2 + P3)(1 – d) + (P1 – P0)a + (P2 – P0)b +
P0 + (P0 – P1 – P2 + P3)(1 – e)  +  (P1 – P0)d + (P2 – P0)c +
P0

   The constraint set is simply the union of the constraint
sets for the two NAND-gates in the circuit:

 a + d ≥ 1
               b + d ≥ 1

−a – b – d ≥ -2
d + e ≥ 1
c + e ≥ 1
−d – c  – e ≥ -2
a,b,c,d,e ∈ [0,1] (2)

   For a NOT-gate with a as input and b as output, we have:

               MIN:  Q0 a + Q1 b  subject to

a + b  = 1
a,b ∈ [0,1] (3)

   The precise values we use for P0, P1, P2 and P3 are
inspired by the observations of [3] as also our own Spice
simulations. We note that, in their paper, P3 is about 3.5
times the value of P0, P2  is about 2 times the value of  P0

and P1 is about 1.5 times the value of P0 .In our experiment,
we use values of P0, P1, P2 and P3 in consonance with these
facts.  To calculate Q0 we note that the leakage power Q0

represents corresponds to the leakage power of a PMOS
transistor in the off state, while P3 corresponds to the
leakage power of two  PMOS transistors in parallel that are
in the off state. Therefore we take Q0 = 0.5 P3. In [3], the
leakage powers for 10 and 01 are different although both
correspond to one NMOS transistor in the off state. This is
because for P1  the leakage power corresponds to a source-
drain voltage drop of Vdd – VT at the NMOS transistor in
the off state, but for P2 the leakage power corresponds to a
source-drain voltage drop of Vdd at the NMOS transistor in
the off state. We choose to take Q1 = P1.

Case (b): Library consisting of arbitrary AOI gates.

   The model described above can be extended to treat more
complex AOI gates as well. An example of an AOI gate is
the following f : ~(a.b + c). Clearly the basic two-input
NAND gate is also an AOI gate with f : ~(a.b). We work
with standard series-parallel implementations of AOI gates.
This means that the function f : ~(x.y + z) is implemented
as shown in Fig 2.  The problem in case of AOI  gates
arises from the fact that the objective function could include

b
d

e

a

c



many non-linear terms. To linearize the objective function
we replace all the non-linear terms with new variables and
then add additional constraints to establish the logical
equivalence between the new variables and the terms they
represent. This procedure will i n general result in the
addition of a large number of  constraints but the number
would remain manageable as long as each complex gate has
only a few inputs.  There are two ways of linearizing the
objective function. We  will show that while the linear
relaxation of the first ILP always computes a trivial lower
bound, that of the second ILP generally computes a better
lower bound. We demonstrate the procedures for the
function f : ~(x.y + z).

Formulation 1:
   First we introduce a new 0-1 variable cube_1 representing
the first cube xy. We introduce linear constraints expressing
the logical equivalence, cube_1 ⇔ xy. Thus,

cube_1 ⇒ x
               cube_1 ⇒ y
               (x) ∧ (y) ⇒ cube_1 (4)

   In terms of linear constraints we have,

−cube_1 + x  ≥ 0
−cube_1 + y  ≥ 0
−x  − y + cube_1 ≥  -1 (5)

where x, y are required to be 0-1 variables. Having
established the relationship between cube_1 and  xy, we
have f : ~(cube_1 + z). We must now introduce constraints
to establish the relationship between f and the variables
cube_1 and z. Clearly the following constraints perform this
role:

 cube_1 ⇒  ~f
 z ⇒ ~f

               (~cube_1)∧(~z) ⇒ f (6)

   In terms of linear constraints we have

− cube_1 − f  ≥  −1
− z − f  ≥  −1
 cube_1 + z + f  ≥ 1 (7)

We have now introduced all the constraints needed to
explain the logical behavior of the gate. We now turn our
attention to the objective function. For each input vector,
we have a specific leakage power. Let us denote all the
eight leakage coefficients for the gate in question by P0, …
P7. Next we introduce 0-1 variables for each input
configuration such that when the input vector occurs then
the variable is true. The first of these variables, aoi_0

represents the input vector xyz = 000. We express this in
the form of the constraint aoi_0 ⇔ (~x)(~y)(~z). In terms
of linear constraints this can be expressed as:

− x – aoi_0 ≥ -1
− y − aoi_0 ≥ -1

              − z − aoi_0 ≥ -1
  x + y + z + aoi_0 ≥ 1 (8)

   We introduce similar constraints for aoi_1 which
represents xyz = 001, aoi_2 and so on upto aoi_7. We add a
constraint for each gate to indicate that the leakage power
for the gate must exceed the minimum leakage power for
that gate.

 P0  aoi_0 + P1 aoi_1 +  . . . + P7 aoi_7 ≥ P0      (9)

 The objective function can then be written as:

min: P0  aoi_0 + P1 aoi_1 +  . . . + P7 aoi_7.

   Clearly for every assignment to the input variables x,y,z,
one and only one variable in the objective function above is
set to one picking the leakage power for that input
assignment.
   The above formulation works for all AOI gates. However,
in case of two-input gates it is not as compact as the special
formulation for two-input NAND gates. For an arbitrary
AOI gate consisting of k inputs and r cubes, the formulation
described in this section introduces 2k + r  new variables,
O(2k + r) constraints and 2k additional terms to the
objective function.
   For every input combination, exactly one aoi variable is
set to 1 and the objective function evaluates to the leakage
power associated with that variable.  This ILP certainly
computes the vector causing minimum leakage when it is
solved exactly. But the linear relaxation of this formulation
always computes a trivial lower bound on the leakage
power dissipated by the circuit – namely, the sum of the
minimum leakage powers of the gates in the circuit
provided all gates in the circuit have two or more inputs.

Theorem 1: The optimum solution of the linear relaxation
of the above ILP is always equal to the sum of the
minimum leakage powers of the gates in the circuit.

Proof: Consider any constraint in the ILP formulation
containing only non-aoi variables. It is of the form :

ΣCi  – Σ Di  ≥ 1 – N (10)

 which represents the logical constraint C1 ∨ C2 ∨ …CM ∨
~D1 ∨  ~D2 ∨ …~DN . Here M is the number of positive
variables  in the logical constraint and N is the number of



negated variables. Clearly setting all the variables Ci as well
as all the variables Di to 0.5 satisfies the above inequali ty.
Also consider any inequali ty containing an aoi variable, say
aoi_p_q (corresponding to the qth input combination of the
pth gate). If the gate in question has n inputs then any
inequality containing aoi_p_q either has two variables or
n+1 variables. A two-variable inequali ty containing
aoi_p_q is of the form –v – aoi_p_q ≥ -1 or of the form v –
aoi_p_q ≥ 0, where v is an input of the pth gate. Since v is
set to 0.5, we have in either case, aoi_p_q ≤ 0.5. The
inequality of n+1 variables in which aoi_p_q appears reads
as  ΣCi – Σ Di + aoi_p_q  ≥ 1 – N which represents the
logical constraint C1 ∨ C2 ∨ …CM ∨ ~D1 ∨  ~D2 ∨ …~DN ∨
aoi_p_q. Setting all the Ci and Di to 0.5 this inequali ty
becomes

aoi_p_q  ≥  1 –  0.5*(M + N)               (11)

where M + N = n, the number of inputs to the gate. This
means that as long as we have only gates with two inputs or
more in the circuit, this inequality is the same as aoi_p_q ≥
0.
   Thus setting all circuit variables to 0.5 satisfies all the
Boolean constraints and imposes constraints of the form 0 ≤
aoi_p_q ≤ 0.5 on the aoi variables. Assuming that P0 is the
minimum leakage power for the gate, we can set aoi_p_0 =
0.5, aoi_p_1 = (0.5*P0)/ (P1) and the other variables
aoi_p_2 … aoi_p_n to 0. Then the objective vector
evaluates to P0, for the gate p. The same argument can be
extended to every gate in the circuit. Thus the optimum of
the LP is the sum of the minimum leakage powers of all the
gates in the circuit. END

Formulation 2:

   We need to come up with an alternative formulation,
which does not always compute as its minimum the trivial
lower bound as in Formulation 1. It turns out that the
formulation below works well i n practice.
   As in formulation 1 we create a variable for each cube
and introduce constraints relating the variable to the
elements of the cube. Thus for the gate f : ~(x.y + z) we
have the following constraints:

cube_1 ⇒ x
               cube_1 ⇒ y
               (x) ∧(y) ⇒ cube_1 (12)

   In terms of linear constraints we have,

−cube_1 + x  ≥ 0
−cube_1 + y  ≥ 0
−x  − y + cube_1 ≥  -1 (13)

where x, y are required to be 0-1 variables. Having
established the relationship between cube_1 and xy, we
have f : ~(cube_1 + z). We must now introduce constraints
to establish the relationship between f and the variables
cube_1 and z. Clearly the following constraints perform this
role:

cube_1 ⇒  ~f
z ⇒ ~f

              (~cube_1)∧(~z) ⇒ f                                       (14)

   In terms of linear constraints we have

− cube_1 − f  ≥  −1
− z − f  ≥  −1
cube_1 + z + f  ≥ 1 (15)

   The difference between formulations 1 and 2 arise in the
way we create aoi-variables and the objective vector. For a
3-input gate the objective vector reads as:

    min: P0 x’y’z’ + P1 x’y’z + P2 x’yz’ + P3 x’yz + P4 xy’z’
+ P5 xy’z + P6 xyz’ + P7 xyz

   Since x’ = (1 – x), y’ = (1 – y) and z’ = (1 – z ) we can
expand the above to get:

min: (-P0 + P4) x + (-P0 + P2) y + (-P0 + P1) z + (P0 – P2 – P4

+ P6) xy + (P0 – P2 + P3 – P1) yz + (P0 –P1 –P4 + P5) xz + (-
P0  + P1 + P2 – P3 + P4 – P5 – P6 + P7) xyz + P0

   We introduce variables for each of the terms in the above
expansion, although we could skip the first three linear
terms, namely x, y and z. Thus we have

           aoi_1 = x
           aoi_2 = y
           aoi_3 = xy
           aoi_4 = z
           aoi_5 = xz
           aoi_6 = yz
           aoi_7 = xyz (16)

   We also introduce constraints to describe the relationship
between the aoi variables and the input variables x, y and z
in the same manner as in formulation 1.  Unlike in
formulation 1, in this case the minimum computed by the
linear relaxation is not necessarily trivial. Computational
experience shows that it always performs better than
formulation 1. In fact we can show an interesting property
of this relaxation for circuits consisting only of 2-input
NAND gates and INVERTERS.

 Theorem 2: If for any circuit consisting of 2-input NAND
gates and INVERTERS, the LP relaxation returns a



fractional solution then the leakage power corresponding to
that solution is definitely greater than the sum of the
minimum leakage powers of all the gates.

Proof:  The objective vector for a 2-input NAND gate reads
as P0 + (-P0 + P1)a + (-P0 + P2)b + (P0 + P3 – P1 – P2)ab. In
formulation 2 we replace ab by the variable aoi_3 which is
related to the variables a and b as

a – aoi_3 ≥ 0
b – aoi_3 ≥ 0
-a – b + aoi_3 ≥ -1 (17)

   The first two inequali ties above merely state that aoi_3 ≤
min(a,b). Without loss of generality assume that  a > b.
Then aoi_3 ≤ b. For a 2-input NAND gate P0 is the
minimum leakage value and P3 is the maximum leakage
value. Depending on the technology the coefficient of ab in
the objective vector could be positive or negative. In case it
is positive it is easy to see that the objective vector for any
fractional solution is greater than P0. In case it is negative
then we have E = P0 + (-P0 + P1)a + (-P0 + P2)b + (P0 + P3 –
P1 – P2) aoi_3 >  P0 + (-P0 + P1)b + (-P0 + P2)b + (P0 + P3 –
P1 – P2)b.

E > P0 + ( P3 – P0)b (18)

   If b > 0 then the objective vector is greater than P0. For an
inverter the objective vector E > P0 + (P1 – P0)a, where a is
the input of the inverter. Thus if the optimum solution of
the linear relaxation is fractional then we have a non-trivial
lower bound. END
   The significance of the above theorem lies in the
observation that solving the linear relaxation always
benefits us. If the solution to the LP is fractional then we
have a non-trivial lower bound that tells us something about
the minimum leakage power dissipated by the circuit, and if
the solution is non-fractional (or integral) then we have
actually obtained a valid leakage vector of optimal cost.

3. AOI gates vs 2-input gates

   It is not diff icult to argue that the relative ease of the ILP
formulation for 2-input gates (in terms of number of
variables needed) comes at a certain price. In general, if
minimizing leakage power is the criterion then 2-input
gates are a poor choice for synthesis. This is because for a
2-input NAND gate (or an inverter) the ratio of maximum
leakage power to minimum leakage power is usually no
greater than 3. The maximum leakage power case occurs
when both inputs to a NAND gate are high corresponding
to both PMOS transistors in the pull-up network being in
the OFF state. The minimum leakage power occurs when
both inputs to the NAND gate are low corresponding to the
two NMOS transistors in series in the pull-down network

being in the OFF state. In case of an arbitrary AOI gate
consisting of more than 3 NMOS transistors in series and
more than 3 PMOS transistors in parallel, the ratio of
maximum to minimum leakage grows larger. Thus the
easier formulation of the ILP for 2-input gates translates
into a less interesting search space while the harder ILP
formulation for arbitrary AOI gates translates into a more
interesting search space as the gains of leakage power
minimization are greater in this case.

4. Computational Details

   We use Formulation 2 for our experiments with circuits
consisting of AOI-gates. Ideally one would solve the ILP
formulation using a branch and bound procedure. While the
special formulation for 2-input gates can be solved exactly
using a branch and bound procedure for most of the
standard benchmark circuits, branch and bound quickly
becomes infeasible for the ILPs modeling arbitrary AOI
gates. Hence we resort to an alternate approach that shows
considerable promise.
    It is known that for any 0-1 integer linear program,
relaxing the restriction on the binary variables and letting
them take any value between 0 and 1 produces a linear
program, which is much easier to solve. Significantly for
us, the optimum to the linear program is a lower bound on
the sought after optimum to the ILP. However it could be a
lower bound of poor quali ty in some cases and of very good
quali ty in other cases. Generally speaking, to get good tight
lower bounds, we must closely approximate the convex hull
of feasible solutions. This is done by adding as many
constraints as possible to the original ILP so that the
resulting LP continues to contain all feasible solutions of
the ILP and thus provides a lower bound to the ILP.  In
practice, however, one would not need to add too many
constraints.
   We now focus on a technique to obtain an actual
assignment to the primary input variables so as to cause a
leakage power dissipation that compares well with the
optimum to the linear relaxation.  This is done by  rounding
the value of each primary input variable computed by the
LP to 0 or 1. If the value of a given primary input variable
is p, 0 ≤ p ≤ 1, we round the variable to 1 with probabilit y
p, and round it to 0 with probabili ty (1 – p). Randomized
rounding [8], as this technique is called, works reasonably
well in other settings such as computing the maximum
number of satisfiable clauses in a Boolean formula,
computing the vertex cover of a graph of least weight and
so on. In our case it works reasonably well . On most
benchmark circuits, it provides us a vector that is within 5%
of the true optimum.  It needs to be emphasized here that
the optimum computed by the linear relaxation is a leakage
power value. It provides us with a good idea of the
minimum leakage power dissipated by the circuit in
question.  Typicall y solving the linear relaxation is much



easier than solving the corresponding ILP. Therefore, for
many circuits, we do not need to expend a lot of
computational effort to ascertain the minimum leakage
power dissipation.

5. Experimental Results

   In Table 1 we give experimental results for benchmark
circuits consisting of AOI gates. We use lp_solve, a mixed
integer linear programming solver written by Michel
Berkelaar [2] on the linear relaxations of the integer
programming formulations for each circuit (using
formulation 2).  The optimum solution to the linear
relaxation provides a lower bound on the optimum of the
ILP. Column 3 in Table 1 gives us the time taken to
generate the best leakage vector (i.e. of minimum leakage)
in 100 iterations. As explained above each leakage vector is
obtained by performing a randomized rounding operation
on the solution vector for the linear relaxation. In column 5
we compute the error between the leakage power of the best
vector that is computed after randomized rounding and the
lower bound provided by the linear relaxation using the
formula:

Error % = ((estimated minimum leakage after randomized
rounding) – (LP_optimum))/(LP_optimum) * 100

   It should be clear that the error figures in column 5 are an
upper bound on the true error, since

 LP_optimum ≤ true minimum leakage power.

  This makes the small size of the error figures in column 5
of the table all the more remarkable. In most cases we are
able to approximate the true minimum leakage power
within the order of a few percent. For some circuits like i4,
i6, i7 and C499, we are actually able to get an integer
solution to the linear relaxation. So for these circuits, no
time is expended in computing the best vector. Also the fact
that integer solutions are obtained by solving the linear
relaxation is a good statement on the tightness of the
relaxation. For examples larger than those reported in Table
1, lp_solve reports numerical problems in some cases and
gives exorbitant run-times in others. This might also be an
indication of numerical difficulties in solving the linear
program, which can just be due to lp_solve. Therefore a
commercial solver might be able to deal with larger
examples than lp_solve. This is a subject for further
investigation.

6. Conclusions

   We addressed the problem of finding an input vector to
apply to a circuit consisting of and-or-invert (AOI) gates
operating in stand-by mode so that the leakage power of the

circuit is minimized. We formulated the problem as an
integer linear program (ILP) in two different ways. Our
solution scheme consists of relaxing the ILP formulation to
obtain a lower bound on the minimum leakage power that is
dissipated by the circuit. The linear relaxation of the first
ILP formulation is shown theoretically to be of poor
quali ty, while the relaxation to the second ILP formulation
is shown to work much better in practice. To obtain a good
input vector to apply to the circuit, we use a technique
known as randomized rounding to round the solution of the
linear relaxation [8]. This technique is seen to work quite
well in providing an input vector of good quali ty. Further
the solution technique developed here might also be of use
in other ILP formulations of problems relating to digital
circuits, for example the Boolean Constrained Optimization
Problem (BCOP) of Chen and Keutzer [4].

Table 1: Estimates of leakage power values for
benchmark circuits and their quality.

Circuit
# of
inputs

Run
Time
For
Best
Vector
(s)

Run
Time
For
LP
(s)

%
error

i2 201 77 12 0.23

i4 192      0 13 0

i5 133 55 29 3.31

i6 138 0 600 0

i7 199 0 357 0

i10 257 32400 25200 7.12

C499 41 0 25 0

C880 60 45.36 1852 4.22

C1355 41 105 65 4.16

C1908 33 410 869 7.61

C2670 233 802 480 6.88

References

[1] M.R.C.M. Berkelaar and J.A.G. Jess, “Technology Mapping
for Standard-Cell Generators” , Proceedings, IEEE International
Conference on Computer-Aided Design, 1988, pp 470-473.

[2] M.R.C.M. Berkelaar, a public domain mixed integer linear
programming solver available at
ftp://ftp.ics.ele.tue.nl/pub/lp_solve/.

[3] S. Bobba and I. Hajj, “Maximum leakage power estimation for
CMOS circuits” , Proceedings, IEEE Alessandro Volta Memorial
Workshop on Low-Power Design, 1999, pp 116-124.



[4] P. Chen and K. Keutzer, “Towards True Crosstalk Analysis” ,
Proceedings, IEEE International Conference on Computer-Aided
Design 1999, pp 132-137.

[5] Z. Chen, L. Wei, M.Johnson, and K. Roy, “Estimation of
Standby Leakage Power in CMOS Circuits Considering Accurate
Modeling of Transistor Stacks, Proceedings, International
Symposium on Low-Power Electronics and Design, 1998, pp 239-
244.

[6] J.P. Halter and F. Najm, “A gate-level leakage power
reduction method for ultra-low-power CMOS circuits” ,
Proceedings,  IEEE Customs Integrated Circuits Conference,
1997, pp 475-478.

[7] T.J. Larrabee, “Test Pattern generation using Boolean
Satisfiabilit y” ,  IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 11, No. 1, January 1992, pp
4-15.

[8] P.Raghavan and C.D.Thompson, “Randomized rounding: a
technique for provably good algorithms and algorithmic proofs” ,
Combinatorica ,7:4, 1987, pp 365-374.

[9] H. Veendrick, Deep Submicron CMOS ICs, Kluwer
Academic, 1998.

[10] Q. Wang and S.B.K. Vrudhula, “ Static Power optimization
of deep submicron CMOS circuits for Dual VT Technology,
Proceedings, IEEE/ACM International Conference on Computer-
Aided Design, 1998, pp 490-496.


	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index


