
EFFICIENT ON-LINE TESTING METHOD
FOR A FLOATING-POINT ADDER

A. Drozd , M. Lobachev
Department of Computer Systems, Odessa State Polytechnic University, Odessa, Ukraine

Drozd@ukr.net, Lobachev@ukr.net

Abstract

In this paper we present a residue method for on-line
testing of the floating-point adder. This circuit contains
arithmetic shifter which executes an abridged operation.
In the method the problem of the abridged operation
checking with the reduced hardware amount is solved.

 1. Introduction

 The addition of numbers is the most spread arithmetic
operation. It is simply executed and checked in fixed-point
circuits. The residue checking is traditionally used [1]. In
this method for number its check code – modulo residue is
generated. The addition of the check codes followed by the
residue calculation defines check code of the sum. The error
indication code of sum is calculated by comparison the sum with
its check code. The process of addition considerably becomes
complicated in floating-point circuits [2]. In addition the
common traits for arithmetic floating-point operations appear:

• The mantissa processing is executed with usage of
multiplication.

• The result of this multiplication contains only n
high bits of 2n-bit product the n-bit multiplicands.

• In combinatorial circuits the multiplication is executed
with abridged computation because of large hardware amount
connected to operand size by the square dependence. The
computation abridgement reduces the hardware amount
almost twice without loss of accuracy.

The floating-point addition contains the multiplication
as arithmetic shift of mantissa. This operation is executed
with the computation abridgement reducing hardware
amount twice in comparison with long shift.

Traditional application of residue checking for on-line
testing of floating-point adder requires restoring the
abridged operation to long shift. The offered method
solves the problem of abridged operation checking with
essential decrease of the hardware amount.

2. Floating-point addition

In this section an addition of floating-point numbers
A=a1⋅2a2 and B=b1⋅2b2 is considered. The result C=A+B is

presented as C=c1⋅2c2. This operation is executed by a
matching of exponents a2 and b2. In the process of
exponent calculation the result order c2 = max (a2, b2) and
numbers da = c2 - a2, db = c2 - b2 are computed.

Then the mantissas a1 and b1 are shifted to down of da

and db positions (one of the numbers da or db is equal to
zero): a1 shift = a1⋅2-da, b1 shift = b1⋅2-db.

The result mantissa is calculated by the formula
c1 = a1 shift + b1 shift.

A floating-point adder executing described operation is
shown in Fig. 1. It consists of the block 1 for the exponent
processing, arithmetic shifters 2 and 3, adder 4.

Figure 1: Floating-point adder

The block 1 calculates the result exponent c2 and the
numbers da, db. The blocks 2 and 3 execute the operations
of an arithmetic shift of da and db positions for mantissa a1

and b1. The block 4 calculates the result mantissa c1.

3. Arithmetic shift of a mantissa

In this section we consider the execution of arithmetic
shift which is the most complex operation executed in the
floating-point adder. The arithmetic shift to down of d
positions for mantissa a{1÷n} is shown in Fig. 2.

Figure 2: Arithmetic shift

1

2

3

a1 shift

b1 shift

c2

c1

b2

a2

a1

b1

da

db 4

a{1} … a{n-d} a{n-d+1} … a{n}
2-1 … 2-n+d 2-n+d-1 … 2-n

a{1} … a{n-d}
2-d-1 … 2-n

a{n-d+1} … a{n}
2-n-1 … 2-n-d

sa … sa

2-1 … 2-d

ashift{1} … ashift{n}
2-1 … 2

-n

1

2

3

The operation consists of three actions:
1) The reduction of the bit weights for the mantissa a

in 2d times.
2) The abridgement of the d low bits of the mantissa a.

These bits compose the code a0=a{n-d+1÷n}.
3) The sign bit padding in the position with bit

weights 2-1÷2-d for complement code of the mantissa a.
Sign bits sa … sa compose the code as.

It defines the arithmetic shift execution by the formula:
a shift = a⋅2-d – a0 + as. (1)

The mantissa arithmetic shift is a multiplication on 2-d

and executed with the computation abridgement on
arithmetic shifter. This circuit is shown in Fig. 3 for n=15.

Figure 3: Arithmetic shifter

The circuit contains n of n-to-1 multiplexers. Each
multiplexer calculates one bit of the shifted mantissa ashift.
This bit is selected from the bits of the mantissa a and sign bit
sa under the control of the code d. The multiplexer hardware
amount q is proportional to the operand size n. The arithmetic
shift hardware amount Qa.shift=nq is proportional to the square
of the operand size n and make main hardware amount
Qadd=2nq of the floating-point adder.

In table 1 is shown the shift matrix which describes
arithmetic shift as the abridged operation.

The row of the shift matrix contain the various cases of
the mantissa bit states after shift of d=0÷n positions (for
n=15). The code d{1÷r} is presented in binary notation for
r=4. The part a0 is not calculated. The first 15 columns of the
shift matrix describe functions executed on the multiplexers
of the arithmetic shifter. The column contains the mantissa
bits selected on the multiplexer output from its information
inputs at appropriated values of the code d.

Table 1: Shift matrix

d a = a{ 1 ÷n }
4 3 2 1 1 2 3 4 … 12 13 14 15

23 22 21 20 2-1 2-2 2-3 2-4 … 2-12 2-13 2-14 2-15

0 0 0 0 1 2 3 4 … 12 13 14 15
0 0 0 1 1 2 3 4 … 12 13 14 15
0 0 1 0 1 2 3 4 … 12 13 14 15
0 0 1 1 1 2 3 4 … 12 13 14 15
0 1 0 0 1 2 3 4 … 12 13 14 15

… … … …
1 1 0 0 1 2 3 4 … 12 13 14 15
1 1 0 1 1 2 3 4 … 12 13 14 15
1 1 1 0 1 2 3 4 … 12 13 14 15
1 1 1 1 1 2 3 4 … 12 13 14 15

a0 1 2 3 4 … 12 13 14 15 16 17 18 19 … 27 28 29 30

ashift 1 2 3 4 … 12 13 14 15 a0

The abridged operation reduces twice the hardware
amount for a shift in comparison with the long shift
computing complete 2n-bit result af=ashift{1÷2n}2-2n.

4. Floating-point adder checking

We consider a modulo 3 residue checking of the adder
in a part of the mantissa processing. The checking of
exponents is not considered because of it is executed with
fixed-point numbers and does not lead to complexities.

The error detection circuit (EDC) is shown in Fig. 4.

Figure 4: The EDC of floating-point adder

It consists of the blocks 1 and 2 for a check of the
shifters, check adder 3 and block 4 for a check of the
mantissa result.

The block 1 compares by modulo 3 mantissa a1 to its
input check code ka1. The result of matching is the error
indication code Ka for the mantissa a1. Besides the block 1
calculates the check code kashift of the shifted mantissa
a1shift. Similarly, the block 2 calculates the code Kb for the
mantissa b1 and code kbshift for the mantissa b1shift.

The block 3 calculates the sum kc1=kashift+kbshift.
The block 4 compares by modulo 3 mantissa c1 to its

input check code kc1. The result of matching is the error
indication code Kc for the mantissa c1.

2

S3
S4

D2

D15

D1

. . .

D0

S1
S2

S3
S4

D1

D15

D0

S1
S2

15

S3
S4

D13

D15
D14

D0

S1
S2

. . .

1. . .

. . .

a{1}

a{2}

a{15}

ashift{1}

ashift{2}

ashift{15}

.

d{4}

d{2}
d{1}

d{3}

sa

kb shift

ka shift

1
Ka

ka1

a1

3
da

2

c1

kb1

b1

db

4 Kc

kc1

Kb

5. Arithmetic shift checking

Traditional design of the block 1 uses the formula (2)
received from (1) replacement of numbers by their
residuals – check codes:

ka shift = ka⋅2-d – ka0 + kas. (2)
The block 1 is shown in Fig. 5 and contains seven units

1÷7.

Figure 5: Block 1 of EDC

The unit 1 computes the check code of mantissa a=a1

by the formula ka’=(a)mod3. The unit 2 compares
calculated ka’and input ka check codes and computes the
code Ka. The unit 3 computes abridged bits a0. The unit 4
calculates the check code kas of the sign sa. The unit 5
computes ka⋅2-d. The unit 6 generates ka0=(a0)mod3. The
unit 7 calculates check code kashift by formula (2).

The unit 3 contains n of n-to-1 multiplexers with the
arithmetic shifter hardware amount Qa.shift and makes
together with it long shifter. Thus, the traditional
application of a residue checking leads to restoring of the
long shift from arithmetic one.

The hardware amount for a check is increased on the
part with the square dependence on the operand size n and
becomes more then the main hardware amount.

Thus, we define a problem of the large hardware
amount for on-line testing of the floating-point adder and
below we offer the approach to its reduction.

6. Simplification of arithmetic shift checker

The main check hardware amount is located in the unit
3. For the simplification of this unit we transform the
formula (1) to formula (3).

a shift = (a – a0⋅2d + as⋅2d) 2-d. (3)
Then instead of the number a0 it is necessary to

compute the number a01=a0⋅2d. The conversion a0 in a01 is
shown in table 2.

The number a01 is calculated on multiplexers with the
functions fi described in columns i=1÷n. The part of
functions depends only on a part of the code d. The
reduction of the multiplexer address size on one bit
simplifies the multiplexer more, than in 2 times.

Table 2: Conversion a0 in a01

d f i, i=1÷n
4 3 2 1 1 2 3 4 … 12 13 14 15

23 22 21 20 2-1 2-2 2-3 2-4 … 2-12 2-13 2-14 2-15

0 0 0 0
0 0 0 1 15 15
0 0 1 0 14 15 14 15
0 0 1 1 13 14 15 13 14 15
0 1 0 0 12 13 14 15 12 13 14 15

… … …
1 1 0 0 4 … 12 13 14 15 4 … 12 13 14 15
1 1 0 1 3 4 … 12 13 14 15 3 4 … 12 13 14 15
1 1 1 0 2 3 4 … 12 13 14 15 2 3 4 … 12 13 14 15
1 1 1 1 1 2 3 4 … 12 13 14 15 1 2 3 4 … 12 13 14 15

a01 = a0⋅2d a0

The next theorem defines the summarized
simplification of the unit 3.

Theorem 1. The function fi does not depend from z low
bits of the code d, where i=n+1-2z(2xz-1), xz=1÷(n+1)/2r,
z=0÷r-1

Proof. The function fi=0 for d=0÷n-i and fi=i for
d=n+1-i÷n. That the function fi did not depend from z low
bits of the code d these bits should be equal to zero for
d=n+1-i. Substituting value i we obtain d=2z(2xz-1), that
is (d)mod2z=0. Q. E. D.

The theorem defines, that half of all functions fi depends
on all r bits of the code d and is calculated on n-to-1
multiplexers with the hardware amount q. The quarter of all
functions fi depends on r-1 high bits of the code d and is
calculated on n/2-to-1 multiplexers with the hardware amount
q/2 e. c. For n=15 eight functions fi with an odd i depend
on four bits d{1÷4}, four functions f2, f6, f10, f14 depend on
three bits d{2÷4}, two functions f4, f8 depend on 2 bits
d{3,4}, one function f8=a{8}∧d{4} depends on a bit d{4}.

The hardware amount Q01 for the computation of the
number a01 is defined as half of all multiplexers by
complexity q, quarter of all multiplexers by complexity
q/2 e. c., that is Q01=n/2⋅q+ n/4⋅q/2+...+ n/2r-1⋅q/2r=2nq/3.

Thus, the hardware amount of the unit 3 is reduced in
σ1=1.5 times.

The formula (3) is transformed in (4):
ka shift = (ka – ka01 + kas1) 2

-d{1}, (4)
where ka01 = (a01)mod3, kas1=(as⋅2d)mod3.

The next simplification of the unit 3 is based on the
transition from the bit weights 2-i of the binary number to the
bit weights 1 or 2 of its check code: (2-i)mod3=1 for odd i
and (2-i)mod3=2 for even i.

In the table 3 the code a02 is received by the replacement
of the bits the number a01. The bit i of the number a01

allocates in column j and row d, if d{u}=1, where
i=n+1-2u(d/2u+1)+j, u=log2j+1, j=1÷2r-1.

The column j describes the function Fj for a bit of the
code a02. If d{u}=0, then Fj=0.

Kaka

d

2
1a ka’

3

4sa

5 7
a0 ka0

kas

kashift

6

ka⋅2-d

Table 3: Bit functions of the code a02

d F j , j=1÷2 r

4 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

23 22 21 20 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

0 0 0 0
0 0 0 1 15
0 0 1 0 14 15
0 0 1 1 13 14 15
0 1 0 0 12 13 14 15
0 1 0 1 11 12 13 14 15
0 1 1 0 10 11 12 13 14 15
0 1 1 1 9 10 11 12 13 14 15
1 0 0 0 8 9 10 11 12 13 14 15
1 0 0 1 7 8 9 10 11 12 13 14 15
1 0 1 0 6 7 8 9 10 11 12 13 14 15
1 0 1 1 5 6 7 8 9 10 11 12 13 14 15
1 1 0 0 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 1 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a02

Theorem 2. The numbers a01 and a02 have equal check
codes for odd n and inverse check codes for even n that is
ka01=(-1)n+1ka02.

Proof. We consider the difference i-j=n+1-2u(d/2u+1),
received from (5). It is an even number for odd n. This implies,
that bit i of the number a01 moves from column i to column j
of the code a02 without change of its modulo 3 weight, that is
(2-i)mod3=(2-j)mod3 and ka01=ka02. For even n the difference
i-j is an odd number and modulo 3 weight of the bit changes to
inverse, that is (2-i)mod3=-(2-j)mod3 and ka01=-ka02. Q. E. D.

From the theorem the conversion (4) in (6) follows.
ka shift = (ka -(-1)n+1ka02 + kas⋅2d{1}) 2-d{1}, (6)

where ka02 = (a02)mod3.
Theorem 3. The function Fj does not depend from u-1

low bits of the code d.
Proof. The function Fj=0 for d{u}=0 and Fj=i for

d{u}=1. Therefore, at change of bits d{u-1}, d{u-2}, …,
d{1} the functions Fj accept constant values 0 or i and
consequently does not depend on bits d{1÷u-1}. Q. E. D.

From the theorem follows, that one function F1 depends
on all r of bits of the code d, two functions F2, F3 depend on
r-1 high bits of the code d e. c. For n=15 the function F1

depends on four bits d{1÷4}, 2 functions F2, F3 depend on
three bits d{2÷4}, four functions F4÷F7 depend on two bits
d{3,4}, eight functions F4÷F7 depend on one bit d{4}.

The functions Fj are calculated on 2r-u-to-1 multiplexers
with enable. The enable input is connected with the bit d{u}.
Thus, there are used a 2r-u-1-to-1 multiplexer with the
hardware amount q/2, two 2r-u-2-to-1 multiplexers with the
hardware amount q/4 e. c. The total hardware amount for
computation of all the functions Fj calculates as
Q02=1⋅q/2+2⋅q/4+...+2r-1⋅q/2r=rq/2.

The unit 3 is simplified in σ02=2n/r times. For n=15 σ02=7.5.

The next step on simplification of the EDC is based on
application of the check codes kaV of the operand parts aV

as has been shown for abridged multiplication in [3].
These codes are calculated in process of computation the
code ka in the unit 3 by the next formulas:

ka4÷7{1, 2}=(a{4÷7})mod3;
ka12÷15{1, 2}=(a{12÷15})mod3;
ka8÷15{1,2}=(a{8÷11}+ka12÷15{1,2})mod3;
ka1÷15{1,2}=(a{1÷3}+ka4÷7{1,2}+ka8÷15{1,2})mod3,

where a{4÷7}, a{12÷15}, a{8÷15} – the parts aV of the
code ka=ka1÷15{1,2}.

We transform table 4 in table 5 by the change the parts aV

for their check codes kaV. This transformation defines the
code a03 with check code ka03=ka02, where ka03=(a03)mod3.
The bits of the code a03{1÷2r-1} are calculated by functions
Vl, l=1÷2r-1 (table 5). The amount of functions Vl is reduced
in n/(2r-1) times. The hardware amount for calculation of the
code a03 is equal Q03=1⋅q/2+2⋅q/4+...+2⋅q/2r=3q/2.

Thus, the unit 3 is simplified in σ03=2n/3 times. For
n=15 σ03=10.

Table 5: Bit functions Vl of code a03

d Vl, l=1÷2r-1
4 3 2 1 1 2 3 4 5 6 7

23 22 21 20 1 2 1 2 1 2 1

0 0 0 0
0 0 0 1 15
0 0 1 0 14 15
0 0 1 1 13 14 15
0 1 0 0 ka12÷15{2} ka12÷15{1}
0 1 0 1 11 ka12÷15{2} ka12÷15{1}
0 1 1 0 10 11 ka12÷15{2} ka12÷15{1}
0 1 1 1 9 10 11 ka12÷15{2} ka12÷15{1}
1 0 0 0 ka8÷15{2} ka8÷15{1}
1 0 0 1 7 ka8÷15{2} ka8÷15{1}
1 0 1 0 6 7 ka8÷15{2} ka8÷15{1}
1 0 1 1 5 6 7 ka8÷15{2} ka8÷15{1}
1 1 0 0 ka4÷7{2} ka4÷7{1} ka8÷15{2} ka8÷15{1}
1 1 0 1 3 ka4÷7{2} ka4÷7{1} ka8÷15{2} ka8÷15{1}
1 1 1 0 2 3 ka4÷7{2} ka4÷7{1} ka8÷15{2} ka8÷15{1}
1 1 1 1 1 2 3 ka4÷7{2} ka4÷7{1} ka8÷15{2} ka8÷15{1}

ka03

The simplified block 1 is shown in Fig. 6.
It consists of the same units 1÷7 as in the block shown in

Fig. 5, but with such differences:
• The unit 1 calculates also codes kaV without

additional hardware amount and delay.
• The unit 3 is simplified multiply.
• The unit 6 is simplified in n/(2r-1) times as size of

its input code is reduced from n up to (2r-1) bits.
• The unit 1 works concurrently with the block for

the exponent processing before calculation of the code d,
that essentially raises speed of the EDC.

Figure 6: Simplified block 1 of EDC

The units 1 and 2 designed on modulo 3 adders 1÷8
with fast pyramid structure are shown in Fig. 7.

Figure 7: Units 1 and 2 of the block 1

The units 3 and 4 are shown in Fig. 8. The unit 3
calculates the code ka03 on multiplexers 1÷7 with enable.
The unit 4 calculates the code kas=sa∧d{1} on gate 8 AND.

Figure 8: Units 3 and 4 of the block 1

The unit 5 calculates the code kashift{1,2}=kad{1,2}⊕d{1}
on two gates XOR.

The units 6 and 7 calculate the code kad=ka–ka03+kas1

and are designed on modulo 3 adders as a uniform circuit
with pyramidal structure similarly to a unit 1.

7. Result

We have designed the floating-point adder and its EDC
on FPGA Xilinx ÕÑ4000 for n=15. The floating-point adder,
the EDC with the traditional and offered structure are
executed on 151, 183 and 41 Configurable Logic Blocks.
Thus, the hardware amount for a check is reduced in 4.5
times (from 183/151=121% to 41/151=27%). The delay for
computation the check code kashift is reduced in 1.9 times
(from 28.9 ns to 15.0 ns). The simplification of the EDC has
been achieved without reduction of detection capability.

8. Conclusion

We have presented a new residue checking method for
on-line testing of floating-point adder. In the method the
problem of the large hardware amount for a check of the
abridged operation (arithmetic shift) executed in floating-
point adder has been solved. This hardware amount was
reduced from square dependence on the operand size to
linear one. The significant simplification of error detection
circuit was valid by its design on FPGA Xilinx. The
solutions based on this method have been found industrial
application in digital signal processing system for fast
Fourier transform execution [4, 5].

9. References

[1] Sparmann U., Reddy S., “On the Effectiveness of
Residue Code Checking For Parallel Two’s Complement
Multipliers”, Proc. 24th Fault Tolerant Computing Symposium,
Austin Texas, June 1994.

[2] Drozd A. V., Lobachev M. V., Hassonah W.
“Hardware Check of Arithmetic Devices with Abridged
Execution of Operations”, Proc. the European Design & Test
Conference (ED & TC 96), Paris, France, March 11 – 14, 1996. –
p. 611.

[3] Drozd A.V., “Control in Modulus of the Single-Cycle
Multiplier with Abridged Mode of Operation”, Engineering
Simulation. Vol. 16. – 1999. – pp. 377 – 385.

[4] Drozd A.V., Polin E. L., at al., “Circuit for information
shift”, SU 1277116, G 06 F 11/10, 1986.

[5] Drozd A.V., Polin E. L., at al., “Circuit for floating-
point operand addition with checking”, SU 1310826, G 06 F
11/10, 1987.

a{14}
a{15}

1
a{12}
a{13}

2a{10}
a{11}

a{8}
a{9}

5

a{6}
a{7}

3
a{4}
a{5}

4a{2}
a{3}

sa

a{1}

6
7

ka{2}
ka{1}

8

ka12÷15{1}
ka12÷15{2}

ka8÷15{1}
ka8÷15{2}

ka4÷7{1}
ka4÷7{2}

ka1÷15{1}
ka1÷15{1}

Ka

1

2

kashift

Ka
ka

2
1a ka

3
d

4
d{1}

7

sa

a03

5
kad

kas1

kaV
6 ka03

AND

D1

D3
2

D0

D2

E
S1
S2

D5

D7

1D4

D6

S2
S3

D1

D3

D0

D2

E
S1

D1 5D0

E
S2

D1

D3
3

D0

D2

E
S1
S2

D1 4D0

E
S2

ka12÷15{2}
ka4÷7{2}

ka12÷15{1}
ka4÷7{1}

AND

ka8÷15{2}

ka8÷15{1}

AND
sa

ka0 3{7}

ka0 3{6}

ka0 3{5}

ka0 3{2}

ka0 3{3}

ka0 3{4}

ka0 3{1}

V4

V5

V2

V1

V3

V8

V6

kas1

3

4

a{13}
a{15}

a{9}
a{11}

a{5}
a{7}

a{1}
a{3}

d{3}
d{4}

d{1}
d{2}

a{10}
a{14}

a{2}
a{6}

6

7

8

V7

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

