
System Safety through Automatic High-level Code Transformations: an
Experimental Evaluation

M. Rebaudengo, M. Sonza Reorda, M.Violante

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy
http://www.cad.polito.it/

P. Cheynet, B. Nicolescu, R. Velazco

Institut National Polytechnique Grenoble,
TIMA Laboratory
Grenoble, France
http://tima.imag.fr

Abstract:

This paper deals with a software modification strategy
allowing the on-line detection of transient errors. Being
based on a set of rules for introducing redundancy in the
high-level code, the method can be completely auto-
mated, and is particularly suited for low-cost safety-
critical microprocessor-based applications. Experimental
results from software and hardware fault injection cam-
paigns are presented and discussed, demonstrating the
effectiveness of the approach in terms of fault detection
capabilities.

1. Introduction

The increasing popularity of low-cost safety-critical
computer-based applications requires the availability of
new methods for designing dependable systems. In
particular, in the areas where computer-based dependable
systems are currently being introduced, the cost (and
hence the design and development time) is often a major
concern, and the adoption of commercial hardware (e.g.,
based on Commercial Off-The-Shelf or COTS products)
is a common practice. As a result, for this class of
applications software fault tolerance is an extremely
attractive solution, since it allows the implementation of
dependable systems without incurring the high costs
coming from designing custom hardware or using
hardware redundancy. On the other hand, relying on
software techniques for obtaining dependability often
means accepting some overhead in terms of increased
code size and reduced performance. However, in many
applications, memory and performance constraints are
relatively loose, and the idea of trading off reliability and
speed is often easily acceptable. Finally, when building a
dependable system, designers need simple and reliable
mechanisms for assessing whether the whole system has
the required dependability properties, and any solution
able to provide by construction the desired fault detection
rate is warmly welcome.

Several approaches have been proposed in the past to
achieve fault tolerance (or just safety) only by modifying
the software. The proposed methods can mainly be

categorized in two groups: those proposing the
replication of the program execution and the check of the
results (e.g., Recovery Blocks [1] and N-Version
Programming [2]) and those based on introducing some
control code into the program (e.g., Algorithm Based
Fault Tolerance (ABFT) [3], Code Flow Checking [4],
Signature Monitoring [5], Error Detection and Correction
code [6]). None of the mentioned approaches is at the
same time general (in the sense that it can be used for
any fault type and any application, no matter the
algorithm it implements) and automatic (in the sense that
it does not rely on the programmer skill for its effective
implementation). Therefore, none of the above methods
is a complete and suitable for the implementation of low-
cost safety-critical microprocessor-based systems.

To face the gap between the available methods and the
industry requirements, we propose an approach, which is
based on introducing data and code redundancy
according to a set of transformations performed on high-
level code for detecting errors affecting both data and
code. The main novelty of this strategy lies in the fact
that it is based on a set of transformation rules, so their
implementation on any high-level code can be
completely automated. This frees the programmer from
the burden of guaranteeing the application robustness
against errors and drastically reduces the costs for its
implementation.

The approach presented in this paper is intended to
face the consequences of errors originating from transient
faults, in particular those caused by charged particles
hitting the circuit [7]. This kind of fault is increasingly
likely to occur in any integrated device due to the
continuous improvements in the VLSI technology, which
reduces the size of the capacitance storing information
and increases the operating frequency of circuits. The
result is a significant increase in the chance that particles
hitting the circuit can introduce misbehavior.

Being based on modifying only the high-level code,
the method is completely independent on the underlying
hardware, it does not require any hardware duplication or
modification (apart from some overhead in the required
memory), and it possibly complements other already

existing error detection mechanisms. The method extends
the one described in [8], which follows a similar
approach, but only addresses faults in the data.

To provide the reader with experimental evidence of
the effectiveness of the method, we developed a
prototypical tool implementing the transformation rules
and applied it to some simple benchmark application
programs. We then performed a set of fault injection
experiments to quantitatively evaluate the fault detection
capabilities of the modified code. The experiments have
been performed by means of a software fault injection
environment; further experiments are currently being
performed, using a hardware fault injection environment
allowing to irradiate the memory chips and therefore to
obtain results very similar to those which can be
observed (on a much longer time scale) in practice. For
the purpose of the experiments we performed, we
focused on a particular error type, called upset or bit-flip,
which results in the modification of the content of a
memory cell within a circuit. This perturbation is the
result of the ionization provoked either by incident
charged particles or by daughter particles created from
the interaction of energetic particles (i.e., neutrons) and
atoms present in the silicon substrate. However, the
method we propose is able to detect a much wider set of
transient errors, e.g., those affecting combinational
blocks of logic, or affecting multiple memory bits at the
same time. The experimental results we gathered show
that the method is able to detect any error affecting the
data, while the coverage is over 99% for faults affecting
the code.

The paper is organized as follows. Section 2 outlines
the transformation rules, and provides some examples of
modified code. Section 3 describes the fault injection
environment we exploited for gathering the experimental
results, which are presented in Section 4. Section 5 draws
some conclusions.

2. Transformation Rules

In this section we describe the basic ideas behind a set
of transformation rules to be applied to the high-level
code. These transformations introduce data and code
redundancy, which allow the resulting program to detect
possible errors affecting storage elements containing data
or code. To preserve the redundancy introduced in the
hardened program, compiler optimization flags should be
disabled.

The transformation rules described in the following
were first introduced in [9], where preliminary results
obtained through fault injection experiments were
presented. All the examples presented in the following
are made on C programs, although rule principles are not
limited to this programming language and can be easily
extended to other languages.

2.1. Transformations for faults affecting data

The idea behind this class of rules is to duplicate

every variable in the program and to check for the
consistency of the two copies after each read operation
on the variable. Every fault occurring during program
execution can be detected as soon as the variable
becomes the source operand for an instruction. Errors
affecting variables after the last usage are not detected.

The reader should note that the above class of
transformation rules is able to detect any error affecting
the circuit’s memory elements, no matter the number of
affected bits and the real location of the storage element
(e.g., processor register, cache element, memory cell).

2.2. Transformations for faults affecting code

To detect faults affecting the code, we exploit two
ideas. The first is to execute any operation twice, and
then verify the coherency of the resulting execution flow.
Since most operations are already duplicated due to the
application of the rules introduced in the previous sub-
section, this idea mainly requires the duplication of the
jump instructions. In the case of conditional statements,
this can be accomplished by repeating twice the
evaluation of the condition.

The second principle aims at detecting those faults
modifying the code so that incorrect jumps are executed
(either by transforming an instruction into a jump
instruction, or by modifying the operand of an existing
jump instruction), resulting in a faulty execution flow.
This is obtained by associating an identifier to each basic
block in the code. An additional instruction is added at
the beginning of each block of instructions. The added
instruction writes the identifier associated to the block in
an ad hoc variable, whose value is then checked for
consistency at the end of the block.

3. Efficiency of the Approach

In this section we outline the environment that we set
up to evaluate the effectiveness of the proposed software
hardening method.

3.1. The transformation tool

We built a prototypical tool able to automatically
implement the above transformation rules. The tool can
potentially work on any program in C language, although
some limitations of the current version can prevent its
application when some unsupported features are used.
The tool has been developed by means of the Bison and
Flex freeware compiler construction tools developed in
the frame of the GNU Project [10] and comprises about
4,800 lines of C code.

3.2. The software fault injection environment

In order to assess the effectiveness of the proposed
transformation rules, we resorted to a set of fault
injection campaigns. They have been performed on a
prototypical board (in the following Transputer board)
which has been originally designed for carrying out the

injection of upset-like transient faults. This board,
developed at TIMA laboratory within the frame of the
Microelectronics and Photonics TestBed international
satellite project [11], was initially designed to provide
evidence of the intrinsic robust tolerance of digital
artificial neural networks. The satellite carrying MPTB
boards was launched at the end of 1998 and is still
operational.

The Transputer board mainly includes a T225
transputer (a RISC microprocessor with parallel
capabilities); a 4 Kbyte PROM, containing the executable
code of the system code; a 32 Kbyte SRAM, used for the
storage of T225 program workspaces, programs and data;
an anti-latchup circuit, for the detection of abnormal
power consumption situations and the activation of the
corresponding recovering mechanisms; a watch-dog
system, refreshed every 1.5 seconds by the T225, which
has been included in order to avoid system crashes due to
events arising on critical targets such as the T225 internal
memory cells (registers or flip-flops) or the external
SRAM memory areas associated to the program modules
(process workspaces).

The board can easily support fault injection
experiments. For the purpose of our experiments, faults
are randomly injected in the proper locations during the
program execution. To be consistent with the
characteristics of transient errors, which occur in actual
applications executing in a radiation environment, we
performed the injection of single faults on randomly
selected bits belonging to the code and data area. The
injection mechanism is implemented by a dedicated
process, which runs in parallel with the tested program.
The two programs (the injection program and the
program under test) are loaded in the prototype board
memory and launched simultaneously. The injection
program waits for a random duration, then chooses a
random address and a random bit in the memory area
used by the program under test and inverts its value.
After each injection, the behavior of the program is
monitored, the fault is classified, and the results are sent
to the PC acting as a host system.

The adopted technique allows performing injection
experiments with a low degree of intrusiveness. It adds
about 400 bytes of additional code (for injection
purposes) to the program under test. Moreover, thanks to
the T225 features, the time spent during context
switching between the injection and the application
process (and therefore the time overhead for injecting
faults) is negligible.

3.3. The radiation environment

To get more confidence on the significance of the re-
sults gathered through software fault injection experi-
ments, we performed preliminary radiation testing with
equipment based on a Californium fission decay source
(available at ONERA/DESP, Toulouse, France). The
same Transputer board described above was used during

this set of experiments. It is important to note that during
these tests, only the Transputer board program memory
was exposed to the effects of the particles issued from the
Cf252 fission.

4. Experimental results

The experiments we performed are based on carrying
out extensive fault injection sessions on three benchmark
programs:
• Matrix: multiplication of two 10x10 matrices

composed of integer values
• BubbleSort: an implementation of the bubble sort

algorithm, run on a vector of 10 integer elements
• QuickSort: a recursive implementation of the quick

sort algorithm, run on a vector of 10 integer elements.
For each program we performed the following steps:

• Generation of the modified version by exploiting the
transformation tool described in Section 2.

• Calculation of the overhead in terms of code size
increase with respect to the original version. The
resulting code size was around 4 times the original
code for the 3 benchmark programs.

• Evaluation of the overhead in terms of slow-down
with respect to the original version by running the
original and modified codes with the same input
values on the Transputer board. The figures we
measured range from 2.1 to 2.5 times for the 3
benchmark programs.

• Realization of two fault injection sessions (performed
through software fault injection and irradiation) for
each benchmark: one on the original version of the
program, the other on the modified one. Each fault
injection session is split in two experiments. During
the first one, faults are injected in the memory area
containing the code; during the other, faults are
injected in the memory area containing the program
data. When considering the software fault injection
experiments, the number of faults injected in each
session was 1,000 for the original version of the
programs. In the modified version we injected a
number of faults obtained by multiplying 1,000 by the
memory size increase factor, thus accounting for the
higher probability that a fault affects the memory.
Faults were classified in the following categories ac-

cording to their effects on the program:
• Effect-less: The injected fault does not affect the

program behavior.
• Software detected: The rules presented in Section 2

detect the injected fault.
• Hardware detected: The fault triggers some hardware

mechanism (e.g., illegal instruction exception, watch
dog).

• No answer: The program under test triggers some
time-out condition, e.g., it entered an endless loop.

• Wrong answer: The fault was not detected in any way
and the result is different from the expected one.

Version #Injected Faults Effect-less SW detected HW detected No answer Wrong answer
Matrix Original 1,000 100 0 412 96 392

Modified 4,488 1,856 2,312 256 52 12
BubbleSort Original 1,000 108 0 231 163 498

Modified 4,530 1,498 2,692 284 54 2
QuickSort Original 1,000 112 0 357 56 475

Modified 4,956 1,624 2,926 350 44 12
Table 1: Faults are injected in the memory area containing program code.

Version #Injected Faults Effect-less SW detected HW detected No answer Wrong answer
Matrix Original 1,000 199 0 0 0 801

Modified 2,044 385 1,659 0 0 0
BubbleSort Original 1,000 235 0 0 0 765

Modified 2,538 657 1,881 0 0 0
QuickSort Original 1,000 240 0 0 0 760

Modified 2,056 486 1,570 0 0 0
Table 2: Faults are injected in the memory area containing data.

4.1. Software Fault Injection Results

Table 1 and Table 2 report the results of the software
fault injection experiments performed on the memory
area containing the code and the data, respectively. Due
to the increase in the code and data size, the number of
effect-less faults significantly increases in all cases. The
hardware detection mechanism implemented by the
Transputer processor (a watch-dog) accounts for the
relatively high number of faults affecting the code
which are detected in this way.

The main observation issued from the analysis of
these results is that the number of undetected faults
producing wrong program results is nearly reduced to
zero when faults affecting the code are considered.
Indeed, an average 45% of faults injected in the original
program induced wrong answers, while for the modified
code this percentage is lower than 1%. When faults
affecting the data are considered, they are all detected
in the modified program. Note that for the original
program around 80% of faults injected on data areas led
to wrong program results.

From these experiments we can conclude that only a
few of injected faults (around 0.2% in the average)
escaped the software detection mechanisms. The effec-
tiveness of the proposed method for upset fault detec-
tion is thus proved.

4.2. Rule Analysis

In order to provide the reader with an analysis of the
relative effectiveness of the different rules we proposed,
we grouped rules in three groups:
• Group 1: data duplication
• Group 2: conditional statements
• Group 3: control flow checking.

We then classified each fault detected in the modi-
fied version of the programs according to the rule it
triggered. We report in Table 3 the percentage of faults
detected by each group of rules, with respect to the total
number of detected faults.

Faults in the code area
Group 1 Group 2 Group 3

Matrix 45.5 39.8 15.7
BubbleSort 51.7 29.8 18.5

Faults in the data area
Group 1 Group 2 Group 3

Matrix 97.9 1.9 0.2
BubbleSort 93.8 3.05 3.15
Table 3: Percent number of faults detected by each group of

rules w.r.t. total number of detected faults.

Results show that:
• Data duplication is responsible for most of the

detection capabilities of the method (about 50% of
detected faults in the code, almost all in the data).

• The effectiveness of the rules aiming at hardening
conditional statement depends on the considered
program, and accounts for about one third of the
whole method effectiveness.

• There are still a significant percentage of faults
detected through the checks on basic block
execution.

4.3. Radiation testing results

Due to schedule constraints, we are currently able to
provide results from the radiation experiments con-
cerning only the matrix program. The goal of this set of
experiments was to collect experimental data about the
number of upsets detected by the implemented software
rules and to identify possible upsets escaping these
rules.

Table 4 reports the obtained results. To allow an easy
comparison of radiation data with those obtained
through software fault injection, we have included re-
sults of a fault injection experiment having approxi-
mately the same number of upsets, and affecting the
code memory area, only.

The analysis of these data shows a good correlation
between the results obtained using the two fault injec-
tion environments. An in-depth analysis of the gathered
results shows that differences mainly stem from the fact
that during the current radiation campaigns, the code
and data memory area are not restored to their correct

initial value before every experiment; rather, they are
re-initialized when a fault is detected, only. In this way,
accumulation of fault effects can happen, producing
results which are slightly different than those coming
from the software fault injection campaign.

Despite these slight differences, results of Table 4
show that:
• The data gathered through the software fault injection

campaigns are mainly confirmed by those provided
by the preliminary radiation campaign, thus
supporting the confidence in the effectiveness of this
evaluation approach.

• The proposed method for software hardening is able
to detect a very high percent of the injected faults.
Nevertheless, more complete ground testing is

planned to draw firm conclusions about the suitability
of the studied technique for guaranteeing safe operation
of critical applications.

Radiation Test SW Fault Injection
Upsets 4,377 4,488

Effect-less 2,136 1,856
SW detection 1,920 2,312
HW detection 204 256
Wrong answer 93 12

No answer 24 52
Table 4: Radiation testing vs. software fault injection for

the matrix multiplication benchmark.

5. Conclusions

In this paper we experimentally evaluated the
effectiveness of a new technique for attaining safety in a
microprocessor-based application. The technique is
exclusively based on modifying the application code
and does not need any special hardware requirement.
Since it is based on simple transformation rules to be
applied to high-level code, the method can be easily
automated and is completely independent on the
underlying hardware. We recently performed more
extensive fault injection experiments to support this
claim, whose results can be found in [12]. The
experimental results reported in this paper, gathered by
performing fault injection experiments as well as
radiation testing on both the original and the hardened
version of a set of benchmark programs, show that the
method is very effective in reaching a high fault
detection level. As a consequence, we can conclude that
the method is suitable for usage in those low-cost
safety-critical applications, where the strict constraints
it involves in terms of memory overhead (about 4 times)
and speed decrease (about 2.5 times) can be balanced
by the low cost and high reliability of the resulting
code.

We are currently working to evaluate the proposed
approach on some real industrial applications. At the
same time, a new version of the rules is under study to
provide more flexibility in trading-off area and time
overhead with fault coverage.

6. References
[1] B. Randell, “System Structure for Software Fault Toler-

ant,” IEEE Trans. on Software Engineering, Vol. 1, No.
2, June 1975, pp. 220-232

[2] A. Avizienis, “The N-Version Approach to Fault-
Tolerant Software,” IEEE Trans. On Software Engineer-
ing, Vol. 11, No. 12, Dec. 1985, pp. 1491-1501

[3] K. H. Huang, J. A. Abraham, “Algorithm-Based Fault
Tolerance for Matrix Operations”, IEEE Trans. on Com-
puters, vol. 33, December 1984, pp. 518-528

[4] Z. Alkhalifa, V.S.S. Nair, N. Krishnamurthy, J.A. Abra-
ham, “Design and Evaluation of System-level Checks for
On-line Control Flow Error Detection,” IEEE Trans. On
Parallel and Distributed Systems, Vol. 10, No. 6, Jun.
1999, pp. 627-641

[5] K. Wilken, J.P. Shen, “Continuous Signature Monitoring:
Low-Cost Concurrent Detection of Processor Control Er-
rors”, IEEE Trans. on Computer-Aided Design, Vol. 9,
No. 6, June 1990, pp. 629-641

[6] P. Shirvani, N. Saxena, E.J. McCluskey, “Software-
Implemented EDAC Protection against SEUs”, to be
published on IEEE Transactions on Reliability

[7] M. Nicolaidis, “Time Redundancy Based Soft-Error
Tolerance to Rescue Nanometer Technologies”, VTS’99:
IEEE VLSI Test Symposium, 1999, pp. 86-94

[8] A. Benso, S. Chiusano, P. Prinetto, L. Tagliaferri, "A
C/C++ Source-to-Source Compiler for Dependable Ap-
plications," International Conference on Dependable
Systems and Networks, DSN 2000, pp. 71 -78

[9] M. Rebaudengo, M. Sonza Reorda, M. Torchiano, M.
Violante, “Soft-error Detection through Software Fault-
Tolerance techniques”, DFT’99: IEEE International
Symposium on Defect and Fault Tolerance in VLSI Sys-
tems, 1999, pp. 210-218

[10] J. Levine, T. Mason, D. Brown, Lex & Yacc, 2nd Edition
October 1992, O'Reilly & Associates, Inc.

[11] R. Velazco, Ph. Cheynet, A. Tissot, J. Haussy, J. Lam-
bert, R. Ecoffet, “Evidences of SEU tolerance for digital
implementations of Artificial Neural Networks: one year
MPTB flight results”, Proceedings of RADECS'99

[12] M. Rebaudengo, M. Sonza Reorda, M. Violante, P.
Cheynet, B. Nicolescu, R. Velazco, "Evaluating the ef-
fectiveness of a Software Fault-Tolerance technique on
RISC- and CISC-based architectures," IEEE On-Line
Testing Workshop, 2000, pp. 17-21

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

