
Low Complexity FIR Filters Using Factorization of Perturbed
Coefficients†

Cassondra Neau, Khurram Muhammad*, and Kaushik Roy
ECE, Purdue University, West Lafayette, IN 47907

*Texas Instruments, Dallas, TX

† This research was supported by the SRC Master’s Scholarship Program.

Abstract
This paper presents a factorization based technique to
reduce the computational complexity of implementing
Finite Impulse Response (FIR) digital filters. It is possible
to design FIR filters in which all of the filter coefficients
are products of the first seven prime numbers. For such
filters, factorization of the filter coefficients allows the
reuse of intermediate results among computations
involving common factors. Since the coefficients are
products of only small prime numbers, it is also possible to
generate each of the partial products with a single shift
and add operation. Compared to a traditional
implementation, this results in a 35-50% reduction in
computational complexity, which is shown to translate into
lower power consumption.

1. Introduction

In an age of portable multi-media devices, there is an
ever-increasing demand for higher speeds, greater
functionality, and longer battery life. As a result, low-
power design techniques for high-performance digital
signal processors are essential to further growth in the
portable computing area.

Power reduction strategies can be applied to all levels of
a system design: New device technology can be applied;
Circuit design can be optimized for power consumption;
Different architectures could be chosen; Or new algorithms
developed [1]. This paper focuses on the last area. Since
Finite Impulse Response (FIR) digital filters are an
essential component of digital signal processors, optimizing
the algorithm employed by these filters, has a significant
effect on the power consumption of the system.

Low-complexity design reduces the number of
operations required to achieve a desired output. Since each
operation takes time and increases power consumption due

to increased switching activity, reducing the computational
complexity leads to improved data processing speed and
lower-power consumption by reducing the number of
operations required at the highest level of design
abstraction [2]. Since multiplication is the most
computationally expensive operation in the FIR filter,
simplifying or even removing the multiplication is highly
desirable for complexity reduction.

This paper briefly describes a perturbation method to
design FIR filters with coefficients that have first seven
prime numbers as their only prime factors. By reorganizing
the computation of the filter output, it is possible to share
the partial products generated by “multiplication” by these
factors.

Furthermore, it is possible to generate these partial
products without true multiplication. Using the numerical
representation and the relationships between the small
prime numbers, a single shift and add operation can
produce these partial products. These facts combine to
produce significant savings in computational complexity
and power consumption.

2. Fundamentals

2.1 Frequency response

The output of a FIR filter is described by the following
equation:

∑
−

=

−=
1

0

][)(
M

i
i inxCny

Ci represents the ith filter coefficient and M is the length
of the filter (the number of taps). This is a linear time-
invariant system which is typically implemented with a
multiply and accumulate sequence. The coefficients are
multiplied by the input data. The sum of these
multiplications gives the filter output.

2.2 Factorization

According to the Fundamental Theorem of Arithmetic
[4], each whole number can be represented as a unique
product of prime numbers. Hence, the filter coefficients
can be written in the following form:

∏
=

=
)(

1

)()}({
nQ

k

kp
ni

nkfC

where fn are prime factors (2, 3, 5, 7, 11, 13…) Q(n) is
the cardinality of the set of prime numbers occurring in the
coefficient, and the exponent pn is the the number of times
a given factor fn occurs in the factorization of Ci.

This representation is a useful tool in identifying the
common factors amongst the filter coefficients. Once
identified, common factors allow a reduced complexity
filter implementation as follows.

If Ci = fa x fb and Ci+1 = fa x fc, fa is a common factor of
Ci and Ci+1. Therefore the product fa x x[n] can be used in
calculating both the Ci x x[n] and Ci+1 x x[n-1] terms in
equation 1. This type of reuse can occur across all M terms
of the filter.

2.3 Numerical representation

An important consideration in any filter implementation
is the choice of numerical representation [5]. The amount
of computation required in calculating the filter output
depends on the numerical representation. Thus this choice
impacts the performance and power consumption of the
filter as well as the quantization effects. We chose to use a
16-bit sign-magnitude representation. It is a straight-
forward representation and shows the benefit of
factorization in a direct manner. In applications that
process zero mean signals, using sign-magnitude
representation is preferable to two’s complement
representation [6] and Canonical Sign Digit often requires
recoding. This work could be extended to other
representations. For instance, for floating-point arithmetic,
factorization would occur on the mantissa of each
coefficient.

3. Perturbation

3.1 Motivation

The problem with factorization is the lack of “good”
common factors between the filter coefficients. It is highly
unlikely that a filter designed by conventional methods
would have an abundance of large common factors across
several coefficients. Without a significant number of
common factors, there is little benefit to factorization. To
remedy this, the coefficients can be perturbed. By adding

or subtracting a small amount from a coefficient,
completely different sets of factors can be obtained.

Perturbation is very useful in low-complexity design, but
there is a tradeoff between compromising the filter
response and reducing the computation required by such
filters [3]. The filter coefficients cannot be arbitrarily
perturbed to optimize factorization. This would result in a
poor filter response. Therefore the filter coefficients must
be perturbed in a controlled manner such that the frequency
response is constrained.

The choice of factors determines the extent of
factorization. As the cardinality of the set of factors
increases, the probability that a factor will be used multiple
times decreases, thereby reducing the potential
computational sharing. But, if the set of possible factors is
too limiting, the frequency response is significantly altered
and the resulting filter is likely not to be within the bounds.
As discussed in the next section, the set of the first seven
prime numbers is a good compromise.

Figure 1. Linear perturbation vector (0 < α < 1).

3.2 Method

It has been shown [2] that a Parks-McClellan filter (PM)
and a Least Squares filter (LS) with the same pass-bands
and stop-bands can be used to generate additional filters
with the same critical frequencies.

Let the coefficients of these filters be represented by aPM

and aLS, respectively. Since the PM filter may require
fewer taps than the LS for a given frequency response, we
pad aPM with zeros on both sides such that aPM and aLS are
of identical size. Next let us define an error vector ∆ as

PMLS aa −=∆
This interpretation is shown in figure 1. In figure 1(a)

we have shown the vectors aPM and aLS in relationship to a
hypothetical error surface. Because aLS corresponds to the
least squares solution, this vector is shown as the global
optimum of the surface |E(ω)|2. The vector aPM is in the
vicinity of aLS and can be reached through ∆ [2].

The final filter is generated from a perturbation of the
Linearly Perturbed filter. In figure 1(b) we show the
linearly perturbed vector

∆α+= PMLP aa

Figure 2. Sample low-pass filter frequency
response (α=0.3).

where 0 < α < 1. The value α = 0 corresponds to aPM and
α = 1 corresponds to aLS.

Figure 2 shows the frequency response of a low pass
filter obtained in this manner. The frequency
characteristics of the linearly perturbed vector aLP lie
between the characteristics of aPM and aLS. By varying
α in the range (0,1) the filter characteristics vary between
the characteristics of aPM and aLS. Thus the frequency
characteristics of the linearly perturbed vector lie within
the extremes provided by the PM and LS responses [2].

This linear perturbation preserves the symmetry of the
original filter coefficients around the center tap. This
coefficient symmetry is exploited by sharing the
multiplications between symmetric taps (as shown in
section 4) and guarantees that the final filter will have an
exact linear phase response, which is important in some
applications [7].

Using aLP as a starting point, each coefficient is
perturbed until it is a product of only the first few prime
numbers. For each element in aLP, there are several
possible values of ai + δ which correspond to such a
factorization. Working in order of increasing sensitivity,
each coefficient is perturbed to the value that results in the
greatest suppression in the stop band while leaving the
pass-band within the bounds. After perturbation is
completed, every coefficient in the new filter is the product
of a small set of prime numbers.

The choice of a Parks-McClellan and a Least Squares
filter as a starting point is somewhat arbitrary. The LS
filter requires significantly more taps than the PM when
sharp transition bands are required. This results in more
terms in the filter response equation and therefore more
computation. This computation is easily avoided by
starting with two Parks-Mclellan filters. Both filters should
have the same pass-band and stop-band edges, but one has
about 10% more taps, used to give greater stop-band
attenuation. (The number of additional taps determines the
size of the potential solution space. If more taps are used,
the filter coefficients can be perturbed further without

Figure 3. Block diagram of the design cycle

violating the frequency response constraints and therefore
can be generated from fewer prime factors. But longer
filters have more multiplications and additions. The choice
of 10% more taps is related to the choice of 7 prime
factors). The same method is applied to find an
intermediate filter which is perturbed to achieve a good
factorization. Once again, original filter symmetry is
preserved.

 In addition, if certain pass-band and stop-band criteria
are met, it is possible to design a PM FIR filter in which
half of the coefficients are zeros. This results in 50% less
computation than a filter of same length without this
property. Applying this factorization method preserves this
property and achieves additional computational savings.
An example of such a filter is filter 3 in Table 1.

4. Synthesis

The multiply and accumulate sequence of a FIR filter is
typically implemented in either the direct form or the
transposed direct form. The difference between the two
structures is that in the transposed direct form all of the
multiplications involving a particular input data value occur
before any multiplication involving the next data value.
This is helpful for sharing the partial products. And since
we are using symmetric (linear phase) FIR filters, Ci = Cn-i.
Thus a folded structure will result in half as many
multiplications as the non-folded structure. Figure 4 shows
the folded, transposed direct form for a 6 tap FIR filter.

Our method will use a modification of a folded
transposed direct form. All of the multiplication blocks are

Find aLS, aPM,
& ∆=aLS-aPM

Choose α
aLP = aPM + α∆

Perturb aLP

Within
Bounds?

Build Filter

YES

NO

• Parks-McClellan

• Linearly Perturbed

• Least Squares

c2 c1 c0

y(n)

x(n)

x x x

z-1 z-1 z-1 + +

+++ z-1 z-1

Figure 4. Transposed direct form of a 6 tap FIR
filter.

… …
f3 f2

… …

Ci x[n] Ci+1 x[n]

D D

D D

x[n] f1

Figure 5. First two steps in data flow graph
transformation. (Ci = f1f2 and Ci+1 = f1f3). The
factorization tree is represented by the bold
portion.

removed and replaced with a network of shifts and
additions. This network will collectively be referred to as
the factorization tree.

Figure 5 shows the initial transformation of the data flow
graph for a sample FIR filter with common factor f1. The
first step in the transformation is replacing the coefficient
multiplication with multiplication by the coefficient factors.
This step is followed by common subexpression
elimination wherever common factors can be shared.
Instead of M/2 multiplications involving multipliers with
absolute values up to 215, we are now left with greater than
M/2 multiplications involving a small set of possible
multipliers.

The next optimization step, operator strength reduction,
exploits the properties of binary arithmetic and the small
prime factor multipliers. There are three possible node
types in the factorization tree as shown in figure 6.

The first possibility is a multiplication by 2. These
nodes can be replaced by a simple shift operation. The
next case is multiplication by 3, 5, or 17. Each of these
factors has a total of 2 1’s in binary form (011, 101, and
1001, respectively). Multiplication by one of these factors
is easily replaced by one shift and one addition operation.
Case 3 involves the other possible factors (7, 11, and 13).
Since these factors have a total of 3 1’s in binary form
(111, 1011, and 1101, respectively), it would be possible to
replace these nodes with two shift and two addition
operations. But, there is a less costly alternative. We can
use the results of a type 2 multiplication to generate the

 2 X X

<< Case 1

3 X X X

<< Case 2

3X X 7 X

<< Case 3

Figure 6. Operator Strength reduction

type 3 multiplication with a single additional shift and
addition. For example, since 7x = 3x + 4x, we can use the
already produced result of a multiplication by 3 and add a
shifted value of the partial product (4x = two shifts).

Another reduction technique is combining multiple
nodes in the factorization tree. Some prime factors can be
combined into larger common factors that are
computationally less expensive. For instance 33=3*11 and
requires only one addition. Combination of nodes is
beneficial whenever such a combination does not reduce
the amount of sharing in the factorization tree.

At the conclusion of operator strength reduction, all of
the multiplication in the original filter implementation has
been replace by a lower-cost shift and add network. The
computational savings and the effect on power
consumption are shown in the next section.

5. Results and conclusions

In calculating the computational savings, we are
considering all operations in terms of the equivalent
number of additions. The assumption in these calculations
is that the cost of multiplication is equal to the number of
additions in a shift and add multiplier. This method was
implemented on different filter types (low-pass, band-pass,
and high-pass) and various sizes (20-200 taps) resulting in
computational savings of 35-50%. Filters generated with
this method can have as few as 1 add/tap.

But how does this reduction in computation translate in
terms of power consumption? This question is particularly
important because multiplication is seldom accomplished
as a series of shifts and additions. To verify the
hypothesized reduction in power consumption, a
conventional 8 tap low-pass FIR filter was compared to a
10 tap multiplier-less filter with the same frequency
response. This filter showed a 48% reduction in
computation using factorization of perturbed coefficients.

Table 1. Computational Savings Using Multiplier-
less FIR

Type
 Pass-
band

Stop-band Taps1 Taps2 Savings

1 LPF 0.0-0.3 0.6-1.0 25 29 47%

2 LPF 0.0-0.4 0.5-1.0 51 57 42%

3 BPF 0.4-0.6
0.0-0.25,
0.75-1

51 57 35%

4 LPF 0.0-0.5 0.55-1.0 100 110 41%
5 LPF 0.0-0.5 0.52-1.0 170 200 38%

Table 2. Synopsys/Powermill Results for 8/10 Tap
Filter (with a 48% reduction in computational
complexity using factorization)

Power Delay

w/ Multipliers 4.74 mW 30.20 ns

w/ Factor Trees 2.94 mW 28.11 ns

Both filters were synthesized in Synopsys and the power
consumption at a nominal frequency was measured by
Powermill. The average power consumption was
determined using random input vectors. These results are
shown in table 2. The simulated power savings was 38%
and there was a 7% decrease in delay. The reduction in
power consumption is significant, but not as large as the
decrease in computation. This is expected due to the
storage overhead of this method.

In summary, it has been shown that an arbitrary FIR
filter can implemented as a multiplier-less filter using
perturbation and factorization. This implementation will
require 35-50% less computation and this computational
savings will translate into lower power consumption.

6. References

[1] Sankarayya, N., Roy, K., and Bhattacharya, D. “Algorithms
for Low-Power and High-Speed FIR Filter Realization Using
Differential Coefficients”. IEEE Trans. on Circuits and
Systems, Vol. 44, No. 6, pp. 488-497, Jun. 1997.

[2] Muhammad, K. “Algorithmic and Architectural Techniques
for Low Power Digital Signal Processing”, Ph.D. thesis,
Purdue University, 1999.

[3] Mehendale, M., Sherlekar, S.D., and Venkatesh, G.
“Coefficient Optimization for Low-Power Realization of FIR
Filters”, IEEE Workshop on VLSI Signal Processing, Japan,
1995.

[4] Graham, R., Knuth, D. and Potashnik, D. Concrete
Mathematics, Addison-Wesley, 1994.

[5] Hartley, R. “Optimization of CSD Multipliers for Filter
Design,” IEEE Intl. Symposium on Circuits & Systems, Vol.
4, 1991. pp. 1992-1995.

[6] Azadet, K. and A.J. Nicole,”Low-Power Equilizer
Architectures for High-Speed Modems,” IEEE
Communications Magazine, pp 118-126, Oct. 1998.

[7] Hawley, R., B. Wong, T. Lin, J. Laskowski, and H. Samueli.
“Design Techniques for Silicon Compiler Implementations
of High-Speed FIR Digital Filters,” IEEE J. of Solid State
Circuits, Vol 31, No. 5, May 1996, pp. 656-667.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

